Effect of Walking on Sand with Dietary Intervention in OverweightType 2 DiabetesMellitusPatients: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Setting
2.3. Eligibility
2.4. Randomization
3. Results
3.1. Statistical Analysis
3.2. Chi-Square Test (Categorical Data Analysis)
3.3. Within-Group and between-Group Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- Dietary advice to all the participants.
- Modern dietary management of diabetes essentially involves modifications of the quality and quantity of food to be taken by the diabetic patient. The following guidelines apply to diabetes irrespective of type, weight status, age, gender, or occupation.
- Most of the carbohydrate consumed should be in the form of starch (polysaccharides) such as maize, rice, beans, bread, potatoes, etc.
- Dates are the staple food in Middle East. Although the dates contain high fiber content the glycemic index is also high. Therefore, all participants were instructed to limit the intake of dates from 3–5/day. All refined sugars such as glucose, sucrose, and their products (soft drinks, sweets, toffees, etc.) and honey should be avoided, except during severe illness or episodes of hypoglycemia. These foods contain simple sugar, which is easily absorbed causing a rapid rise in blood sugar.
- Instead of sugar, non-nutritive sweeteners, e.g., Canderel, saccharine, NutraSweet, aspartames are suitable.
- Animal fat such as butter, lard, egg yolk, and other foods high in saturated fatty acids and cholesterol should be reduced to a minimum and be replaced with vegetable oils, particularly polyunsaturated fats.
- Salt should be reduced whether hypertensive or not.
- Protein (fish, meat, beans, crab, crayfish, soybean, chicken, etc.) and salt are restricted for those with diabetic nephropathy.
- Cigarette smoking should be avoided by diabetic patients. Alcohol should be taken only in moderation.
- The items allowed for free consumption include Water, green leafy vegetables, tomatoes, onions, cucumber, aubergine, peppers, vegetable salad without cream. Any brand of tea, coffee, or drinks that contain very low or no calories.
- For patients too ill to eat solid food, fluid or semi-solid diet should be substituted (papaya, soya bean, custard, etc.).
- Patients treated with insulin or certain oral hypoglycemic agents, e.g., sulfonylureas must be advised to eat regularly and often to prevent hypoglycemia- 3 meals a day plus suitable snacks in between, e.g., fresh fruits.
- Small meals spaced over the day, rather than 1 or 2 big meals, help avoid post-pyramidal peaks in blood sugar.
References
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2017, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2017, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; Fernandes, J.D.R.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.; Cavan, D.; Shaw, J.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naji, E.; Kashoo, F.Z.; Kashoo, M. Prevalence of Obesity and Overweight among Majmaah University Students. Indian J. Physiother. Occup. Ther. Int. J. 2013, 7, 40. [Google Scholar] [CrossRef]
- Malik, A.R. Diabetes mellitus in the Arab world. J. Taibah Univ. Med. Sci. 2016, 11, 283. [Google Scholar] [CrossRef] [Green Version]
- Sami, W.; Ansari, T.; Butt, N.S.; AbHamid, M.R. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci. 2017, 11, 65–71. [Google Scholar]
- Khan, A.; Mundra, P.A.; Straznicky, N.E.; Nestel, P.J.; Wong, G.; Tan, R.; Huynh, K.; Ng, T.W.; Mellett, N.A.; Weir, J.M.; et al. Weight Loss and Exercise Alter the High-Density Lipoprotein Lipidome and Improve High-Density Lipoprotein Functionality in Metabolic Syndrome. Arter. Thromb. Vasc. Boil. 2018, 38, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Shaphe, A. Effect of Aerobic Exercises on Blood Pressure in Mild and Moderate Hypertensive Middle Aged and Older Patients. Majmaah J. Health Sci. 2013, 1, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Dempsey, P.C.; Larsen, R.N.; Sethi, P.; Sacre, J.W.; Straznicky, N.E.; Cohen, N.; Cerin, E.; Lambert, G.W.; Owen, N.; Kingwell, B.A.; et al. Benefits for Type2 Diabetes of Interrupting Prolonged Sitting with Brief Bouts of Light Walking or Simple Resistance Activities. Diabetes Care 2016, 39, 964–972. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, M.M.; Kashoo, F.Z.; Ahmad, F. Current scenario of evidence—Based practice and rationale of preferred approach in stroke rehabilitation among physiotherapists in Saudi Arabia: Across—Sectional survey. Saudi J. Health Sci. 2019, 53–64. [Google Scholar] [CrossRef]
- Zanuso, S.; Sacchetti, M.; Sundberg, C.J.; Orlando, G.; Benvenuti, P.; Balducci, S. Exercise in type 2 diabetes: Genetic, metabolic and neuromuscular adaptations. A review of the evidence. Br. J. Sports Med. 2017, 51, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Kokic, I.S.; Ivanisevic, M.; Biolo, G.; Simunic, B.; Kokic, T.; Pisot, R. P-68 the impact of structured aerobic and resistance exercise on the course and outcomes of gestational diabetes mellitus: A randomised controlled trial. Br. J. Sports Med. 2016, 50. [Google Scholar] [CrossRef]
- Cleland, B.T.; Ingraham, B.A.; Pitluck, M.C.; Woo, D.; Ng, A.V. Reliability and Validity of Ratings of Perceived Exertion in Persons with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2016, 97, 974–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gainey, A.; Himathongkam, T.; Tanaka, H.; Suksom, D. Effects of Buddhist walking meditation on glycemic control and vascular function in patients with type2 diabetes. Complement. Ther. Med. 2016, 26, 92–97. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, A.L.; Hallberg, S.J.; Creighton, B.C.; Volk, B.M.; Link, T.M.; Abner, M.K.; Glon, R.; McCarter, J.P.; Volek, J.S.; Phinney, S.D.; et al. A Novel Intervention Including Individualized Nutritional Recommendations Reduces Hemoglobin A1c Level, Medication Use, and Weightin Type2 Diabetes. JMIR Diabetes 2017, 2, e5. [Google Scholar] [CrossRef]
- Crevier-Denoix, N.; Robin, D.; Pourcelot, P.; Falala, S.; Holden, L.; Estoup, P.; Desquilbet, L.; Denoix, J.M.; Chateau, H. Ground reaction force and kinematic analysis of limb loading on two different beach sand tracks in harness trotters. Equine Veter. J. 2010, 42, 544–551. [Google Scholar] [CrossRef]
- Jafarnezhadgero, A.; Fatollahi, A.; Amirzadeh, N.; Siahkouhian, M.; Granacher, U. Ground reaction forces and muscle activity while walking on sand versus stable ground in individuals with pronated feet compared with healthy controls. PLoS ONE 2019, 14, e0223219. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.-H.; Hwang, B.-H. Effects of gait training on sand on improving the walking ability of patients with chronic stroke: A randomized controlled trial. J. Phys. Ther. Sci. 2017, 29, 2172–2175. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, M.E.L.; Barr, C.; McLoughlin, J.V.; Crotty, M. Effect of walking on sand on gait kinematics in individuals with multiple sclerosis. Mult. Scler. Relat. Disord. 2017, 16, 15–21. [Google Scholar] [CrossRef]
- Ostman, C.; Jewiss, D.; King, N.; Smart, N.A. Clinical outcomes to exercise training in type1 diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2017, 139, 380–391. [Google Scholar] [CrossRef]
- Caron, N.; Peyrot, N.; Caderby, T.; Verkindt, C.; Dalleau, G. Effect of type2 diabetes on energy cost and preferred speed of walking. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 118, 2331–2338. [Google Scholar] [CrossRef]
- Støa, E.M.; Meling, S.; Nyhus, L.-K.; Mangerud, K.M.; Helgerud, J.; Bratland-Sanda, S.; Støren, Ø.; Strømstad, G. High-intensity aerobic interval training improves aerobic fitness and HbA1c among persons diagnosed with type2 diabetes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 117, 455–467. [Google Scholar] [CrossRef]
- Hamasaki, H. Daily physical activity and type2 diabetes: A review. World J. Diabetes 2016, 7, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Sentinelli, F.; LaCava, V.; Serpe, R.; Boi, A.; Incani, M.; Manconi, E.; Solinas, A.; Cossu, E.; Lenzi, A.; Baroni, M. Positive effects of Nordic Walking on anthropometric and metabolic variables in women with type2 diabetes mellitus. Sci. Sports 2015, 30, 25–32. [Google Scholar] [CrossRef]
- Cai, H.; Li, G.; Zhang, P.; Xu, D.; Chen, L. Effect of exercise on the quality of life in type 2 diabetes mellitus: A systematic review. Qual. Life Res. 2016, 26, 515–530. [Google Scholar] [CrossRef]
- Hart, P.D.; Buck, D.J. The effect of resistance training on health-related quality of life in older adults: Systematic review and meta-analysis. Health Promot. Perspect. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Al-Mohaimeed, A.A. Prevalence and factors associated with anxiety and depression among type 2 diabetes in Qassim: A descriptive cross-sectional study. J. Taibah Univ. Med. Sci. 2017, 12, 430–436. [Google Scholar] [CrossRef]
- Duvivier, B.M.F.M.; Bolijn, J.E.; Koster, A.; Schalkwijk, C.G.; Savelberg, H.H.C.M.; Schaper, N.C. Reducing sitting time versus adding exercise: Differential effects on biomarkers of endothelial dysfunction and metabolic risk. Sci. Rep. 2018, 8, 8657. [Google Scholar] [CrossRef]
- Thorp, A.A.; Kingwell, B.; Sethi, P.; Hammond, L.; Owen, N.; Dunstan, D. Alternating Bouts of Sitting and Standing Attenuate Postprandial Glucose Responses. Med. Sci. Sports Exerc. 2014, 46, 2053–2061. [Google Scholar] [CrossRef] [Green Version]
- Meléndez, A.R.; Vázquez, P.A.; Lecona, I.L.; Garza, R.L. Correlación entre prueba de marcha de 6 minutos y prueba de esfuerzo máxima en pacientes con diabetes mellitus de tipo ii. Rehabilitación 2018, 53, 2–7. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, D.-C.; Brellenthin, A.G.; Sui, X.; Church, T.S.; Lavie, C.J.; Blair, S.N. Association of Muscular Strength and Incidence of Type2 Diabetes. Mayo Clin. Proc. 2019, 94, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Benatti, F.B.; Ried-Larsen, M. The Effects of Breaking up Prolonged Sitting Time. Med. Sci. Sports Exerc. 2015, 47, 2053–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamparo, P.; Perini, R.; Orizio, C.; Sacher, M.; Ferretti, G. The energy cost of walking or running on sand. Graefe’s Arch. Clin. Exp. Ophthalmol. 1992, 65, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.E.H.; MacKinnon, S.N. The energetics of walking on sand and grass at various speeds. Ergonomics 2006, 49, 651–660. [Google Scholar] [CrossRef]
- Morrison, K.; Braham, R.A.; Dawson, B.; Guelfi, K. Effect of a sand or firm-surface walking program on health, strength, and fitness in women 60–75 years old. J. Aging Phys. Act. 2009, 17, 196–209. [Google Scholar] [CrossRef]
- Hwang, B.-H.; Kim, T.-H. The effects of sand surface training on changes in the muscle activity of the paretic side lower limb and the improvement of dynamic stability and gait endurance in stroke patients. J. Exerc. Rehabil. 2019, 15, 439–444. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Group | NW (m ±SD) Baseline | Between Group Difference (p *) | SW (m ±SD) Post-Intervention | Between Group Difference (p *) |
---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | ||||
Males/Females (n/n) | Experimental | 20/13 | - | - | |
Control | 18/15 | ||||
Mean age (SD) y | Experimental | 52.8 (8.924) | 0.713 | - | - |
Control | 52.1 (7.715) | ||||
HbA1c, % | Experimental | 8.6 ± 0.8746 | 0.355 | 7.3 ± 0.4706 | 0.003 |
Control | 8.8 ± 0.8682 | 8.3 ± 0.7726 | |||
Body mass index, kg/m2 | Experimental | 27.6 ± 1.2762 | 0.992 | 25.7 ± 1.3664 | 0.001 |
Control | 27.6 ± 1.2511 | 26.8 ± 1.3828 | |||
Waist circumference, cm | Experimental | 98.2 ± 1.793 | 0.897 | 92.9 ± 2.597 | 0.001 |
Control | 98.1 ± 1.996 | 95.1 ± 2.167 | |||
Quality of Life (D-39) | Experimental | 157.6 ± 49.801 | 0.692 | 91.4 ± 34.089 | 0.017 |
Control | 162.3 ± 48.069 | 112.0 ± 33.706 |
Variables | Paired Differences (Control) | |||||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval | t | df | p | ||
Lower | Upper | |||||||
BMI | 0.8 | 0.8838 | 0.1538 | 0.5745 | 1.2013 | 5.771 | 32 | 0.001 |
HbA1c | 0.5 | 0.9817 | 0.1709 | 0.0670 | 0.7633 | 2.429 | 32 | 0.021 |
Waist Circumference (cm) | 3 | 2.215 | 0.386 | 2.184 | 3.755 | 7.703 | 32 | 0.001 |
QOL | 50.3 | 35.759 | 6.225 | 37.714 | 63.073 | 8.096 | 32 | 0.001 |
Variables | Paired Differences (Experimental) | |||||||
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval | t | df | p | ||
Lower | Upper | |||||||
BMI | 0.9 | 0.5013 | 0.0873 | 1.7465 | 2.1020 | 22.052 | 32 | 0.001 |
HbA1c | 1.3 | 0.9713 | 0.1691 | 0.9292 | 1.6181 | 7.532 | 32 | 0.001 |
Waist Circumference (cm) | 5.3 | 3.279 | 0.571 | 4.080 | 6.405 | 9.184 | 32 | 0.001 |
QOL | 66.2 | 51.849 | 9.026 | 47.736 | 84.506 | 7.326 | 32 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seyam, M.; Kashoo, F.; Alqahtani, M.; Alzhrani, M.; Aldhafiri, F.; Ahmad, M. Effect of Walking on Sand with Dietary Intervention in OverweightType 2 DiabetesMellitusPatients: A Randomized Controlled Trial. Healthcare 2020, 8, 370. https://doi.org/10.3390/healthcare8040370
Seyam M, Kashoo F, Alqahtani M, Alzhrani M, Aldhafiri F, Ahmad M. Effect of Walking on Sand with Dietary Intervention in OverweightType 2 DiabetesMellitusPatients: A Randomized Controlled Trial. Healthcare. 2020; 8(4):370. https://doi.org/10.3390/healthcare8040370
Chicago/Turabian StyleSeyam, Mohamed, Faizan Kashoo, Mazen Alqahtani, Msaad Alzhrani, Fahad Aldhafiri, and Mehrunnisha Ahmad. 2020. "Effect of Walking on Sand with Dietary Intervention in OverweightType 2 DiabetesMellitusPatients: A Randomized Controlled Trial" Healthcare 8, no. 4: 370. https://doi.org/10.3390/healthcare8040370
APA StyleSeyam, M., Kashoo, F., Alqahtani, M., Alzhrani, M., Aldhafiri, F., & Ahmad, M. (2020). Effect of Walking on Sand with Dietary Intervention in OverweightType 2 DiabetesMellitusPatients: A Randomized Controlled Trial. Healthcare, 8(4), 370. https://doi.org/10.3390/healthcare8040370