Advance Monitoring of COVID-19 Incidence Based on Taxi Mobility: The Infection Ratio Measure
Abstract
:1. Introduction
2. Methods
2.1. COVID-19 Data
2.2. Mobility Data
2.3. The Infection Ratio
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Kang, C.; Gong, L.; Liu, Y. Incorporating spatial interaction patterns in classifying and understanding urban land use. Int. J. Geogr. Inf. Sci. 2016, 30, 334–350. [Google Scholar] [CrossRef]
- Yu, J.; Xie, N.; Zhu, J.; Qian, Y.; Zheng, S.; Chen, X.M. Exploring impacts of COVID-19 on city-wide taxi and ride-sourcing markets: Evidence from Ningbo, China. Transp. Policy 2022, 115, 220–238. [Google Scholar] [CrossRef]
- Araújo, J.L.B.; Oliveira, E.A.; Lima Neto, A.S.; Andrade, J.S.; Furtado, V., Jr. Unveiling the paths of COVID-19 in a large city based on public transportation data. Sci. Rep. 2023, 13, 5761. [Google Scholar] [CrossRef]
- Mo, B.; Noursalehi, P.; Koutsopoulos, H.N.; Zhao, J. Modeling virus transmission risks in commuting with emerging mobility services: A case study of COVID-19. Travel Behav. Soc. 2024, 34, 100689. [Google Scholar] [CrossRef]
- Bulteau, J.; Torres, E.R.; Tillous, M. The impact of COVID-19 lockdown measures on gendered mobility patterns in France. Travel Behav. Soc. 2023, 33, 100615. [Google Scholar] [CrossRef]
- Liu, S.-F.; Chang, H.-C.; Liu, J.-F.; Kuo, H.-C. How Did the COVID-19 Pandemic Affect Population Mobility in Taiwan? Int. J. Environ. Res. Public Health 2022, 19, 10559. [Google Scholar] [CrossRef] [PubMed]
- Borowska-Stefańska, M.; Dulebenets, M.A.; Kowalski, M.; Turoboś, F.; Wiśniewski, S. Impact of COVID-19 Pandemic on Daily Mobility of the Elderly Living in Small Cities in Lodz Province. Int. J. Environ. Res. Public Health 2023, 20, 5752. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Eckel, S.P.; Garcia, E.; Chen, Z.; Wilson, J.P.; Gilliland, F.D. Geographic Variations in Human Mobility Patterns during the First Six Months of the COVID-19 Pandemic in California. Appl. Sci. 2023, 13, 2440. [Google Scholar] [CrossRef]
- Ambade, P.N.; Thavorn, K.; Pakhale, S. COVID-19 Pandemic: Did Strict Mobility Restrictions Save Lives and Healthcare Costs in Maharashtra, India? Healthcare 2023, 11, 2112. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos-Gimeno, J.; Sobrino, N.; Arce-Ruiz, R.M. Effects of Mobility Restrictions on Air Pollution in the Madrid Region during the COVID-19 Pandemic and Post-Pandemic Periods. Sustainability 2023, 15, 12702. [Google Scholar] [CrossRef]
- Al-Akioui, A.; Monzon, A. Spatial Analysis of COVID-19 Pandemic Impacts on Mobility in Madrid Region. Sustainability 2023, 15, 14259. [Google Scholar] [CrossRef]
- Ando, T.; Sato, T.; Hashimoto, N.; Tran, Y.; Konishi, N.; Takeda, Y.; Akamatsu, M. Variability in Human Mobility during the Third Wave of COVID-19 in Japan. Sustainability 2021, 13, 13131. [Google Scholar] [CrossRef]
- Shanableh, A.; Al-Ruzouq, R.; Khalil, M.A.; Gibril, M.B.A.; Hamad, K.; Alhosani, M.; Stietiya, M.H.; Bardan, M.A.; Mansoori, S.A.; Hammouri, N.A. COVID-19 Lockdown and the Impact on Mobility, Air Quality, and Utility Consumption: A Case Study from Sharjah, United Arab Emirates. Sustainability 2022, 14, 1767. [Google Scholar] [CrossRef]
- Alzain, M.A.; Asweto, C.O.; Atique, S.; Elhassan, N.E.E.; Kassar, A.; Hassan, S.-u.-N.; Humaida, M.I.; Yusuf, R.A.; Adeboye, A.A. Effectiveness of Human Mobility Change in Reducing the Spread of COVID-19: Ecological Study of Kingdom of Saudi Arabia. Sustainability 2022, 14, 3368. [Google Scholar] [CrossRef]
- Baig, F.; Kirytopoulos, K.; Lee, J.; Tsamilis, E.; Mao, R.; Ntzeremes, P. Changes in People’s Mobility Behavior in Greece after the COVID-19 Outbreak. Sustainability 2022, 14, 3567. [Google Scholar] [CrossRef]
- Mu, X.; Fang, C.; Yang, Z.; Guo, X. Impact of the COVID-19 Epidemic on Population Mobility Networks in the Beijing–Tianjin–Hebei Urban Agglomeration from a Resilience Perspective. Land 2022, 11, 675. [Google Scholar] [CrossRef]
- Nian, G.; Peng, B.; Sun, D.; Ma, W.; Peng, B.; Huang, T. Impact of COVID-19 on Urban Mobility during Post-Epidemic Period in Megacities: From the Perspectives of Taxi Travel and Social Vitality. Sustainability 2020, 12, 7954. [Google Scholar] [CrossRef]
- Nanda, R.O.; Nursetyo, A.A.; Ramadona, A.L.; Imron, M.A.; Fuad, A.; Setyawan, A.; Ahmad, R.A. Community Mobility and COVID-19 Dynamics in Jakarta, Indonesia. Int. J. Environ. Res. Public Health 2022, 19, 6671. [Google Scholar] [CrossRef]
- Hartwig, L.; Hössinger, R.; Susilo, Y.O.; Gühnemann, A. The Impacts of a COVID-19 Related Lockdown (and Reopening Phases) on Time Use and Mobility for Activities in Austria—Results from a Multi-Wave Combined Survey. Sustainability 2022, 14, 7422. [Google Scholar] [CrossRef]
- Campisi, T.; Basbas, S.; Skoufas, A.; Akgün, N.; Ticali, D.; Tesoriere, G. The Impact of COVID-19 Pandemic on the Resilience of Sustainable Mobility in Sicily. Sustainability 2020, 12, 8829. [Google Scholar] [CrossRef]
- Tamagusko, T.; Ferreira, A. Data-Driven Approach to Understand the Mobility Patterns of the Portuguese Population during the COVID-19 Pandemic. Sustainability 2020, 12, 9775. [Google Scholar] [CrossRef]
- Casa Nova, A.; Ferreira, P.; Almeida, D.; Dionísio, A.; Quintino, D. Are Mobility and COVID-19 Related? A Dynamic Analysis for Portuguese Districts. Entropy 2021, 23, 786. [Google Scholar] [CrossRef] [PubMed]
- Whata, A.; Chimedza, C. A Machine Learning Evaluation of the Effects of South Africa’s COVID-19 Lockdown Measures on Population Mobility. Mach. Learn. Knowl. Extr. 2021, 3, 481–506. [Google Scholar] [CrossRef]
- Barboza, L.A.; Vásquez, P.; Mery, G.; Sanchez, F.; García, Y.E.; Calvo, J.G.; Rivas, T.; Pérez, M.D.; Salas, D. The Role of Mobility and Sanitary Measures on the Delay of Community Transmission of COVID-19 in Costa Rica. Epidemiologia 2021, 2, 294–304. [Google Scholar] [CrossRef]
- Munawar, H.S.; Khan, S.I.; Qadir, Z.; Kiani, Y.S.; Kouzani, A.Z.; Mahmud, M.A.P. Insights into the Mobility Pattern of Australians during COVID-19. Sustainability 2021, 13, 9611. [Google Scholar] [CrossRef]
- Katanić, P.; Damjanović, S. Correlation of human mobility in the capitals of seven European countries during the COVID-19 pandemic. Oper. Res. Eng. Sci. Theory Appl. 2022, 5, 61–84. [Google Scholar] [CrossRef]
- Sharma, N.; Yadav, S.; Mangla, M.; Mohanty, A.; Satpathy, S.; Mohanty, S.N.; Choudhury, T. Geospatial multivariate analysis of COVID-19: A global perspective. GeoJournal 2021, 88, 69–83. [Google Scholar] [CrossRef]
- Mahmoudi, J.; Xiong, C. How social distancing, mobility, and preventive policies affect COVID-19 outcomes: Big data-driven evidence from the district of Columbia-Maryland-Virginia (CMV) megaregion. PLoS ONE 2022, 17, e0263820. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Hu, T.; Fu, X.; Wang, X.; Hu, Y.; Halloran, B.; Li, Z.; Cui, Y.; Liu, H.; et al. Human mobility and COVID-19 transmission: A systematic review and future directions. Ann. GIS 2022, 28, 501–514. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Gorback, C.; Redding, S.J. Jue insight: How much does COVID-19 increase with mobility? Evidence from New York and four other U.S. cities. J. Urban Econ. 2022, 127, 103292. [Google Scholar] [CrossRef]
- Oh, J.; Lee, H.-Y.; Khuong, Q.L.; Markuns, J.F.; Bullen, C.; Barrios, O.E.A.; Hwang, S.-S.; Suh, Y.S.; McCool, J.; Kachur, S.P.; et al. Mobility restrictions were associated with reductions in COVID-19 incidence early in the pandemic: Evidence from a real-time evaluation in 34 countries. Sci. Rep. 2021, 11, 13717. [Google Scholar] [CrossRef]
- Nouvellet, P.; Bhatia, S.; Cori, A.; Ainslie, K.E.C.; Baguelin, M.; Bhatt, S.; Boonyasiri, A.; Brazeau, N.F.; Cattarino, L.; Cooper, L.V.; et al. Reduction in mobility and COVID-19 transmission. Nat. Commun. 2021, 12, 1090. [Google Scholar] [CrossRef] [PubMed]
- Wellenius, G.A.; Vispute, S.; Espinosa, V.; Fabrikant, A.; Tsai, T.C.; Hennessy, J.; Dai, A.; Williams, B.; Gadepalli, K.; Boulanger, A.; et al. Impacts of social distancing policies on mobility and COVID-19 case growth in the U.S. Nat. Commun. 2021, 12, 3118. [Google Scholar] [CrossRef] [PubMed]
- Cot, C.; Cacciapaglia, G.; Sannino, F. Mining Google and Apple mobility data: Temporal anatomy for COVID-19 social distancing. Sci. Rep. 2021, 11, 4150. [Google Scholar] [CrossRef] [PubMed]
- Kephart, J.L.; Delclòs-Alió, X.; Rodríguez, D.A.; Sarmiento, O.L.; Barrientos-Gutiérrez, T.; Ramirez-Zea, M.; Quistberg, D.A.; Bilal, U.; Roux, A.V.D. The effect of population mobility on COVID-19 incidence in 314 Latin-American cities: A longitudinal ecological study with mobile phone location data. Lancet Digit. Health 2021, 3, e716–e722. [Google Scholar] [CrossRef]
- Basellini, U.; Alburez-Gutierrez, D.; Del Fava, E.; Perrotta, D.; Bonetti, M.; Camarda, C.G.; Zagheni, E. Linking excess mortality to mobility data during the first wave of COVID-19 in England and Wales. SSM-Popul. Health 2021, 14, 100799. [Google Scholar] [CrossRef]
- Badr, H.S.; Du, H.; Marshall, M.; Dong, E.; Squire, M.M.; Gardner, L.M. Association between mobility patterns and COVID-19 transmission in the U.S.A.: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Gottumukkala, R.; Katragadda, S.; Bhupatiraju, R.T.; Kamal, M.A.; Raghavan, V.; Chu, H.; Kolluru, R.; Ashkar, Z. Exploring the relationship between mobility and COVID-19 infection rates for the second peak in the United States using phase-wise association. BMC Public Health 2021, 21, 1669. [Google Scholar] [CrossRef]
- Cartenì, A.; Di Francesco, L.; Martino, M. How mobility habits influenced the spread of the COVID-19 pandemic: Results from the Italian case study. Sci. Total Environ. 2020, 741, 140489. [Google Scholar] [CrossRef]
- Li, D.; Lasenby, J. Investigating impacts of COVID-19 on urban mobility and emissions. Cities 2023, 135, 104246. [Google Scholar] [CrossRef]
- Li, S.; Bao, S.; Yao, C.; Zhang, L. Exploring the spatio-temporal and behavioural variations in taxi travel based on big data during the COVID-19 pandemic: A case study of New York City. Sustainability 2022, 14, 13548. [Google Scholar] [CrossRef]
- Mukherjee, S.; Jain, T. Impact of COVID-19 on the mobility patterns: An investigation of taxi trips in Chicago. PLoS ONE 2022, 17, e0267436. [Google Scholar] [CrossRef] [PubMed]
- Conlisk, S. Tipping in crises: Evidence from Chicago taxi passengers during COVID-19. J. Econ. Psychol. 2022, 89, 102475. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.N.; Baumgartner, J.; Pichardo, C.; Toro, B.; Li, L.; Arciuolo, R.; Chan, P.Y.; Chen, J.; Culp, G.; Davidson, A.; et al. COVID-19 Outbreak—New York City, February 29–June 1, 2020. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 1725–1729. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition procedure based on loess (with discussion). J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- NYC Taxi Limousine Commission (TLC). Trip Record Data, NYC. Available online: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page (accessed on 15 November 2021).
- Delamater, P.L.; Street, E.J.; Leslie, T.F.; Yang, Y.T.; Jacobsen, K.H. Complexity of the basic reproduction number (R0). Emerg. Infect. Dis. 2019, 25, 1. [Google Scholar] [CrossRef]
- Vegvari, C.; Abbott, S.; Ball, F.; Brooks-Pollock, E.; Challen, R.; Collyer, B.S.; Dangerfield, C.; Gog, J.R.; Gostic, K.M.; Heffernan, J.M.; et al. Commentary on the use of the reproduction number R during the COVID-19 pandemic. Stat. Methods Med. Res. 2022, 31, 1675–1685. [Google Scholar] [CrossRef]
- He, X.; Lau, E.H.Y.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y.C.; Wong, J.Y.; Guan, Y.; Tan, X.; et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020, 26, 672–675. [Google Scholar] [CrossRef]
- Havers, F.P.; Reed, C.; Lim, T.; Montgomery, J.M.; Klena, J.D.; Hall, A.J.; Fry, A.M.; Cannon, D.L.; Chiang, C.-F.; Gibbons, A.; et al. Seroprevalence of antibodies to SARS-CoV-2 in 10 sites in the United States, March 23–May 12, 2020. JAMA Intern Med. 2020, 180, 1576–1586. [Google Scholar] [CrossRef]
- Subramanian, R.; He, Q.; Pascual, M. Quantifying asymptomatic infection and transmission of COVID-19 in New York city using observed cases, serology, and testing capacity. Proc. Natl. Acad. Sci. USA 2021, 118, e2019716118. [Google Scholar] [CrossRef]
- Reiner, R.C.; Barber, R.M.; Collins, J.K.; Zheng, P.; Adolph, C.; Albright, J.; Antony, C.M.; Aravkin, A.Y.; Bachmeier, S.D.; Bang-Jensen, B.; et al. Modeling COVID-19 scenarios for the United States. Nat. Med. 2021, 27, 94–105. [Google Scholar]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef] [PubMed]
- Gargoum, S.A.; Gargoum, A.S. Limiting mobility during COVID-19, when and to what level? an international comparative study using change point analysis. J. Transp. Health 2021, 20, 101019. [Google Scholar] [CrossRef]
- McAloon, C.; Collins, Á.; Hunt, K.; Barber, A.; Byrne, A.W.; Butler, F.; Casey, M.; Griffin, J.; Lane, E.; McEvoy, D.; et al. Incubation period of COVID-19: A rapid systematic review and meta-analysis of observational research. BMJ Open 2020, 10, e039652. [Google Scholar] [CrossRef]
- Rajput, A.A.; Li, Q.; Gao, X.; Mostafavi, A. Revealing critical characteristics of mobility patterns in New York city during the onset of COVID-19 pandemic. Front. Built Environ. 2022, 7, 654409. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Ruiz, J.S.; Ruiz, R.; Giráldez, R. Advance Monitoring of COVID-19 Incidence Based on Taxi Mobility: The Infection Ratio Measure. Healthcare 2024, 12, 517. https://doi.org/10.3390/healthcare12050517
Aguilar-Ruiz JS, Ruiz R, Giráldez R. Advance Monitoring of COVID-19 Incidence Based on Taxi Mobility: The Infection Ratio Measure. Healthcare. 2024; 12(5):517. https://doi.org/10.3390/healthcare12050517
Chicago/Turabian StyleAguilar-Ruiz, Jesus S., Roberto Ruiz, and Raúl Giráldez. 2024. "Advance Monitoring of COVID-19 Incidence Based on Taxi Mobility: The Infection Ratio Measure" Healthcare 12, no. 5: 517. https://doi.org/10.3390/healthcare12050517
APA StyleAguilar-Ruiz, J. S., Ruiz, R., & Giráldez, R. (2024). Advance Monitoring of COVID-19 Incidence Based on Taxi Mobility: The Infection Ratio Measure. Healthcare, 12(5), 517. https://doi.org/10.3390/healthcare12050517