Gait Training with Virtual Reality-Based Real-Time Feedback for Chronic Post-Stroke Patients: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Subjects
2.3. Procedure
2.4. Research Methods
2.4.1. Experimental Group
2.4.2. Control Group
2.5. Measurement Items
2.5.1. Motor Function
2.5.2. Balance Ability
2.5.3. Gait Ability
2.6. Data Analysis
3. Results
3.1. General Characteristics of the Subjects
3.2. Change in Motor Function According to Intervention
3.3. Change in Balance According to Intervention
3.4. Change in Spatiotemporal Gait Parameters According to Intervention
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González-Santos, J.; Rodríguez-Fernández, P.; Pardo-Hernández, R.; González-Bernal, J.J.; Fernández-Solana, J.; Santamaría-Peláez, M. A cross-sectional study: Determining factors of functional independence and quality of life of patients one month after having suffered a stroke. Int. J. Environ. Res. Public Health 2023, 20, 995. [Google Scholar] [CrossRef] [PubMed]
- Freytes, I.M.; Sullivan, M.; Schmitzberger, M.; LeLaurin, J.; Orozco, T.; Eliazar-Macke, N.; Uphold, C. Types of stroke-related deficits and their impact on family caregiver’s depressive symptoms, burden, and quality of life. Disabil. Health J. 2021, 14, 101019. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.-D.; Chung, E.; Lee, B.-H. The effect of balance training using touch controller-based fully immersive virtual reality devices on balance and walking ability in patients with stroke: A pilot randomized controlled trial. Medicine 2024, 103, e38578. [Google Scholar] [CrossRef] [PubMed]
- Arshad, A.H.; Awan, F.N.; Ayesha Abdul, W.; Saeed, Z.; Waris, M. Post Stroke Patients Balance Improvement by Comparing VR Assisted Treadmill Training vs. Traditional Treadmill Training. Avicenna J. Health Sci. 2024, 1, 21–24. [Google Scholar]
- Luke, C.; Dodd, K.J.; Brock, K. Outcomes of the Bobath concept on upper limb recovery following stroke. Clin. Rehabil. 2004, 18, 888–898. [Google Scholar] [CrossRef]
- Rensink, M.; Schuurmans, M.; Lindeman, E.; Hafsteinsdottir, T. Task-oriented training in rehabilitation after stroke: Systematic review. J. Adv. Nurs. 2009, 65, 737–754. [Google Scholar] [CrossRef]
- da Silva Ribeiro, N.M.; Ferraz, D.D.; Pedreira, É.; Pinheiro, Í.; da Silva Pinto, A.C.; Neto, M.G.; Dos Santos, L.R.A.; Pozzato, M.G.G.; Pinho, R.S.; Masruha, M.R. Virtual rehabilitation via Nintendo Wii® and conventional physical therapy effectively treat post-stroke hemiparetic patients. Top. Stroke Rehabil. 2015, 22, 299–305. [Google Scholar] [CrossRef]
- Dobkin, B.H. Rehabilitation after stroke. N. Engl. J. Med. 2005, 352, 1677–1684. [Google Scholar] [CrossRef]
- Nindorera, F.; Nduwimana, I.; Thonnard, J.L.; Kossi, O. Effectiveness of walking training on balance, motor functions, activity, participation and quality of life in people with chronic stroke: A systematic review with meta-analysis and meta-regression of recent randomized controlled trials. Disabil. Rehabil. 2022, 44, 3760–3771. [Google Scholar] [CrossRef]
- Meng, L.; Liang, Q.; Yuan, J.; Li, S.; Ge, Y.; Yang, J.; Tsang, R.C.; Wei, Q. Vestibular rehabilitation therapy on balance and gait in patients after stroke: A systematic review and meta-analysis. BMC Med. 2023, 21, 322. [Google Scholar] [CrossRef]
- Kjærhauge Christiansen, L.; Rasmussen, A.M.; Mouritzen, H.S.; Østervig Buus, A.A.; Grønkjær, M. Quickly home again: Patients’ experiences of early discharge after minor stroke. Scand. J. Caring Sci. 2021, 35, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Shema, S.; Maidan, I.; Hausdorff, J.M. Gait. Handb. Clin. Neurol. 2018, 159, 119–134. [Google Scholar] [PubMed]
- Moucheboeuf, G.; Griffier, R.; Gasq, D.; Glize, B.; Bouyer, L.; Dehail, P.; Cassoudesalle, H. Effects of robotic gait training after stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2020, 63, 518–534. [Google Scholar] [CrossRef] [PubMed]
- Fulk, G.D.; He, Y.; Boyne, P.; Dunning, K. Predicting home and community walking activity poststroke. Stroke 2017, 48, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Ohta, M.; Tanabe, S.; Tamari, M.; Katsuhira, J. Patterns of change in propulsion force and late braking force in patients with stroke walking at fast speeds. Sci. Rep. 2024, 14, 22316. [Google Scholar] [CrossRef]
- Okada, K.; Haruyama, K.; Okuyama, K.; Tsuzuki, K.; Nakamura, T.; Kawakami, M. Categorizing knee hyperextension patterns in hemiparetic gait and examining associated impairments in patients with chronic stroke. Gait Posture 2024, 113, 18–25. [Google Scholar] [CrossRef]
- Gelaw, A.Y.; Janakiraman, B.; Teshome, A.; Ravichandran, H. Effectiveness of treadmill assisted gait training in stroke survivors: A systematic review and meta-analysis. Glob. Epidemiol. 2019, 1, 100012. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, A.; Chen, Z.; Wei, Y.; Huang, K.; Chen, J.; Ren, Z. Effects of virtual reality training on upper limb function and balance in stroke patients: Systematic review and meta-meta-analysis. J. Med. Internet Res. 2021, 23, e31051. [Google Scholar] [CrossRef]
- Proffitt, R.; Lange, B. Considerations in the efficacy and effectiveness of virtual reality interventions for stroke rehabilitation: Moving the field forward. Phys. Ther. 2015, 95, 441–448. [Google Scholar] [CrossRef]
- Nikolaev, V.; Safonicheva, O.; Nikolaev, A. Telerehabilitation of post-stroke patients with motor function disorders: A review. Adv. Gerontol. 2022, 12, 339–346. [Google Scholar] [CrossRef]
- Shen, J.; Gu, X.; Yao, Y.; Li, L.; Shi, M.; Li, H.; Sun, Y.; Bai, H.; Li, Y.; Fu, J. Effects of virtual reality–based exercise on balance in patients with stroke: A systematic review and meta-analysis. Am. J. Phys. Med. Rehabil. 2023, 102, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, E.M.; Thomson, A.N.; de Noronha, M.; Joseph, S. Are virtual reality technologies effective in improving lower limb outcomes for patients following stroke–a systematic review with meta-analysis. Top. Stroke Rehabil. 2016, 23, 440–457. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.-J.; Choi, S.-Y.; Lee, H.-S.; Han, S.-W. Efficacy analysis of virtual reality-based training for activities of daily living and functional task training in stroke patients: A single-subject study. Medicine 2023, 102, e33573. [Google Scholar] [CrossRef] [PubMed]
- Lange, B.; Koenig, S.; Chang, C.-Y.; McConnell, E.; Suma, E.; Bolas, M.; Rizzo, A. Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disabil. Rehabil. 2012, 34, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- Demeco, A.; Zola, L.; Frizziero, A.; Martini, C.; Palumbo, A.; Foresti, R.; Buccino, G.; Costantino, C. Immersive virtual reality in post-stroke rehabilitation: A systematic review. Sensors 2023, 23, 1712. [Google Scholar] [CrossRef]
- Georgiev, D.D.; Georgieva, I.; Gong, Z.; Nanjappan, V.; Georgiev, G.V. Virtual reality for neurorehabilitation and cognitive enhancement. Brain Sci. 2021, 11, 221. [Google Scholar] [CrossRef]
- Patsaki, I.; Dimitriadi, N.; Despoti, A.; Tzoumi, D.; Leventakis, N.; Roussou, G.; Papathanasiou, A.; Nanas, S.; Karatzanos, E. The effectiveness of immersive virtual reality in physical recovery of stroke patients: A systematic review. Front. Syst. Neurosci. 2022, 16, 880447. [Google Scholar] [CrossRef]
- McEwen, D.; Taillon-Hobson, A.; Bilodeau, M.; Sveistrup, H.; Finestone, H. Virtual reality exercise improves mobility after stroke: An inpatient randomized controlled trial. Stroke 2014, 45, 1853–1855. [Google Scholar] [CrossRef]
- De Keersmaecker, E.; Van Bladel, A.; Zaccardi, S.; Lefeber, N.; Rodriguez-Guerrero, C.; Kerckhofs, E.; Jansen, B.; Swinnen, E. Virtual reality—Enhanced walking in people post-stroke: Effect of optic flow speed and level of immersion on the gait biomechanics. J. NeuroEng. Rehabil. 2023, 20, 124. [Google Scholar] [CrossRef]
- Shishi, C.; Zhang, W.; Dingyu, W.; Zhaoming, C. How robot-assisted gait training affects gait ability, balance and kinematic parameters after stroke: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2024, 60, 400. [Google Scholar]
- Lin, M.; Huang, J.; Fu, J.; Sun, Y.; Fang, Q. A VR-based motor imagery training system with EMG-based real-time feedback for post-stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Lee, H. The Effects of FES on Balance and Gait Ability in Patients of Stroke Patients. J. Korean Soc. Integr. Med. 2019, 7, 95–109. [Google Scholar]
- Kim, H.; Her, J.; Ko, J.; Park, D.-s.; Woo, J.-H.; You, Y.; Choi, Y. Reliability, concurrent validity, and responsiveness of the Fugl-Meyer Assessment (FMA) for hemiplegic patients. J. Phys. Ther. Sci. 2012, 24, 893–899. [Google Scholar] [CrossRef]
- Berg, K.; Wood-Dauphine, S.; Williams, J.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Berg, K. Measuring Balance in the Elderly: Development and Validation of an Instrument. Master’s Thesis, McGill University, Montreal, QC, Canada, 1992. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef]
- Anwar, N.; Karimi, H.; Ahmad, A.; Mumtaz, N.; Saqulain, G.; Gilani, S.A. A novel virtual reality training strategy for poststroke patients: A randomized clinical trial. J. Healthc. Eng. 2021, 2021, 6598726. [Google Scholar] [CrossRef]
- Yaman, F.; Leblebicier, M.A.; Okur, İ.; Kızılkaya, M.İ.; Kavuncu, V. Is virtual reality training superior to conventional treatment in improving lower extremity motor function in chronic hemiplegic patients? Turk. J. Phys. Med. Rehabil. 2022, 68, 391. [Google Scholar] [CrossRef]
- Silva, W.H.S.; Lopes, G.L.B.; Yano, K.M.; Tavares, N.S.A.; Rego, I.A.O.; Cavalcanti, F.A.d.C. Effect of a rehabilitation program using virtual reality for balance and functionality of chronic stroke patients. Mot. Rev. Educ. Física 2015, 21, 237–243. [Google Scholar] [CrossRef]
- Cho, D.-R.; Lee, S.-H. Effects of virtual reality immersive training with computerized cognitive training on cognitive function and activities of daily living performance in patients with acute stage stroke: A preliminary randomized controlled trial. Medicine 2019, 98, e14752. [Google Scholar] [CrossRef]
Experimental Group (n = 8) | Control Group (n = 7) | t/x2 (p) | |
---|---|---|---|
Age (year) | 52.75± 10.70 a | 51.71 ± 7.67 | −0.212 b (0.835 c) |
Weight (kg) | 67.63 ± 6.41 | 72.18 ± 9.26 | −1.118 (0.284) |
Height (cm) | 166.40 ± 3.76 | 166.94 ± 7.94 | −0.173 (0.865) |
MMSE-K (score) | 26.75 ± 0.71 | 27.00 ± 0.82 | −0.636 (0.536) |
Gender (male/female) | 3/5 | 4/3 | 0.579 (0.447) |
Onset (month) | 7.50 ± 7.55 | 7.71 ± 7.55 | −0.548 (0.593) |
Affected side (right/left) Stroke type (Ischemic/Hemorrhagic) | 4/4 | 5/2 | 0.714 (0.398) |
Experimental Group (n = 8) | Control Group (n = 7) | z | p | ||
---|---|---|---|---|---|
FMA | Pre | 21.62 ± 2.13 a | 20.57 ± 1.98 | ||
Post | 26.37 ± 0.74 | 22.14 ± 1.95 | |||
Post–Pre | 4.75 ± 1.58 | 1.57 ± 0.53 | −3.105 | 0.002 * | |
z (p) | −2.552 (0.011 *) | −2.428 (0.015 *) |
Experimental Group (n = 8) | Control Group (n = 7) | z | p | ||
---|---|---|---|---|---|
BBS | Pre | 44.50 ± 2.72 a | 44.14 ± 2.41 | ||
Post | 47.50 ± 2.56 | 45.85 ± 1.86 | |||
Post–Pre | 3.00 ± 0.75 | 1.71 ± 0.95 | −2.304 | 0.021 * | |
z (p) | −2.558 (0.011 *) | −2.414 (0.016 *) | |||
TUG | Pre | 16.19 ± 1.68 | 17.19 ± 1.73 | ||
Post | 13.09 ± 1.15 | 16.07 ± 1.77 | |||
Post–Pre | −3.10 ± 1.60 | −1.12 ± 0.43 | −3.125 | 0.002 * | |
z (p) | −2.521 (0.012 *) | −2.366 (0.018 *) |
Experimental Group (n = 8) | Control Group (n = 7) | z | p | ||
---|---|---|---|---|---|
ASL | Pre | 41.87 ± 6.85 a | 43.97 ± 7.47 | ||
Post | 47.22 ± 6.95 | 45.98 ± 7.14 | |||
Post–Pre | 5.35 ± 3.26 | 2.01 ± 1.23 | −2.609 | 0.009 * | |
z (p) | −2.524 (0.012 *) | −2.366 (0.018 *) | |||
SL | Pre | 64.22 ± 7.71 | 68.47 ± 8.93 | ||
Post | 68.08 ± 7.41 | 70.22 ± 7.89 | |||
Post–Pre | 3.86 ± 2.07 | 1.75 ± 1.34 | −2.269 | 0.023 * | |
z (p) | −2.524 (0.012 *) | −2.384 (0.017 *) | |||
ASS | Pre | 34.65 ± 3.22 | 36.37 ± 1.94 | ||
Post | 37.26 ± 2.40 | 37.60 ± 2.31 | |||
Post–Pre | 2.61 ± 1.35 | 1.22 ± 0.72 | −2.027 | 0.043 * | |
z (p) | −2.521 (0.012 *) | −2.366 (0.018 *) | |||
Cadence | Pre | 0.74 ± 0.10 | 0.70 ± 0.07 | ||
Post | 0.81 ± 0.07 | 0.73 ± 0.08 | |||
Post–Pre | 0.07 ± 0.04 | 0.02 ± 0.03 | −2.296 | 0.022 * | |
z (p) | −2.546 (0.011 *) | −1.706 (0.088) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, Y.; Kim, K. Gait Training with Virtual Reality-Based Real-Time Feedback for Chronic Post-Stroke Patients: A Pilot Study. Healthcare 2025, 13, 203. https://doi.org/10.3390/healthcare13020203
Kim S, Lee Y, Kim K. Gait Training with Virtual Reality-Based Real-Time Feedback for Chronic Post-Stroke Patients: A Pilot Study. Healthcare. 2025; 13(2):203. https://doi.org/10.3390/healthcare13020203
Chicago/Turabian StyleKim, Sunmin, Yangjin Lee, and Kyunghun Kim. 2025. "Gait Training with Virtual Reality-Based Real-Time Feedback for Chronic Post-Stroke Patients: A Pilot Study" Healthcare 13, no. 2: 203. https://doi.org/10.3390/healthcare13020203
APA StyleKim, S., Lee, Y., & Kim, K. (2025). Gait Training with Virtual Reality-Based Real-Time Feedback for Chronic Post-Stroke Patients: A Pilot Study. Healthcare, 13(2), 203. https://doi.org/10.3390/healthcare13020203