Late-Life Informal Social Participation, Physical and Cognitive Functions Among the Chinese Elderly: A Life Course Perspective
Abstract
:1. Introduction
- How do childhood conditions influence the temporal reciprocal associations between cognitive and physical functions and informal social participation in later life?
- How are informal social participation and cognitive and physical functions interrelated across time?
2. Materials and Methods
2.1. Sampling
2.2. Measurement
2.2.1. Cognitive and Physical Functions
2.2.2. Informal Social Participation
- (a)
- Regarding the contact of children, as the respondents reported having an average of 2.64 children (SD = 1.43), the respondents’ (low) contact with children and grandparenting with their first four children were included. Following Seeman et al. [64], low contact with children was assessed using the question, “In the past 6 months, how often did you contact [child name] via telephone, messages, and (e)mails?” on a 7-piont scale ranging from “almost everyday” = “1” to “never” = “7”.
- (b)
- Regarding grandparenting, following Zhang et al. [65], it was assessed using the questions “In the past 6 months, did you help [child name] with housework or taking care of grandchildren?” with answers coded dichotomously as “yes” = “1” and “no” = “0”, and the average score of the first four children was used for the analyses.
- (c)
- Regarding digital access, as per He et al. [38], the respondents’ digital access was measured using the question “Do you use computer/mobile devices, e.g., mobile phone and tablet PC, to access the Internet?” Responses indicating any usage were coded as “1”, while others were coded as “0”.
2.2.3. Childhood Conditions
2.2.4. Health Status Covariates
2.2.5. Demographics
2.3. Data Analytic Strategy
3. Results
3.1. Descriptive Statistics
3.2. Cross-Lagged SEM Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuiper, J.S.; Zuidersma, M.; Zuidema, S.U.; Burgerhof, J.G.M.; Stolk, R.P.; Oude Voshaar, R.C.; Smidt, N. Social Relationships and Cognitive Decline: A Systematic Review and Meta-Analysis of Longitudinal Cohort Studies. Int. J. Epidemiol. 2016, 45, 1169–1206. [Google Scholar] [CrossRef] [PubMed]
- WHO. Dementia: A Public Health Priority. Available online: https://www.who.int/publications-detail-redirect/dementia-a-public-health-priority (accessed on 31 July 2023).
- Richards, M.; Deary, I.J. A Life Course Approach to Cognitive Capability. In A Life Course Approach to Healthy Ageing; Oxford University Press: Oxford, UK, 2014; pp. 32–45. [Google Scholar]
- Garber, C.E.; Greaney, M.L.; Riebe, D.; Nigg, C.R.; Burbank, P.A.; Clark, P.G. Physical and Mental Health-Related Correlates of Physical Function in Community Dwelling Older Adults: A Cross Sectional Study. BMC Geriatr. 2010, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Burr, J.A. Socioeconomic Status Across the Life Course and Cognitive Function Among Older Adults: An Examination of the Latency, Pathways, and Accumulation Hypotheses. J. Aging Health 2016, 28, 40–67. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2019 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2019, 15, 321–387. [Google Scholar] [CrossRef]
- Schupf, N.; Tang, M.-X.; Albert, S.M.; Costa, R.; Andrews, H.; Lee, J.H.; Mayeux, R. Decline in Cognitive and Functional Skills Increases Mortality Risk in Nondemented Elderly. Neurology 2005, 65, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Liu, J.; Wang, F.; Lou, V.W.Q. Caring for Disabled Older Adults with Musculoskeletal Conditions: A Transactional Model of Caregiver Burden, Coping Strategies, and Depressive Symptoms. Arch. Gerontol. Geriatr. 2017, 69, 1–7. [Google Scholar] [CrossRef]
- Vermeulen, J.; Neyens, J.C.; van Rossum, E.; Spreeuwenberg, M.D.; de Witte, L.P. Predicting ADL Disability in Community-Dwelling Elderly People Using Physical Frailty Indicators: A Systematic Review. BMC Geriatr. 2011, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Soldo, B.J.; Elo, I.T. Do Early-Life Conditions Predict Functional Health Status in Adulthood? The Case of Mexico. Soc. Sci. Med. 2011, 72, 100–107. [Google Scholar] [CrossRef]
- Hacihasanoğlu, R.; Yildirim, A.; Karakurt, P. Loneliness in Elderly Individuals, Level of Dependence in Activities of Daily Living (ADL) and Influential Factors. Arch. Gerontol. Geriatr. 2012, 54, 61–66. [Google Scholar] [CrossRef]
- Zhang, Z.; Hayward, M.D.; Yu, Y.-L. Life Course Pathways to Racial Disparities in Cognitive Impairment among Older Americans. J. Health Soc. Behav. 2016, 57, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Aartsen, M.J.; Cheval, B.; Sieber, S.; Van Der Linden, B.W.; Gabriel, R.; Courvoisier, D.S.; Guessous, I.; Burton-Jeangros, C.; Blane, D.; Ihle, A.; et al. Advantaged Socioeconomic Conditions in Childhood Are Associated with Higher Cognitive Functioning but Stronger Cognitive Decline in Older Age. Proc. Natl. Acad. Sci. USA 2019, 116, 5478–5486. [Google Scholar] [CrossRef] [PubMed]
- Cermakova, P.; Formanek, T.; Kagstrom, A.; Winkler, P. Socioeconomic Position in Childhood and Cognitive Aging in Europe. Neurology 2018, 91, e1602–e1610. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Wu, B.; Jiang, N.; Dong, T. Association between Childhood Conditions and Arthritis among Middle-Aged and Older Adults in China: The China Health and Retirement Longitudinal Study. Ageing Soc. 2021, 41, 2484–2501. [Google Scholar] [CrossRef]
- Ma, J.; Yang, Y.; Wan, Y.; Shen, C.; Qiu, P. The Influence of Childhood Adversities on Mid to Late Cognitive Function: From the Perspective of Life Course. PLoS ONE 2021, 16, e0256297. [Google Scholar] [CrossRef] [PubMed]
- Zaninotto, P.; Batty, G.D.; Allerhand, M.; Deary, I.J. Cognitive Function Trajectories and Their Determinants in Older People: 8 Years of Follow-up in the English Longitudinal Study of Ageing. J. Epidemiol. Community Health 2018, 72, 685–694. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Li, L.; Xu, H. The Long Arm of Childhood in China: Early-Life Conditions and Cognitive Function Among Middle-Aged and Older Adults. J. Aging Health 2018, 30, 1319–1344. [Google Scholar] [CrossRef]
- Burneo-Garcés, C.; Cruz-Quintana, F.; Pérez-García, M.; Fernández-Alcántara, M.; Fasfous, A.; Pérez-Marfil, M.N. Interaction between Socioeconomic Status and Cognitive Development in Children Aged 7, 9, and 11 Years: A Cross-Sectional Study. Dev. Neuropsychol. 2019, 44, 1–16. [Google Scholar] [CrossRef]
- Opdebeeck, C.; Martyr, A.; Clare, L. Cognitive Reserve and Cognitive Function in Healthy Older People: A Meta-Analysis. Aging Neuropsychol. Cogn. 2016, 23, 40–60. [Google Scholar] [CrossRef] [PubMed]
- Glymour, M.M.; Tzourio, C.; Dufouil, C. Is Cognitive Aging Predicted by One’s Own or One’s Parents’ Educational Level? Results From the Three-City Study. Am. J. Epidemiol. 2012, 175, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Brody, G.H.; Miller, G.E. Childhood Close Family Relationships and Health. Am. Psychol. 2017, 72, 555–566. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, L.; Liu, J. Drug Problems in Contemporary China: A Profile of Chinese Drug Users in a Metropolitan Area. Int. J. Drug Policy 2011, 22, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Zeng, Y. Direct and Indirect Effects of Childhood Conditions on Survival and Health among Male and Female Elderly in China. Soc. Sci. Med. 2014, 119, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Sha, T.; Yan, Y.; Cheng, W. Associations of Childhood Socioeconomic Status with Mid-Life and Late-Life Cognition in Chinese Middle-Aged and Older Population Based on a 5-Year Period Cohort Study. Int. J. Geriatr. Psychiatry 2018, 33, 1335–1345. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Qin, F.; Zhou, Z.; Fang, Y. Gender-Specific Effects of Adverse Childhood Experiences on Incidence of Activities of Daily Life Disability in Middle-Age and Elderly Chinese Population. Child Abuse Negl. 2021, 117, 105079. [Google Scholar] [CrossRef] [PubMed]
- González, H.M.; Tarraf, W.; Bowen, M.E.; Johnson-Jennings, M.D.; Fisher, G.G. What Do Parents Have to Do with My Cognitive Reserve Life Course Perspectives on Twelve-Year Cognitive Decline. Neuroepidemiology 2013, 41, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Staff, R.T.; Chapko, D.; Hogan, M.J.; Whalley, L.J. Life Course Socioeconomic Status and the Decline in Information Processing Speed in Late Life. Soc. Sci. Med. 2016, 151, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Middleton, L.E.; Barnes, D.E.; Lui, L.-Y.; Yaffe, K. Physical Activity over the Life Course and Its Association with Cognitive Performance and Impairment in Old Age. J. Am. Geriatr. Soc. 2010, 58, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Dodge, H.H.; Kadowaki, T.; Hayakawa, T.; Yamakawa, M.; Sekikawa, A.; Ueshima, H. Cognitive Impairment as a Strong Predictor of Incident Disability in Specific ADL-IADL Tasks Among Community-Dwelling Elders: The Azuchi Study. Gerontologist 2005, 45, 222–230. [Google Scholar] [CrossRef]
- Kim, C.; Wu, B.; Tanaka, E.; Watanabe, T.; Watanabe, K.; Chen, W.; Ito, S.; Okumura, R.; Arai, T.; Anme, T. Association between a Change in Social Interaction and Dementia among Elderly People. Int. J. Gerontol. 2016, 10, 76–80. [Google Scholar] [CrossRef]
- Kelly, M.E.; Loughrey, D.; Lawlor, B.A.; Robertson, I.H.; Walsh, C.; Brennan, S. The Impact of Cognitive Training and Mental Stimulation on Cognitive and Everyday Functioning of Healthy Older Adults: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2014, 15, 28–43. [Google Scholar] [CrossRef]
- Kelly, M.E.; Duff, H.; Kelly, S.; McHugh Power, J.E.; Brennan, S.; Lawlor, B.A.; Loughrey, D.G. The Impact of Social Activities, Social Networks, Social Support and Social Relationships on the Cognitive Functioning of Healthy Older Adults: A Systematic Review. Syst. Rev. 2017, 6, 259. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, Q.; Liu, L.; Zhen, Z. Social Engagement and Health: Findings From the 2013 Survey of the Shanghai Elderly Life and Opinion. Int. J. Aging Hum. Dev. 2015, 80, 332–356. [Google Scholar] [CrossRef] [PubMed]
- Levasseur, M.; Richard, L.; Gauvin, L.; Raymond, É. Inventory and Analysis of Definitions of Social Participation Found in the Aging Literature: Proposed Taxonomy of Social Activities. Soc. Sci. Med. 2010, 71, 2141–2149. [Google Scholar] [CrossRef]
- Burn, K.; Szoeke, C. Is Grandparenting a Form of Social Engagement That Benefits Cognition in Ageing? Maturitas 2015, 80, 122–125. [Google Scholar] [CrossRef]
- Ellwardt, L.; Van Tilburg, T.G.; Aartsen, M.J. The Mix Matters: Complex Personal Networks Relate to Higher Cognitive Functioning in Old Age. Soc. Sci. Med. 2015, 125, 107–115. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Huang, C.; Li, M.; Zhou, Y.; Li, S. Social Participation of the Elderly in China: The Roles of Conventional Media, Digital Access and Social Media Engagement. Telemat. Inform. 2020, 48, 101347. [Google Scholar] [CrossRef]
- Hughes, T.F.; Flatt, J.D.; Fu, B.; Chang, C.-C.H.; Ganguli, M. Engagement in Social Activities and Progression from Mild to Severe Cognitive Impairment: The MYHAT Study. Int. Psychogeriatr. IPA 2013, 25, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Duan, J.; Kan, Q.; Zhou, Y.; Cheng, Z.; Tang, S. The Correlation Analysis of WeChat Usage and Depression among the Middle-Aged and Elderly in China: The Mediating Role of Social Participation. BMC Public Health 2023, 23, 462. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A. Theoretical Perspectives on Cognitive Aging; Psychology Press: London, UK, 2016; ISBN 1-315-78536-6. [Google Scholar]
- Ang, S. Social Participation and Mortality Among Older Adults in Singapore: Does Ethnicity Explain Gender Differences? J. Gerontol. B Psychol. Sci. Soc. Sci. 2016, 73, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Zeng, Y.; Lu, N. Research on Attitudes towards Ageing, Social Participation and Depressive Symptoms Among Older Adults in China. Br. J. Soc. Work 2023, 53, 698–717. [Google Scholar] [CrossRef]
- Sha, S.; Pan, Y.; Xu, Y.; Chen, L. Associations between Loneliness and Frailty among Older Adults: Evidence from the China Health and Retirement Longitudinal Study. BMC Geriatr. 2022, 22, 537. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Gao, S.; Fu, C. Volunteer Activity and Depression among the Elderly in China. Medicine 2021, 100, e27315. [Google Scholar] [CrossRef] [PubMed]
- Utz, R.L.; Carr, D.; Nesse, R.; Wortman, C.B. The Effect of Widowhood on Older Adults’ Social Participation. Gerontologist 2002, 42, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, J.S.; Zuidersma, M.; Voshaar, R.C.O.; Zuidema, S.U.; van den Heuvel, E.R.; Stolk, R.P.; Smidt, N. Social Relationships and Risk of Dementia: A Systematic Review and Meta-Analysis of Longitudinal Cohort Studies. Ageing Res. Rev. 2015, 22, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Marioni, R.E.; Valenzuela, M.J.; Van den Hout, A.; Brayne, C.; Matthews, F.E.; Study, M.C.F. and A. Active Cognitive Lifestyle Is Associated with Positive Cognitive Health Transitions and Compression of Morbidity from Age Sixty-Five. PLoS ONE 2012, 7, e50940. [Google Scholar] [CrossRef]
- Thomas, P.A. Trajectories of Social Engagement and Limitations in Late Life. J. Health Soc. Behav. 2011, 52, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Chapko, D.; McCormack, R.; Black, C.; Staff, R.; Murray, A. Life-Course Determinants of Cognitive Reserve (CR) in Cognitive Aging and Dementia—A Systematic Literature Review. Aging Ment. Health 2018, 22, 921–932. [Google Scholar] [CrossRef]
- Ouyang, Z.; Chong, A.M.L.; Ng, T.K.; Liu, S. Leisure, Functional Disability and Depression among Older Chinese Living in Residential Care Homes. Aging Ment. Health 2015, 19, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, J.; Machin, T.; Brownlow, C.; Jeffries, C. Facebook-Based Social Support and Health: A Systematic Review. Psychol. Pop. Media 2020, 9, 328–346. [Google Scholar] [CrossRef]
- Haslam, D.M.; Tee, A.; Baker, S. The Use of Social Media as a Mechanism of Social Support in Parents. J. Child Fam. Stud. 2017, 26, 2026–2037. [Google Scholar] [CrossRef]
- Pinto-Bruno, Á.C.; García-Casal, J.A.; Csipke, E.; Jenaro-Río, C.; Franco-Martín, M. ICT-Based Applications to Improve Social Health and Social Participation in Older Adults with Dementia. A Systematic Literature Review. Aging Ment. Health 2017, 21, 58–65. [Google Scholar] [CrossRef]
- Danielsbacka, M.; Křenková, L.; Tanskanen, A.O. Grandparenting, Health, and Well-Being: A Systematic Literature Review. Eur. J. Ageing 2022, 19, 341–368. [Google Scholar] [CrossRef] [PubMed]
- Charmarkeh, H.; Lagacé, M.; Charmarkeh, H.; Lagacé, M. Seniors and Technologies: Issues of Inclusion and Exclusion. Can. J. Commun. 2017, 42, 189–194. [Google Scholar] [CrossRef]
- Ko, P.-C.; Yeung, W.-J.J. Childhood Conditions and Productive Aging in China. Soc. Sci. Med. 2019, 229, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Newman, A.B.; Dong, B.-R.; Odden, M.C. Index of Healthy Aging in Chinese Older Adults: China Health and Retirement Longitudinal Study. J. Am. Geriatr. Soc. 2018, 66, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- CINIC. The 49th Statistical Report on China’s Internet Development; CINIC: Beijing, China, 2022. [Google Scholar]
- ISSS. User’s Manual of the China Family Panel Studies; ISSS: Beijing, China, 2022. [Google Scholar]
- Xie, Y.; Hu, J. An Introduction to the China Family Panel Studies (CFPS). Chin. Sociol. Rev. 2014, 47, 3–29. [Google Scholar]
- Christensen, H.; Korten, A.; Jorm, A.F.; Henderson, A.S.; Scott, R.; Mackinnon, A.J. Activity Levels and Cognitive Functioning in an Elderly Community Sample. Age Ageing 1996, 25, 72–80. [Google Scholar] [CrossRef]
- Shen, T.; Li, D.; Hu, Z.; Li, J.; Wei, X. The Impact of Social Support on the Quality of Life among Older Adults in China: An Empirical Study Based on the 2020 CFPS. Front. Public Health 2022, 10, 914707. [Google Scholar] [CrossRef] [PubMed]
- Seeman, T.E.; Miller-Martinez, D.M.; Stein Merkin, S.; Lachman, M.E.; Tun, P.A.; Karlamangla, A.S. Histories of Social Engagement and Adult Cognition: Midlife in the U.S. Study. J. Gerontol. Ser. B 2011, 66, i141–i152. [Google Scholar] [CrossRef]
- Zhang, J.; Emery, T.; Dykstra, P. Grandparenthood in China and Western Europe: An Analysis of CHARLS and SHARE. Adv. Life Course Res. 2020, 45, 100257. [Google Scholar] [CrossRef]
- Brandt, M.; Deindl, C.; Hank, K. Tracing the Origins of Successful Aging: The Role of Childhood Conditions and Social Inequality in Explaining Later Life Health. Soc. Sci. Med. 2012, 74, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Briggs, R.; Carey, D.; O’Halloran, A.M.; Kenny, R.A.; Kennelly, S.P. Validation of the 8-Item Centre for Epidemiological Studies Depression Scale in a Cohort of Community-Dwelling Older People: Data from The Irish Longitudinal Study on Ageing (TILDA). Eur. Geriatr. Med. 2018, 9, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lu, N. The Association between Childhood Conditions and Heart Disease among Middle-Aged and Older Population in China: A Life Course Perspective. BMC Geriatr. 2021, 21, 184. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. An Introduction to Structural Equation Modeling. In Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Hair, J.F., Jr., Hult, G.T.M., Ringle, C.M., Sarstedt, M., Danks, N.P., Ray, S., Eds.; Classroom Companion: Business; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–29. ISBN 978-3-030-80519-7. [Google Scholar]
- Berry, D.; Willoughby, M.T. On the Practical Interpretability of Cross-Lagged Panel Models: Rethinking a Developmental Workhorse. Child Dev. 2017, 88, 1186–1206. [Google Scholar] [CrossRef]
- Samuel, L.J.; Szanton, S.L.; Seplaki, C.L.; Cudjoe, T.K.M.; Thorpe, R.J.; Agree, E.M. Longitudinal and Reciprocal Associations between Financial Strain, Home Characteristics and Mobility in the National Health and Aging Trends Study. BMC Geriatr. 2019, 19, 338. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 2020; ISBN 0-691-21863-3. [Google Scholar]
- Li, C. Little’s Test of Missing Completely at Random. Stata J. 2013, 13, 795–809. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Liu, H.; Zhao, T.; Li, H.; Wang, T. Impact of Social Participation Types on Depression in the Elderly in China: An Analysis Based on Counterfactual Causal Inference. Front. Public Health 2022, 10, 792765. [Google Scholar] [CrossRef]
- Grundy, E.; Read, S. Social Contacts and Receipt of Help Among Older People in England: Are There Benefits of Having More Children? J. Gerontol. B Psychol. Sci. Soc. Sci. 2012, 67, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Arpino, B.; Bordone, V. Does Grandparenting Pay Off? The Effect of Child Care on Grandparents’ Cognitive Functioning: Effect of Child Care on Grandparents’ Cognition. J. Marriage Fam. 2014, 76, 337–351. [Google Scholar] [CrossRef]
- Mendoza-Núñez, V.M.; González-Mantilla, F.; Correa-Muñoz, E.; Retana-Ugalde, R. Relationship between Social Support Networks and Physical Functioning in Older Community-Dwelling Mexicans. Int. J. Environ. Res. Public Health 2017, 14, 993. [Google Scholar] [CrossRef]
- Lindsay Smith, G.; Banting, L.; Eime, R.; O’Sullivan, G.; van Uffelen, J.G.Z. The Association between Social Support and Physical Activity in Older Adults: A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 56. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Ren, Q.; Korinek, K.; Trinh, H.N. Living in Skipped Generation Households and Happiness among Middle-Aged and Older Grandparents in China. Soc. Sci. Res. 2019, 80, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Xu, H. Physical and Mental Health of Chinese Grandparents Caring for Grandchildren and Great-Grandparents. Soc. Sci. Med. 2019, 229, 106–116. [Google Scholar] [CrossRef]
- Bai, X.; Chen, M.; He, R.; Xu, T. Toward an Integrative Framework of Intergenerational Coparenting within Family Systems: A Scoping Review. J. Fam. Theory Rev. 2023, 15, 78–117. [Google Scholar] [CrossRef]
- Li, M.; Dong, X. The Association Between Filial Piety and Depressive Symptoms Among U.S. Chinese Older Adults. Gerontol. Geriatr. Med. 2018, 4, 2333721418778167. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, G. The Health Implications of Grandparents Caring for Grandchildren in China. J. Gerontol. B Psychol. Sci. Soc. Sci. 2012, 67, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Bom, J.; Bakx, P.; Schut, F.; Van Doorslaer, E. The Impact of Informal Caregiving for Older Adults on the Health of Various Types of Caregivers: A Systematic Review. Gerontologist 2018, 59, e629–e642. [Google Scholar] [CrossRef]
- Czaja, S.J.; Moxley, J.H.; Rogers, W.A. Social Support, Isolation, Loneliness, and Health Among Older Adults in the PRISM Randomized Controlled Trial. Front. Psychol. 2021, 12, 728658. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.Y.; Christensen, M.C.; Merighi, J.R. Technology Access and Use, and Their Associations With Social Engagement Among Older Adults: Do Women and Men Differ? J. Gerontol. Ser. B 2017, 72, 836–845. [Google Scholar] [CrossRef]
- Qu, X.; Houser, S.H.; Zhang, J.; Wen, J.; Zhang, W. Association between Using Social Media WeChat and Depressive Symptoms among Middle-Aged and Older People: Findings from a National Survey. BMC Geriatr. 2022, 22, 351. [Google Scholar] [CrossRef] [PubMed]
- Quinn, K. Cognitive Effects of Social Media Use: A Case of Older Adults. Soc. Media Soc. 2018, 4, 2056305118787203. [Google Scholar] [CrossRef]
- Xavier, A.J.; d’Orsi, E.; De Oliveira, C.M.; Orrell, M.; Demakakos, P.; Biddulph, J.P.; Marmot, M.G. English Longitudinal Study of Aging: Can Internet/E-Mail Use Reduce Cognitive Decline? J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Berg, T.; Winterton, R.; Petersen, M.; Warburton, J. ‘Although We’re Isolated, We’re Not Really Isolated’: The Value of Information and Communication Technology for Older People in Rural Australia. Australas. J. Ageing 2017, 36, 313–317. [Google Scholar] [CrossRef]
- Barbosa Neves, B.; Franz, R.; Judges, R.; Beermann, C.; Baecker, R. Can Digital Technology Enhance Social Connectedness Among Older Adults? A Feasibility Study. J. Appl. Gerontol. 2019, 38, 49–72. [Google Scholar] [CrossRef]
- Sen, K.; Prybutok, G.; Prybutok, V. The Use of Digital Technology for Social Wellbeing Reduces Social Isolation in Older Adults: A Systematic Review. SSM-Popul. Health 2022, 17, 101020. [Google Scholar] [CrossRef] [PubMed]
- Bürgin, D.; Clemens, V.; Witt, A.; Sachser, C.; Jud, A.; Brähler, E.; Strauß, B.; Petrowski, K.; Schmid, M.; Fegert, J.M. Adverse Childhood Experiences Increase the Risk for Low Perceived Social Participation and Health-Related Quality of Life in a Large-Scale Population-Based Study in Germany. Child Abuse Negl. 2023, 144, 106382. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Turel, O.; Brevers, D.; Bechara, A. Excess Social Media Use in Normal Populations Is Associated with Amygdala-Striatal but Not with Prefrontal Morphology. Psychiatry Res. Neuroimaging 2017, 269, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ting, R.Z.W.; Lam, M.H.B.; Lam, S.-P.; Yeung, R.O.; Nan, H.; Ozaki, R.; Luk, A.O.Y.; Kong, A.P.S.; Wing, Y.-K.; et al. Measuring Depression with CES-D in Chinese Patients with Type 2 Diabetes: The Validity and Its Comparison to PHQ-9. BMC Psychiatry 2015, 15, 198. [Google Scholar] [CrossRef]
M/Freq. | SD/% | Range and Meaning | |
---|---|---|---|
Baseline health covariates | |||
Poor health status | 3.58 | 1.19 | 1 = “excellent” to 5 = “poor” |
Inpatient history | 927 | 21.66 | 1 = “yes”, 0 = “no” |
CES-D | 13.55 | 4.57 | 8 to 32, a higher score = greater depressive symptoms |
Baseline demographics | |||
Age (years) | 67.88 | 6.44 | 60 to 98 |
Male | 2270 | 48.44 | 1 = “male”, 0 = “female” |
Rural hukou | 3297 | 70.36 | 1 = “rural”, 0 = “others” |
Education (years) | 4.70 | 4.48 | 0 to 16 |
Married | 3742 | 79.85 | 1 = “married”, 0 = “others” |
Annual Income (1000 CNY) | 10.01 | 24.04 | 0 to 504 |
Retired | 151 | 7.47 | 1 = “retired”, 0 = “others” |
CC | |||
PCH | 2.10 | 1.24 | 1 = “excellent” to 5 = “poor” |
HCF | 3.50 | 1.20 | 1 = “very low” to 5 = “very high” |
ISP | |||
T1 LCC | 2.42 | 1.47 | 1 = “almost everyday” to 7 = “never” |
T2 LCC | 2.41 | 1.46 | |
T3 LCC | 2.46 | 1.43 | |
T1 GP | 2056 | 43.88 | 1 = “yes”, 0 = “no” |
T2 GP | 1946 | 41.53 | |
T3 GP | 1466 | 31.28 | |
T1 DA | 304 | 7.10 | 1 = “yes”, 0 = “no” |
T2 DA | 507 | 12.63 | |
T3 DA | 624 | 18.32 | |
CPF | |||
T1 CF | 5.24 | 1.39 | 1 = “very low” to 7 = “very high” |
T2 CF | 4.58 | 1.51 | |
T3 CF | 4.63 | 1.51 | |
T1 PADL | 5.97 | 2.16 | 0 to 7, a higher score = a greater physical function |
T2 PADL | 5.56 | 2.55 | |
T3 PADL | 3.51 | 3.33 |
Paths | Standardized Coefficient β | |
---|---|---|
Correlations | ||
T1 CF | ↔ T1 LCC | −0.06 *** |
T2 CF | ↔ T2 LCC | 0.02 |
T3 CF | ↔ T3 LCC | 0.01 |
T1 CF | ↔ T1 GP | −0.02 |
T2 CF | ↔ T2 GP | 0.02 |
T3 CF | ↔ T3 GP | 0.00 |
T1 CF | ↔ T1 DA | 0.02 |
T2 CF | ↔ T2 DA | 0.06 *** |
T3 CF | ↔ T3 DA | 0.03 * |
T1 PADL | ↔ T1 LCC | 0.12 *** |
T2 PADL | ↔ T2 LCC | 0.04 + |
T3 PADL | ↔ T3 LCC | 0.03 * |
T1 PADL | ↔ T1 GP | 0.17 *** |
T2 PADL | ↔ T2 GP | 0.26 *** |
T3 PADL | ↔ T3 GP | 0.21 *** |
T1 PADL | ↔ T1 DA | 0.02 |
T2 PADL | ↔ T2 DA | −0.01 |
T3 PADL | ↔ T3 DA | −0.04 ** |
Autoregressions | ||
T1 CF | → T2 CF | 0.06 ** |
T2 CF | → T3 CF | 0.10 *** |
T1 PADL | → T2 PADL | 0.42 *** |
T2 PADL | → T3 PADL | 0.28 *** |
T1 LCC | → T2 LCC | 0.34 *** |
T2 LCC | → T3 LCC | 0.87 *** |
T1 GP | → T2 GP | 0.47 *** |
T2 GP | → T3 GP | 0.69 *** |
T1 DA | → T2 DA | 0.49 *** |
T2 DA | → T3 DA | 0.80 *** |
Cross-lagged associations | ||
T1 LCC | → T2 CF | 0.00 |
T2 LCC | → T3 CF | 0.00 |
T1 GP | → T2 CF | 0.01 |
T2 GP | → T3 CF | 0.01 |
T1 DA | → T2 CF | 0.03 ** |
T2 DA | → T3 CF | 0.04 ** |
T1 LCC | → T2 PADL | 0.05 *** |
T2 LCC | → T3 PADL | 0.04 *** |
T1 GP | → T2 PADL | −0.00 |
T2 GP | → T3 PADL | −0.00 |
T1 DA | → T2 PADL | 0.01 |
T2 DA | → T3 PADL | 0.01 |
T1 CF | → T2 LCC | 0.00 |
T2 CF | → T3 LCC | 0.01 |
T1 CF | → T2 GP | 0.01 |
T2 CF | → T3 GP | 0.01 |
T1 CF | → T2 DA | 0.03 ** |
T2 CF | → T3 DA | 0.02 ** |
T1 PADL | → T2 LCC | 0.03 * |
T2 PADL | → T3 LCC | 0.04 * |
T1 PADL | → T2 GP | −0.03 ** |
T2 PADL | → T3 GP | −0.03 ** |
T1 PADL | → T2 DA | 0.01 |
T2 PADL | → T3 DA | 0.01 |
T1 | T2 | T3 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CPF | ISP | CPF | ISP | CPF | ISP | ||||||||||
CF | PADL | LCC | GP | DA | CF | PADL | LCC | GP | DA | CF | PADL | LCC | GP | DA | |
CC | |||||||||||||||
PCH | −0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 | 0.07 + | 0.05 * | 0.01 | 0.00 | −0.03 | 0.02 | 0.02 | 0.01 + | 0.00 |
HCF | −0.02 | 0.03 | 0.01 | 0.00 | −0.01 + | −0.04 * | 0.07 | 0.02 | 0.01 | −0.01 * | 0.01 | 0.02 | −0.00 | 0.00 | −0.01 ** |
Baseline health covariates | |||||||||||||||
Poor health status | −0.06 ** | −0.43 *** | −0.02 | −0.03 *** | −0.01 | −0.09 *** | −0.33 *** | 0.03 | −0.04 *** | 0.00 | −0.05 * | −0.08 *** | 0.03 | −0.02 *** | −0.00 |
Inpatient history | −0.02 | −0.58 *** | −0.14 * | −0.00 | 0.00 | −0.17 *** | −0.27 *** | −0.84 | 0.03 * | −0.00 | −0.05 | 0.03 | −0.07 | 0.01 | −0.02 |
CES-D | −0.02 *** | 0.19 *** | 0.04 *** | 0.01 *** | 0.00 | −0.00 | 0.09 *** | 0.03 *** | 0.01 ** | −0.00 | −0.00 | 0.02 | 0.03 *** | 0.00 | −0.00 |
Baseline demographics | |||||||||||||||
Age (years) | −0.02 *** | −0.06 *** | −0.01 + | −0.02 *** | −0.00 *** | −0.01 + | −0.12 *** | −0.01 * | −0.02 *** | −0.01 *** | −0.01 ** | −0.15 *** | −0.00 | −0.02 *** | −0.01 *** |
Male | 0.05 | 0.13 * | 0.17 ** | −0.04 ** | −0.02 * | 0.15 ** | 0.12+ | 0.16 ** | −0.04 * | −0.00 | 0.20 *** | −0.01 | 0.11 * | −0.05 ** | −0.02 |
Rural hukou | 0.14 * | −0.05 | 0.10 | −0.04 | −0.05 *** | −0.10 | 0.01 | −0.03 | −0.06 * | 0.04 | −0.16 + | 0.02 | 0.15 + | −0.03 | −0.05 ** |
Education (years) | 0.05 *** | 0.05 *** | 0.01 | 0.00+ | 0.01 *** | 0.07 *** | 0.07 *** | −0.00 | 0.00 | 0.01 *** | 0.04 *** | 0.02 | 0.01 * | 0.01 ** | 0.02 *** |
Married | 0.09 | 0.51 *** | 0.43 *** | 0.05 | 0.00 | 0.13 * | 0.40 *** | 0.25 *** | −0.02 | −0.00 | −0.01 | 0.01 | 0.12 + | −0.01 | −0.02 |
Income (ln) | 0.18 *** | 0.13 *** | −0.04 | −0.01 | 0.02 *** | 0.09 ** | 0.10 * | −0.10 ** | −0.02 * | 0.03 *** | 0.07 * | 0.02 | −0.04 | −0.01 | 0.03 *** |
Retired | 0.10 | 0.08 | −0.28 + | 0.00 | 0.13 *** | 0.02 | 0.37 + | −0.11 | 0.06 | 0.10 ** | 0.22 | 0.01 | −0.31 + | 0.05 | 0.17 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Tan, Y.; Jia, C.X.; Li, L. Late-Life Informal Social Participation, Physical and Cognitive Functions Among the Chinese Elderly: A Life Course Perspective. Healthcare 2025, 13, 232. https://doi.org/10.3390/healthcare13030232
Zeng Y, Tan Y, Jia CX, Li L. Late-Life Informal Social Participation, Physical and Cognitive Functions Among the Chinese Elderly: A Life Course Perspective. Healthcare. 2025; 13(3):232. https://doi.org/10.3390/healthcare13030232
Chicago/Turabian StyleZeng, Yonghui, Yunyu Tan, Cindy Xinshan Jia, and Li Li. 2025. "Late-Life Informal Social Participation, Physical and Cognitive Functions Among the Chinese Elderly: A Life Course Perspective" Healthcare 13, no. 3: 232. https://doi.org/10.3390/healthcare13030232
APA StyleZeng, Y., Tan, Y., Jia, C. X., & Li, L. (2025). Late-Life Informal Social Participation, Physical and Cognitive Functions Among the Chinese Elderly: A Life Course Perspective. Healthcare, 13(3), 232. https://doi.org/10.3390/healthcare13030232