Cerebrovascular Disease Hospitalization Rates in End-Stage Kidney Disease Patients with Kidney Transplant and Peripheral Vascular Disease: Analysis Using the National Inpatient Sample (2005–2019)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objectives and Outcomes
2.2. Data, Data Sources, and Sample Details
2.3. Variables
2.4. Analysis
3. Results
3.1. Descriptive Statistics, Baseline Characteristics, and Frequency Distribution of ESKD and Kidney Transplant Hospitalizations with and without PVD
3.2. Baseline Characteristics for All ESKD Patients with PVD versus Patients without PVD
3.3. Cerebral Infarction Due to Thrombosis, Embolism, Occlusion, and Stenosis (CITO in ESKD Hospitalizations)
3.4. Artery Occlusion and Stenosis Resulting in Cerebral Ischemia (AOSI in ESKD Hospitalizations)
3.5. Nontraumatic Intracranial Hemorrhage (NIH)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bansal, N. Evolution of Cardiovascular Disease during the Transition to End-Stage Renal Disease. Semin. Nephrol. 2017, 37, 120–131. [Google Scholar] [CrossRef]
- Kidney Disease Statistics for the United States—NIDDK. Available online: https://www.niddk.nih.gov/health-information/health-statistics/kidney-disease (accessed on 6 April 2023).
- McCullough, K.P.; Morgenstern, H.; Saran, R.; Herman, W.H.; Robinson, B.M. Projecting ESRD Incidence and Prevalence in the United States through 2030. J. Am. Soc. Nephrol. 2019, 30, 127–135. [Google Scholar] [CrossRef]
- Hashmi, M.F.; Benjamin, O.; Lappin, S.L. End-Stage Renal Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Devine, P.A.; Courtney, A.E.; Maxwell, A.P. Cardiovascular Risk in Renal Transplant Recipients. J. Nephrol. 2019, 32, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Garimella, P.S.; Hirsch, A.T. Peripheral Artery Disease and Chronic Kidney Disease: Clinical Synergy to Improve Outcomes. Adv. Chronic Kidney Dis. 2014, 21, 460–471. [Google Scholar] [CrossRef]
- O’Hare, A.M.; Glidden, D.V.; Fox, C.S.; Hsu, C.-Y. High Prevalence of Peripheral Arterial Disease in Persons with Renal Insufficiency: Results from the National Health and Nutrition Examination Survey 1999–2000. Circulation 2004, 109, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, S.; Dellegrottaglie, S.; Furniss, A.L.; Gillespie, B.W.; Satayathum, S.; Lameire, N.; Saito, A.; Akiba, T.; Jadoul, M.; Ginsberg, N.; et al. Peripheral Arterial Disease in Patients with End-Stage Renal Disease. Circulation 2006, 114, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, F.; Rios, L.H.P.; Fiani, B.; Fareed, J.; Tafur, A. National Trends for Peripheral Artery Disease and End Stage Renal Disease From the National Inpatient Sample Database. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211025625. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Siscovick, D.S.; Manolio, T.A.; Polak, J.; Fried, L.P.; Borhani, N.O.; Wolfson, S.K. Ankle-Arm Index as a Marker of Atherosclerosis in the Cardiovascular Health Study. Cardiovascular Heart Study (CHS) Collaborative Research Group. Circulation 1993, 88, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Kolls, B.J.; Sapp, S.; Rockhold, F.W.; Jordan, J.D.; Dombrowski, K.E.; Fowkes, F.G.R.; Mahaffey, K.W.; Berger, J.S.; Katona, B.G.; Blomster, J.I.; et al. Stroke in Patients with Peripheral Artery Disease. Stroke 2019, 50, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Aoki, J.; Ikari, Y. Cardiovascular Disease in Patients with End-Stage Renal Disease on Hemodialysis. Ann. Vasc. Dis. 2017, 10, 327–337. [Google Scholar] [CrossRef]
- Didier, R.; Yao, H.; Legendre, M.; Halimi, J.M.; Rebibou, J.M.; Herbert, J.; Zeller, M.; Fauchier, L.; Cottin, Y. Myocardial Infarction after Kidney Transplantation: A Risk and Specific Profile Analysis from a Nationwide French Medical Information Database. J. Clin. Med. 2020, 9, 3356. [Google Scholar] [CrossRef]
- Neale, J.; Smith, A.C. Cardiovascular Risk Factors Following Renal Transplant. World J. Transplant. 2015, 5, 183–195. [Google Scholar] [CrossRef]
- Boots, J.M.; Christiaans, M.H.; van Hooff, J.P. Effect of Immunosuppressive Agents on Long-Term Survival of Renal Transplant Recipients: Focus on the Cardiovascular Risk. Drugs 2004, 64, 2047–2073. [Google Scholar] [CrossRef] [PubMed]
- Melilli, E.; Manonelles, A.; Montero, N.; Grinyo, J.; Martinez-Castelao, A.; Bestard, O.; Cruzado, J. Impact of Immunosuppressive Therapy on Arterial Stiffness in Kidney Transplantation: Are All Treatments the Same? Clin. Kidney J. 2018, 11, 413–421. [Google Scholar] [CrossRef]
- Antithrombotic Therapy for Peripheral Artery Disease. Available online: https://www.acc.org/Latest-in-Cardiology/ten-points-to-remember/2018/05/22/14/46/http%3a%2f%2fwww.acc.org%2fLatest-in-Cardiology%2ften-points-to-remember%2f2018%2f05%2f22%2f14%2f46%2fAntithrombotic-Therapy-for-Peripheral-Artery-Disease (accessed on 7 August 2023).
- Alonso-Escalante, J.C.; Machado, L.; Tabar, K.R.; Tindall, R.; Thai, N.; Uemura, T. Is Continuing Anticoagulation or Antiplatelet Therapy Safe Prior to Kidney Transplantation? Ann. Transplant. 2021, 26, e931648-1–e931648-4. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Soh, S.; Shim, J.-K. Dual Antiplatelet Therapy and Non-Cardiac Surgery: Evolving Issues and Anesthetic Implications. Korean J. Anesthesiol. 2017, 70, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Sood, M.M.; Garg, A.X.; Bota, S.E.; Marisiddappa, L.; McArthur, E.; Naylor, K.L.; Kapral, M.K.; Kim, S.J.; Lam, N.N.; Molnar, A.O.; et al. Risk of Major Hemorrhage after Kidney Transplantation. Am. J. Nephrol. 2015, 41, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Foley, R.N.; Murray, A.M.; Li, S.; Herzog, C.A.; McBean, A.M.; Eggers, P.W.; Collins, A.J. Chronic Kidney Disease and the Risk for Cardiovascular Disease, Renal Replacement, and Death in the United States Medicare Population, 1998 to 1999. J. Am. Soc. Nephrol. 2005, 16, 489–495. [Google Scholar] [CrossRef] [PubMed]
- HCUP-US Overview. Available online: https://hcup-us.ahrq.gov/overview.jsp (accessed on 18 April 2023).
- Hospital Value-Based Purchasing Program|CMS. Available online: https://www.cms.gov/medicare/quality/initiatives/hospital-quality-initiative/hospital-value-based-purchasing (accessed on 13 December 2023).
- Elixhauser, A.; Steiner, C.; Harris, D.R.; Coffey, R.M. Comorbidity Measures for Use with Administrative Data. Med. Care 1998, 36, 8–27. [Google Scholar] [CrossRef]
- The Web’s Free 2024 ICD-10-CM/PCS Medical Coding Reference. Available online: https://www.icd10data.com/ (accessed on 29 January 2024).
- NIS Description of Data Elements. Available online: https://hcup-us.ahrq.gov/db/nation/nis/nisdde.jsp (accessed on 18 April 2023).
- Nayak-Rao, S.; Shenoy, M.P. Stroke in Patients with Chronic Kidney Disease…: How Do We Approach and Manage It? Indian J. Nephrol. 2017, 27, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-T.; Yu, T.-M.; Chuang, Y.-W.; Chung, M.-C.; Wang, C.-Y.; Fu, P.-K.; Ke, T.-Y.; Li, C.-Y.; Lin, C.-L.; Wu, M.-J.; et al. The Risk of Stroke in Kidney Transplant Recipients with End-Stage Kidney Disease. Int. J. Environ. Res. Public Health 2019, 16, 326. [Google Scholar] [CrossRef] [PubMed]
- Hernández, D.; Vázquez, T.; Armas-Padrón, A.M.; Alonso-Titos, J.; Casas, C.; Gutiérrez, E.; Jironda, C.; Cabello, M.; López, V. Peripheral Vascular Disease and Kidney Transplant Outcomes: Rethinking an Important Ongoing Complication. Transplantation 2021, 105, 1188. [Google Scholar] [CrossRef]
- Akku, R.; Jayaprakash, T.P.; Ogbue, O.D.; Malhotra, P.; Khan, S. Current Trends Featuring the Bridge between Stroke and End-Stage Renal Disease: A Review. Cureus 2020, 12, e9484. [Google Scholar] [CrossRef]
- Goel, N.; Jain, D.; Haddad, D.B.; Shanbhogue, D. Anticoagulation in Patients with End-Stage Renal Disease and Atrial Fibrillation: Confusion, Concerns and Consequences. J. Stroke 2020, 22, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Stroke-Related Deaths among Kidney Transplant Recipients. Available online: https://docwirenews.com (accessed on 31 May 2023).
- Patel, S.I.; Chakkera, H.A.; Wennberg, P.W.; Liedl, D.A.; Alrabadi, F.; Cha, S.S.; Hooley, D.D.; Amer, H.; Wadei, H.M.; Shamoun, F.E. Peripheral Arterial Disease Preoperatively May Predict Graft Failure and Mortality in Kidney Transplant Recipients. Vasc. Med. 2017, 22, 225–230. [Google Scholar] [CrossRef]
- Quiñones-Ossa, G.A.; Lobo, C.; Garcia-Ballestas, E.; Florez, W.A.; Moscote-Salazar, L.R.; Agrawal, A. Obesity and Stroke: Does the Paradox Apply for Stroke? Neurointervention 2021, 16, 9–19. [Google Scholar] [CrossRef] [PubMed]
- New Insights into Cerebrovascular Pathophysiology and Hypertension|Stroke. Available online: https://www.ahajournals.org/doi/10.1161/STROKEAHA.121.035850 (accessed on 6 February 2024).
- Ergul, A.; Kelly-Cobbs, A.; Abdalla, M.; Fagan, S.C. Cerebrovascular Complications of Diabetes: Focus on Stroke. Endocr. Metab. Immune Disord.-Drug Targets 2012, 12, 148–158. [Google Scholar] [CrossRef]
- Austin, P.C.; Lee, D.S.; Fine, J.P. Introduction to the Analysis of Survival Data in the Presence of Competing Risks. Circulation 2016, 133, 601–609. [Google Scholar] [CrossRef]
- Ostrominski, J.W.; Amione-Guerra, J.; Hernandez, B.; Michalek, J.E.; Prasad, A. Coding Variation and Adherence to Methodological Standards in Cardiac Research Using the National Inpatient Sample. Front. Cardiovasc. Med. 2021, 8, 713695. [Google Scholar] [CrossRef]
ESKD without PVD (2,584,262) | ESKD with PVD (62,005) | KTx without PVD | KTx with PVD (1406) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Key Conditions of Interest | n (%) | Range | Mean | Std. Dev. | n (%) | Range | Mean | Std. Dev. | n (%) | Range | Mean | Std. Dev. | n (%) | Range | Mean | Std. Dev. |
Kidney Transplant | 0 | 0 | 65,521 (100%) | 1406 (100%) | ||||||||||||
Peripheral Vascular Diseases | 0 | 62,005 (100%) | 0 | 1406 (100%) | ||||||||||||
Kidney Transplant & Peripheral Vascular Diseases | 0 | 0 | 0 | 1406 (100%) | ||||||||||||
Cerebral infarction due to thrombosis, embolism, occlusion, and stenosis | 2175 (0.08%) | 92 (0.15%) | 33 (0.05%) | 4 (0.28%) | ||||||||||||
Artery occlusion and stenosis resulting in cerebral ischemia | 24,375 (0.94%) | 1919 (3.09%) | 346 (0.53%) | 25 (1.78%) | ||||||||||||
Nontraumatic intracranial hemorrhages | 16,408 (0.63%) | 273 (0.44%) | 388 (0.59%) | 7 (0.50%) | ||||||||||||
Risk Factors and Comorbidities | ||||||||||||||||
Essential Hypertension | 31,612 (1.22%) | 985 (1.59%) | 1448 (2.21%) | 29 (2.06%) | ||||||||||||
Obesity | 285,232 (11.04%) | 8696 (14.02%) | 4996 (7.63%) | 158 (11.24%) | ||||||||||||
Nicotine Dependence, Cigarettes | 225,959 (8.74%) | 8126 (13.11%) | 4272 (6.52%) | 115 (8.18%) | ||||||||||||
Type II Diabetes Mellitus | 571,459 (22.11%) | 14,502 (23.39%) | 10,449 (15.95%) | 249 (17.71%) | ||||||||||||
Atrial Fibrillation | 371,734 (14.38%) | 11,175 (18.02%) | 7840 (11.97%) | 255 (18.14%) | ||||||||||||
Hyperlipidemia | 748,491 (28.96%) | 32,301 (52.09%) | 17,621 (26.89%) | 725 (51.56%) | ||||||||||||
Other Specification Controls | ||||||||||||||||
Elixhauser Comorbidity Index | 2,584,262 | 1–18 | 5.30 | 1.98 | 62,005 | 1–18 | 6.89 | 1.98 | 65,521 | 1–16 | 4.69 | 1.94 | 1406 | 2–15 | 6.59 | 2.05 |
Age | 2,584,082 | 0–114 | 61.44 | 15.78 | 62,002 | 8–99 | 66.25 | 12.31 | 65,517 | 0–97 | 52.78 | 15.65 | 1406 | 22–90 | 60.43 | 11.59 |
Race | ||||||||||||||||
White | 984,394 (38.09%) | 28,498 (45.96%) | 29,178 (44.53%) | 670 (47.65%) | ||||||||||||
Black | 814,390 (31.51%) | 19,564 (31.55%) | 16,677 (25.45%) | 380 (27.03%) | ||||||||||||
Hispanic | 379,976 (14.70%) | 8657 (13.96%) | 8712 (13.30%) | 210 (14.94%) | ||||||||||||
Asian or Pacific Islander | 87,193 (3.37%) | 1512 (2.44%) | 2307 (3.52%) | 31 (2.20%) | ||||||||||||
Native American | 26,389 (1.02%) | 604 (0.97%) | 510 (0.78%) | 22 (1.56%) | ||||||||||||
Other | 69,913 (2.71%) | 1385 (2.23%) | 1754 (2.68%) | 48 (3.41%) | ||||||||||||
Missing | 222,007 (8.59%) | 1785 (2.88%) | 6383 (9.74%) | 45 (3.20%) | ||||||||||||
Primary expected payer | ||||||||||||||||
Medicare | 1,913,716 (74.05%) | 51,579 (83.19%) | 48,181 (73.54%) | 1192 (84.78%) | ||||||||||||
Medicaid | 297,103 (11.50%) | 4547 (7.33%) | 4841 (7.39%) | 52 (3.70%) | ||||||||||||
Private Insurance | 287,101 (11.11%) | 4539 (7.32%) | 11,087 (16.92%) | 140 (9.96%) | ||||||||||||
Other | 82,212 (3.18%) | 1291 (2.08%) | 1334 (2.04%) | 21 (1.49%) | ||||||||||||
Missing | 4130 (0.16%) | 49 (0.08%) | 78 (0.12%) | 1 (0.07%) | ||||||||||||
Median household income national quartile for patient ZIP Code | ||||||||||||||||
$1–$28,999 | 979,591 (37.91%) | 24,150 (38.95%) | 19,997 (30.52%) | 444 (31.58%) | ||||||||||||
$29,000–$35,999 | 633,972 (24.53%) | 15,282 (24.65%) | 16,478 (25.15%) | 343 (24.40%) | ||||||||||||
$36,000–$46,999 | 528,582 (20.45%) | 12,655 (20.41%) | 15,259 (23.29%) | 325 (23.12%) | ||||||||||||
$47,000+ | 385,058 (14.90%) | 8858 (14.29%) | 12,485 (19.05%) | 267 (18.99%) | ||||||||||||
Missing | 57,059 (2.21%) | 1060 (1.71%) | 1302 (1.99%) | 27 (1.92%) | ||||||||||||
Patient Location: NCHS Urban-Rural Code | ||||||||||||||||
Central counties of metro areas of ≥1 million population | 1,001,363 (38.75%) | 21,065 (33.97%) | 22,665 (34.59%) | 465 (33.07%) | ||||||||||||
Fringe counties of metro areas of ≥1 million population | 565,413 (21.88%) | 13,954 (22.50%) | 15,955 (24.35%) | 355 (25.25%) | ||||||||||||
Counties in metro areas of 250,000–999,999 population | 452,963 (17.53%) | 12,630 (20.37%) | 12,158 (18.56%) | 268 (19.06%) | ||||||||||||
Counties in metro areas of 50,000–249,999 population | 204,123 (7.90%) | 5202 (8.39%) | 5589 (8.53%) | 114 (8.11%) | ||||||||||||
Micropolitan counties | 202,325 (7.83%) | 5127 (8.27%) | 5121 (7.82%) | 113 (8.04%) | ||||||||||||
Not metropolitan or micropolitan counties | 130,219 (5.04%) | 3781 (6.10%) | 3326 (5.08%) | 82 (5.83%) | ||||||||||||
Missing | 27,856 (1.08%) | 246 (0.40%) | 707 (1.08%) | 9 (0.64%) | ||||||||||||
1 Dataset Contains Only ESKD Patients (n = 2,713,194) |
Key Condition Patient Differences (t-Test & Chisq) | Peripheral Vascular Diseases | ||
---|---|---|---|
Key Conditions of Interest | No Condition (n = 2,649,783) | Condition (n = 63,411) | p-Value |
Kidney Transplant, n (%) | 65,521 (2.47%) | 1406 (2.22%) | <0.001 |
Cerebral infarction due to thrombosis, embolism, occlusion, and stenosis, n (%) | 2208 (0.08%) | 96 (0.15%) | <0.001 |
Artery occlusion and stenosis resulting in cerebral ischemia, n (%) | 24,721 (0.93%) | 1944 (3.07%) | <0.001 |
Nontraumatic intracranial hemorrhages, n (%) | 16,796 (0.63%) | 280 (0.44%) | <0.001 |
Risk Factors and Comorbidities | |||
Essential Hypertension | 33,060 (1.25%) | 1014 (1.60%) | <0.001 |
Obesity | 290,228 (10.95%) | 8854 (13.96%) | <0.001 |
Nicotine Dependence, Cigarettes | 230,231 (8.69%) | 8241 (13%) | <0.001 |
Type II Diabetes Mellitus | 581,908 (21.96%) | 14,751 (23.26%) | <0.001 |
Atrial Fibrillation | 379,574 (14.32%) | 11,430 (18.03%) | <0.001 |
Hyperlipidemia | 766,112 (28.91%) | 33,026 (52.08%) | <0.001 |
Other Specification Controls | |||
Elixhauser Comorbidity Index (1–18), mean (SD) | 5.29 (1.98) | 6.88 (1.98) | <0.001 |
Age, mean (SD) | 61.23 (15.83) | 66.12 (12.32) | <0.001 |
Race, n (%) | |||
White | 1,013,572 (41.86%) | 29,168 (47.37%) | <0.001 |
Black | 831,067 (34.32%) | 19,944 (32.39%) | |
Hispanic | 388,688 (16.05%) | 8867 (14.40%) | |
Asian or Pacific Islander | 89,500 (3.70%) | 1543 (2.51%) | |
Native American | 26,899 (1.11%) | 626 (1.02%) | |
Other | 71,667 (2.96% | 1433 (2.33%) | |
Primary expected payer, n (%) | |||
Medicare | 1,961,897 (74.16%) | 52,771 (83.29%) | <0.001 |
Medicaid | 301,944 (11.41%) | 4599 (7.26%) | |
Private Insurance | 298,188 (11.27%) | 4679 (7.38%) | |
Other | 83,546 (3.16%) | 1312 (2.07%) | |
Median household income national quartile for patient ZIP Code, n (%) | |||
$1–$28,999 | 999,588 (38.57%) | 24,564 (39.46%) | <0.001 |
$29,000–$35,999 | 650,450 (25.10%) | 15,625 (25.07%) | |
$36,000–$46,999 | 543,841 (20.99%) | 12,980 (20.83%) | |
$47,000+ | 397,543 (15.34%) | 9125 (14.64%) | |
Patient Location: NCHS Urban-Rural Code, n (%) | |||
Central counties of metro areas of ≥1 million population | 1,024,028 (39.07%) | 21,530 (34.09%) | <0.001 |
Fringe counties of metro areas of ≥1 million population | 581,368 (22.18%) | 14,309 (22.66%) | |
Counties in metro areas of 250,000–999,999 population | 465,121 (17.74%) | 12,898 (20.42%) | |
Counties in metro areas of 50,000–249,999 population | 209,712 (8.00%) | 5316 (8.42%) | |
Micropolitan counties | 207,446 (7.91%) | 5240 (8.30%) | |
Not metropolitan or micropolitan counties | 133,545 (5.09%) | 3863 (6.12%) |
Hospitalization for Cerebral Infarction Due to Thrombosis, Embolism, Occlusion, and Stenosis (CITO) | Hospitalization for Artery Occlusion and Stenosis Resulting in Cerebral Ischemia (AOSI) | Hospitalization for Nontraumatic Intracranial Hemorrhage (NIH) | |||||||
---|---|---|---|---|---|---|---|---|---|
Key Conditions of Interest ** | Not Hospitalized with CITO (n = 2,710,890) | Hospitalized with CITO (n = 2304) | p-Value | Not Hospitalized with AOSI (n = 2,686,529) | Hospitalized with AOSI (n = 26,665) | p-Value | Not Hospitalized with NIH (n = 2,696,118) | Hospitalized with NIH (n = 17,076) | p-Value |
Kidney Transplant, n (%) | 66,890 (2.47%) | 37 (1.61%) | 0.008 | 66,556 (2.48%) | 371 (1.39%) | <0.001 | 66,532 (2.47%) | 395(2.31%) | 0.194 |
ESKD & Peripheral Vascular Diseases, n (%) | 63,315 (2.34%) | 96 (4.17%) | <0.001 | 61,467 (2.29%) | 1944 (7.29%) | <0.001 | 63,131 (2.34%) | 280 (1.64%) | <0.001 |
Kidney Transplant & Peripheral Vascular Diseases, n (%) | 1402 (0.05%) | 4 (0.17%) | 0.033 | 1381 (0.05%) | 25 (0.09%) | 0.002 | 1399 (0.05%) | 7 (0.04%) | 0.34 |
Other Specification Controls | |||||||||
Age, mean (SD) | 61.34 (15.78) | 67.68 (12.03) | <0.001 | 61.25 (15.79) | 70.43 (10.82) | <0.001 | 5.32 (1.99) | 5.63 (2.06) | <0.001 |
Elixhauser Comorbidity Index (1–18), mean (SD) | 5.33 (1.99) | 6.01 (2.06) | <0.001 | 5.32 (1.99) | 5.84 (2.02) | <0.001 | 61.33 (15.78) | 62.53 (14.74) | <0.001 |
Key Regression Specifications | ||||||
---|---|---|---|---|---|---|
Dependent Variable | CITO | AOSI | NIH | |||
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
KiTx 1 | 0.741 (0.509–1.079) | 0.118 | 0.76 (0.678–0.851) | <0.001 * | 1.013 (0.932–1.157) | 0.814 |
Peripheral Vascular Diseases | 1.332 (1.074–1.653) | 0.009 * | 2.626 (2.50–2.76) | <0.001 * | 0.641 (0.542–0.695) | <0.001 * |
KTx & Peripheral Vascular Diseases | 3.17 (1.087–9.247) | 0.035 * | 0.983 (0.649–1.49) | 0.937 | 1.040 (0.459–2.358) | 0.925 |
Risk Factors and Comorbidities | ||||||
Essential Hypertension | 0.745 (0.468–1.186) | 0.215 | 0.865 (0.763–0.981) | 0.024 * | 1.089 (0.946–1.253) | 0.236 |
Obesity | 0.783 (0.678–0.905) | 0.001 * | 0.906 (0.869–0.945) | <0.001 * | 0.471 (0.440–0.503) | <0.001 * |
Nicotine Dependence, Cigarettes | 0.9 (0.757–1.07) | 0.233 | 1.298 (1.239–1.360) | <0.001 * | 0.725 (0.678–0.774) | <0.001 * |
Type II Diabetes Mellitus | 0.869 (0.781–0.966) | 0.009 * | 1.096 (1.065–1.129) | <0.001 * | 0.931 (0.895–0.968) | <0.001 * |
Atrial Fibrillation | 0.896 (0.798–1.007) | 0.066 | 0.906 (0.876–0.937) | <0.001 * | 0.821 (0.782–0.862) | <0.001 * |
Hyperlipidemia | 1.301 (1.188–1.424) | <0.001 * | 1.953 (1.903–2.005) | <0.001 * | 0.864 (0.736–0.793) | <0.001 * |
Other Specification Controls | ||||||
Elixhauser Comorbidity Index (1–18) | 1.146 (1.132–1.178) | <0.001 * | 1.054 (1.047–1.061) | <0.001 * | 1.119 (1.110–1.128) | <0.001 * |
Age | 1.022 (1.019–1.025) | <0.001 * | 1.038 (1.037–1.039) | <0.001 * | 1.005 (1.004–1.006) | <0.001 * |
Race | ||||||
Race (Black) 2 | 0.884 (0.790–0.986) | 0.029 * | 0.595 (0.575–0.616) | <0.001 * | 1.206 (1.157–1.257) | <0.001 * |
Race (Hispanic) 2 | 0.863 (0.735–0.973) | 0.038 * | 0.73 (0.700–0.762) | <0.001 * | 1.260 (1.199–1.324) | <0.001 * |
Race (Asian or Pacific Islander) 2 | 0.836 (0.637–1.026) | 0.14 | 0.76 (0.710–0.813) | <0.001 * | 1.932 (1.802–2.072) | <0.001 * |
Race (Native American) 2 | 0.497 (0.263–0.921) | 0.029 * | 0.932 (0.819–1.061) | 0.286 | 1.159 (0.983–1.368) | 0.08 |
Race (Other) 2 | 0.865 (0.647–1.131) | 0.31 | 0.811 (0.747–0.879) | <0.001 * | 1.486 (1.361–1.622) | <0.001 * |
Primary Expected Payer | ||||||
Primary expected payer (Medicaid) 3 | 0.737 (0.609–0.893) | 0.001 * | 0.683 (0.641–0.729) | <0.001 * | 1.022 (0.967–1.079) | 0.441 |
Primary expected payer (Private Insurance) 3 | 1.097 (0.944–1.269) | 0.218 | 0.991 (0.946–1.038) | 0.69 | 1.214 (1.153–1.277) | <0.001 * |
Primary expected payer (Other) 3 | 0.98 (0.738–1.298) | 0.889 | 0.67 (0.604–0.742) | <0.001 * | 1.259 (1.154–1.373) | <0.001 * |
Median Household Income | ||||||
Median household income national quartile for patient ZIP Code ($29,000–$35,999) 4 | 1.031 (0.916–1.152) | 0.597 | 1.076 (1.040–1.114) | <0.001 * | 1.013 (0.971–1.057) | 0.557 |
Median household income national quartile for patient ZIP Code ($36,000–$46,999) 4 | 0.951 (0.832–1.074) | 0.442 | 1.089 (1.049–1.130) | <0.001 * | 1 (0.955–1.048) | 0.987 |
Median household income national quartile for patient ZIP Code ($47,000+) 4 | 1.073 (0.925–1.223) | 0.323 | 1.099 (1.054–1.146) | <0.001 * | 1.047 (0.993–1.103) | 0.09 |
Patient Location | ||||||
Patient location: fringe counties of metro areas of ≥1 million population 5 | 0.892 (0.790–1.004) | 0.061 | 1.063 (1.026–1.102) | 0.001 * | 0.933 (0.893–0.975) | 0.002 * |
Patient location: counties in metro areas of 250,000–999,999 population 5 | 0.961 (0.843–1.085) | 0.541 | 1.149 (1.106–1.192) | <0.001 * | 1.023 (0.977–1.070) | 0.336 |
Patient location: counties in metro areas of 50,000–249,999 population 5 | 0.842 (0.701–1.008) | 0.064 | 1.162 (1.105–1.221) | <0.001 * | 0.944 (0.884–1.008) | 0.087 |
Patient location: micropolitan counties 5 | 1 (0.841–1.197) | 0.999 | 1.14 (1.083–1.201) | <0.001 * | 0.932 (0.870–0.999) | 0.048 * |
Patient location: not metropolitan or micropolitan counties 5 | 1.058 (0.865–1.299) | 0.586 | 1.297 (1.224–1.375) | <0.001 * | 0.971 (0.894–1.054) | 0.48 |
Observations | 2,408,114 | 2,408,114 | 2,408,114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canova, T.J.; Issa, R.; Baxter, P.; Thomas, I.; Eltahawy, E.; Ekwenna, O. Cerebrovascular Disease Hospitalization Rates in End-Stage Kidney Disease Patients with Kidney Transplant and Peripheral Vascular Disease: Analysis Using the National Inpatient Sample (2005–2019). Healthcare 2024, 12, 454. https://doi.org/10.3390/healthcare12040454
Canova TJ, Issa R, Baxter P, Thomas I, Eltahawy E, Ekwenna O. Cerebrovascular Disease Hospitalization Rates in End-Stage Kidney Disease Patients with Kidney Transplant and Peripheral Vascular Disease: Analysis Using the National Inpatient Sample (2005–2019). Healthcare. 2024; 12(4):454. https://doi.org/10.3390/healthcare12040454
Chicago/Turabian StyleCanova, Tyler John, Rochell Issa, Patrick Baxter, Ian Thomas, Ehab Eltahawy, and Obi Ekwenna. 2024. "Cerebrovascular Disease Hospitalization Rates in End-Stage Kidney Disease Patients with Kidney Transplant and Peripheral Vascular Disease: Analysis Using the National Inpatient Sample (2005–2019)" Healthcare 12, no. 4: 454. https://doi.org/10.3390/healthcare12040454
APA StyleCanova, T. J., Issa, R., Baxter, P., Thomas, I., Eltahawy, E., & Ekwenna, O. (2024). Cerebrovascular Disease Hospitalization Rates in End-Stage Kidney Disease Patients with Kidney Transplant and Peripheral Vascular Disease: Analysis Using the National Inpatient Sample (2005–2019). Healthcare, 12(4), 454. https://doi.org/10.3390/healthcare12040454