Patient Satisfaction and Hospital Quality of Care Evaluation in Malaysia Using SERVQUAL and Facebook
Abstract
:1. Introduction
2. Related Work
2.1. Patient Satisfaction
2.2. Social Media Data and Machine Learning
2.3. Proposed Work
3. Materials and Methods
3.1. Facebook Data
3.2. Machine Learning Topics Classification
3.3. Outcome: Patient Dissatisfaction
3.4. Statistical Analysis
4. Results
4.1. Hospital and Facebook Characteristics
4.2. Facebook Reviews and Patient Satisfaction
4.3. Classification of SERVQUAL Dimensions
4.4. Factors Associated with Patient Dissatisfaction
5. Discussion
Future Works and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Delivering Quality Health Services: A Global Imperative for Universal Health Coverage; World Health Organization; Organisation for Economic Co-Operation and Development; The World Bank: Geneva, Switzerland, 2018; ISBN 978-92-64-30030-9. [Google Scholar]
- Gardner, J.W.; Linderman, K.W.; McFadden, K.L. Managing Quality Crossroads in Healthcare: An Integrative Supply Chain Perspective. Qual. Manag. J. 2018, 25, 2–17. [Google Scholar] [CrossRef]
- Kruk, M.E.; Gage, A.D.; Joseph, N.; Danaei, G.; Garcia-Saiso, S.; Salomon, J.A. Mortality due to low-quality health systems in the universal health coverage era: A systematic analysis of amenable deaths in 137 countries. Lancet 2018, 392, 2203–2212. [Google Scholar] [CrossRef] [Green Version]
- Fung, C.H.; Lim, Y.-W.; Mattke, S.; Damberg, C.; Shekelle, P.G. Systematic Review: The Evidence That Publishing Patient Care Performance Data Improves Quality of Care. Ann. Intern. Med. 2008, 148, 111–123. [Google Scholar] [CrossRef]
- Lagu, T.; Goff, S.L.; Hannon, N.S.; Shatz, A.; Lindenauer, P.K. A Mixed-Methods Analysis of Patient Reviews of Hospital Care in England: Implications for Public Reporting of Health Care Quality Data in the United States. Jt. Comm. J. Qual. Patient Saf. 2013, 39, 7–15. [Google Scholar] [CrossRef]
- Al-Abri, R.; Al-Balushi, A. Patient Satisfaction Survey as a Tool towards Quality Improvement. Oman Med. J. 2014, 29, 3–7. [Google Scholar] [CrossRef]
- Ladhari, R. A review of twenty years of SERVQUAL research. Int. J. Qual. Serv. Sci. 2009, 1, 172–198. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. A Conceptual Model of Service Quality and Its Implications for Future Research. J. Mark. 1985, 49, 41–50. [Google Scholar] [CrossRef]
- Alanazi, M.R.; Alamry, A.; Al-Surimi, K. Validation and adaptation of the hospital consumer assessment of healthcare providers and systems in Arabic context: Evidence from Saudi Arabia. J. Infect. Public Health 2017, 10, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, M.; Naeem, M.A.; Munawar, Z.; Fatima, I. Service Quality Assessment of Hospitals in Asian Context: An Empirical Evidence from Pakistan. Inq. J. Health Care Organ. Provis. Financ. 2017, 54, 0046958017714664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greaves, F.; Laverty, A.A.; Cano, D.R.; Moilanen, K.; Pulman, S.; Darzi, A.; Millett, C. Tweets about hospital quality: A mixed methods study. BMJ Qual. Saf. 2014, 23, 838–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, J.B.; Brownstein, J.S.; Tuli, G.; Runels, T.; Broecker, K.; Nsoesie, E.O.; McIver, D.J.; Rozenblum, R.; Wright, A.; Bourgeois, F.T.; et al. Measuring patient-perceived quality of care in US hospitals using Twitter. BMJ Qual. Saf. 2016, 25, 404–413. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Han, X.; Zhou, H.; Liu, Y. Public Perception on Healthcare Services: Evidence from Social Media Platforms in China. Int. J. Environ. Res. Public Health 2019, 16, 1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; Church, E.M. Social media hospital ratings and HCAHPS survey scores. J. Health Organ. Manag. 2020, 34, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Geletta, S. Measuring patient satisfaction with medical services using social media generated data. Int. J. Health Care Qual. Assur. 2018, 31, 96–105. [Google Scholar] [CrossRef]
- Hong, Y.A.; Liang, C.; Radcliff, T.A.; Wigfall, L.T.; Street, R.L. What Do Patients Say About Doctors Online? A Systematic Review of Studies on Patient Online Reviews. J. Med. Internet Res. 2019, 21, e12521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Placona, A.M.; Rathert, C. Are Online Patient Reviews Associated with Health Care Outcomes? A Systematic Review of the Literature. Med. Care Res. Rev. 2021. [Google Scholar] [CrossRef] [PubMed]
- Farsi, D. Social Media and Health Care, Part I: Literature Review of Social Media Use by Health Care Providers. J. Med. Internet Res. 2021, 23, e23205. [Google Scholar] [CrossRef] [PubMed]
- Giustini, D.M.; Ali, S.M.; Fraser, M.; Boulos, M.K. Effective uses of social media in public health and medicine: A systematic review of systematic reviews. Online J. Public Health Inform. 2018, 10, e215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boon-Itt, S.; Skunkan, Y. Public Perception of the COVID-19 Pandemic on Twitter: Sentiment Analysis and Topic Modeling Study. JMIR Public Health Surveill. 2020, 6, e21978. [Google Scholar] [CrossRef]
- Chu, W.-M.; Shieh, G.-J.; Wu, S.-L.; Sheu, W.H.-H. Use of Facebook by Academic Medical Centers in Taiwan during the COVID-19 Pandemic: Observational Study. J. Med. Internet Res. 2020, 22, e21501. [Google Scholar] [CrossRef]
- Rahim, A.A.; Ibrahim, M.; Musa, K.; Chua, S.-L. Facebook Reviews as a Supplemental Tool for Hospital Patient Satisfaction and Its Relationship with Hospital Accreditation in Malaysia. Int. J. Environ. Res. Public Health 2021, 18, 7454. [Google Scholar] [CrossRef]
- Bjertnaes, O.; Iversen, H.H.; Skyrud, K.D.; Danielsen, K. The value of Facebook in nation-wide hospital quality assessment: A national mixed-methods study in Norway. BMJ Qual. Saf. 2019, 29, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Campbell, L.; Li, Y. Are Facebook user ratings associated with hospital cost, quality and patient satisfaction? A cross-sectional analysis of hospitals in New York State. BMJ Qual. Saf. 2017, 27, 119–129. [Google Scholar] [CrossRef]
- Hefele, J.G.; Li, Y.; Campbell, L.; Barooah, A.; Wang, J. Nursing home Facebook reviews: Who has them, and how do they relate to other measures of quality and experience? BMJ Qual. Saf. 2017, 27, 130–139. [Google Scholar] [CrossRef]
- Lee, J.Y.; Gowen, C.R.; McFadden, K.L. An empirical study of U.S. hospital quality: Readmission rates, organizational culture, patient satisfaction, and Facebook ratings. Qual. Manag. J. 2018, 25, 158–170. [Google Scholar] [CrossRef]
- Richter, J.P.; Kazley, A.S. Social media: How hospital facebook activity may influence patient satisfaction. Health Mark. Q. 2020, 37, 1–9. [Google Scholar] [CrossRef]
- Zaman, N.; Goldberg, D.M.; Abrahams, A.S.; Essig, R.A. Facebook Hospital Reviews: Automated Service Quality Detection and Relationships with Patient Satisfaction. Decis. Sci. 2020. [Google Scholar] [CrossRef]
- Khanbhai, M.; Anyadi, P.; Symons, J.; Flott, K.; Darzi, A.; Mayer, E. Applying natural language processing and machine learning techniques to patient experience feedback: A systematic review. BMJ Health Care Inform. 2021, 28, e100262. [Google Scholar] [CrossRef] [PubMed]
- Gohil, S.; Vuik, S.; Darzi, A. Sentiment Analysis of Health Care Tweets: Review of the Methods Used. JMIR Public Health Surveill. 2018, 4, e43. [Google Scholar] [CrossRef] [PubMed]
- Zunic, A.; Corcoran, P.; Spasic, I. Sentiment Analysis in Health and Well-Being: Systematic Review. JMIR Med. Inform. 2020, 8, e16023. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.-C.; Lee, W.-C.; Liu, H.-Y.; Shih, M.-J.; Chen, T.-J.; Chou, L.-F.; Hwang, S.-J. Use of Facebook by Hospitals in Taiwan: A Nationwide Survey. Int. J. Environ. Res. Public Health 2018, 15, 1188. [Google Scholar] [CrossRef] [Green Version]
- MCMC. Internet Users Survey 2020, “IUS 2020”; Malaysian Communications and Multimedia Commission: Cyberjaya, Malaysia, 2020; p. 160. [Google Scholar]
- Swan, J.E.; Sawyer, J.C.; Van Matre, J.G.; McGee, G.W. Deepening the understanding of hospital patient satisfaction: Fulfillment and equity effects. J. Health care Mark. 1985, 5, 7–18. [Google Scholar]
- Batbaatar, E.; Dorjdagva, J.; Luvsannyam, A.; Savino, M.M.; Amenta, P. Determinants of patient satisfaction: A systematic review. Perspect. Public Health 2016, 137, 89–101. [Google Scholar] [CrossRef]
- Almasabi, M.; Yang, H.; Thomas, S. A Systematic Review of the Association between Healthcare Accreditation and Patient Satisfaction. World Appl. Sci. J. 2014, 31, 1618–1623. [Google Scholar]
- Yunita, H.; Amal Chalik, S. Effect of Hospital Accreditation on Patient Safety Culture and Satisfaction: A Systematic Review. In Proceedings of the 6th International Conference on Public Health 2019, Solo, Indonesia, 23 October 2019; pp. 547–555. [Google Scholar]
- Alkazemi, M.F.; Bayramzadeh, S.; Alkhubaizi, N.B.; Alayoub, A. The physical environment and patient satisfaction ratings on social media: An exploratory study. Facilities 2019, 38, 86–97. [Google Scholar] [CrossRef]
- Yaya, S.; Bishwajit, G.; Ekholuenetale, M.; Shah, V.; Kadio, B.; Udenigwe, O. Urban-rural difference in satisfaction with primary healthcare services in Ghana. BMC Health Serv. Res. 2017, 17, 776. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Mao, Y. Patient Satisfaction with Rural Medical Services: A Cross-Sectional Survey in 11 Western Provinces in China. Int. J. Environ. Res. Public Health 2019, 16, 3968. [Google Scholar] [CrossRef] [Green Version]
- Tang, L. The influences of patient’s satisfaction with medical service delivery, assessment of medical service, and trust in health delivery system on patient’s life satisfaction in China. Health Qual. Life Outcomes 2012, 10, 111. [Google Scholar] [CrossRef] [Green Version]
- Draper, M.; Cohen, P.; Buchan, H. Seeking consumer views: What use are results of hospital patient satisfaction surveys? Int. J. Qual. Health Care 2001, 13, 463–468. [Google Scholar] [CrossRef]
- Synan, L.T.; Eid, M.A.; Lamb, C.R.; Wong, S.L. Crowd-sourced hospital ratings are correlated with patient satisfaction but not surgical safety. Surgery 2021, 170, 764–768. [Google Scholar] [CrossRef]
- Rahim, A.I.A.; Ibrahim, M.I.; Musa, K.I.; Chua, S.-L.; Yaacob, N.M. Assessing Patient-Perceived Hospital Service Quality and Sentiment in Malaysian Public Hospitals Using Machine Learning and Facebook Reviews. Int. J. Environ. Res. Public Health 2021, 18, 9912. [Google Scholar] [CrossRef]
- Friedrich, S.; Groß, S.; König, I.R.; Engelhardt, S.; Bahls, M.; Heinz, J.; Huber, C.; Kaderali, L.; Kelm, M.; Leha, A.; et al. Applications of artificial intelligence/machine learning approaches in cardiovascular medicine: A systematic review with recommendations. Eur. Hear. J.—Digit. Health 2021, 2, 424–436. [Google Scholar] [CrossRef]
- Doing-Harris, K.; Mowery, D.L.; Daniels, C.; Chapman, W.W.; Conway, M. Understanding patient satisfaction with received healthcare services: A natural language processing approach. AMIA Annu. Symp. Proc. 2016, 2016, 524–533. [Google Scholar]
- Alemi, F.; Torii, M.; Clementz, L.; Aron, D.C. Feasibility of Real-Time Satisfaction Surveys through Automated Analysis of Patients’ Unstructured Comments and Sentiments. Qual. Manag. Health Care 2012, 21, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Greaves, F.; Ramirez-Cano, D.; Millett, C.; Darzi, A.; Donaldson, L. Use of Sentiment Analysis for Capturing Patient Experience From Free-Text Comments Posted Online. J. Med. Internet Res. 2013, 15, e239. [Google Scholar] [CrossRef]
- Bahja, M.; Lycett, M. Identifying patient experience from online resources via sentiment analysis and topic modelling. In Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, Shanghai, China, 6–9 December 2016; pp. 94–99. [Google Scholar]
- Ranard, B.L.; Werner, R.M.; Antanavicius, T.; Schwartz, H.A.; Smith, R.J.; Meisel, Z.F.; Asch, D.; Ungar, L.H.; Merchant, R.M. Yelp Reviews Of Hospital Care Can Supplement And Inform Traditional Surveys of the Patient Experience of Care. Health Aff. 2016, 35, 697–705. [Google Scholar] [CrossRef]
- Hao, H.; Zhang, K.; Wang, W.; Gao, G. A tale of two countries: International comparison of online doctor reviews between China and the United States. Int. J. Med. Inform. 2017, 99, 37–44. [Google Scholar] [CrossRef]
- James, T.L.; Calderon, E.D.V.; Cook, D.F. Exploring patient perceptions of healthcare service quality through analysis of unstructured feedback. Expert Syst. Appl. 2017, 71, 479–492. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, M.; Lee, H.; Cruz, R.A. Mining service quality feedback from social media: A computational analytics method. Gov. Inf. Q. 2021, 38, 101571. [Google Scholar] [CrossRef]
- Ko, D.; Mai, F.; Shan, Z.; Zhang, D. Operational efficiency and patient-centered health care: A view from online physician reviews. J. Oper. Manag. 2019, 65, 353–379. [Google Scholar] [CrossRef]
- Lin, Y.; Hong, Y.A.; Henson, B.S.; Stevenson, R.D.; Hong, S.; Lyu, T.; Liang, C. Assessing Patient Experience and Healthcare Quality of Dental Care Using Patient Online Reviews in the United States: Mixed Methods Study. J. Med. Internet Res. 2020, 22, e18652. [Google Scholar] [CrossRef]
- Nawab, K.; Ramsey, G.; Schreiber, R. Natural Language Processing to Extract Meaningful Information from Patient Experience Feedback. Appl. Clin. Inform. 2020, 11, 242–252. [Google Scholar] [CrossRef]
- Abirami, A.; Askarunisa, A. Sentiment analysis model to emphasize the impact of online reviews in healthcare industry. Online Inf. Rev. 2017, 41, 471–486. [Google Scholar] [CrossRef]
- Huppertz, J.W.; Otto, P. Predicting HCAHPS scores from hospitals’ social media pages: A sentiment analysis. Health Care Manag. Rev. 2018, 43, 359–367. [Google Scholar] [CrossRef]
- Cole-Lewis, H.; Varghese, A.; Sanders, A.; Schwarz, M.; Pugatch, J.; Augustson, E. Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning. J. Med. Internet Res. 2015, 17, e208. [Google Scholar] [CrossRef]
- Daniulaityte, R.; Chen, L.; Lamy, F.R.; Carlson, R.G.; Thirunarayan, K.; Sheth, A. “When ‘Bad’ is ‘Good’”: Identifying Personal Communication and Sentiment in Drug-Related Tweets. JMIR Public Health Surveill. 2016, 2, e162. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Hur, C.; Jung, D.; Kim, M.; Ning, L.; Zimlichman, E. Identifying Key Hospital Service Quality Factors in Online Health Communities. J. Med. Internet Res. 2015, 17, e90. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, M.; Lee, H. Tracking Social Perception on Healthcare Service Quality Using Social Media. In Proceedings of the Management Knowledeg and Learning International Conference 2018, Naples, Italy, 16–18 May 2018; p. 18. [Google Scholar]
- Boylan, A.-M.; Turk, A.; van Velthoven, M.H.; Powell, J. Online patient feedback as a measure of quality in primary care: A multimethod study using correlation and qualitative analysis. BMJ Open 2020, 10, e031820. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.; Cottrell, E.; Chambers, R. Facebook in general practice: A service evaluation in one health economy. BJGP Open 2017, 1, 101181. [Google Scholar] [CrossRef]
- Parasuraman, A.P.; Zeithaml, V.; Berry, L. SERVQUAL: A multiple- Item Scale for measuring consumer perceptions of service quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Bari, V.; Hirsch, J.S.; Narvaez, J.; Sardinia, R.; Bock, K.R.; Oppenheim, M.I.; Meytlis, M. An approach to predicting patient experience through machine learning and social network analysis. J. Am. Med. Inform. Assoc. 2020, 27, 1834–1843. [Google Scholar] [CrossRef] [PubMed]
- Szymański, P.; Kajdanowicz, T. A Network Perspective on Stratification of Multi-Label Data. In Proceedings of the First International Workshop on Learning with Imbalanced Domains: Theory and Applications, Skopje, Macedonia, 22 September 2017; pp. 22–35. [Google Scholar]
- Boylan, A.-M.; Williams, V.; Powell, J. Online patient feedback: A scoping review and stakeholder consultation to guide health policy. J. Health Serv. Res. Policy 2019, 25, 122–129. [Google Scholar] [CrossRef]
- Ko, C.-H.; Chou, C.-M. Apply the SERVQUAL Instrument to Measure Service Quality for the Adaptation of ICT Technologies: A Case Study of Nursing Homes in Taiwan. Healthcare 2020, 8, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.N.-L.; Ojo, A.; Cheah, J.-H.; Ramayah, T. Measuring the Influence of Service Quality on Patient Satisfaction in Malaysia. Qual. Manag. J. 2019, 26, 129–143. [Google Scholar] [CrossRef]
- Brookes, G.; Baker, J.P. What does patient feedback reveal about the NHS? A mixed methods study of comments posted to the NHS Choices online service. BMJ Open 2017, 7, e013821. [Google Scholar] [CrossRef]
- Jenkinson, C.; Coulter, A.; Bruster, S.; Richards, N.; Chandola, T. Patients’ experiences and satisfaction with health care: Results of a questionnaire study of specific aspects of care. Qual. Saf. Health Care 2002, 11, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Tajudin, M.S.; Habidin, N.F. Lean Healthcare Practices Improve the Patient Performance in Public Hospitals. Int. J. Acad. Res. Bus. Soc. Sci. 2020, 10, 783–796. [Google Scholar] [CrossRef]
- Aliman, N.K.; Mohamad, W.N. Perceptions of Service Quality and Behavioral Intentions: A Mediation Effect of Patient Satisfaction in the Private Health Care in Malaysia. Int. J. Mark. Stud. 2013, 5, 15. [Google Scholar] [CrossRef]
- Kang, A.J. Patients’ Satisfaction towards the Healthcare Institutions Service Quality: A Comparison between Public and Private Hospitals in Klang Valley; UTAR: Kampar, Malaysia, 2019. [Google Scholar]
- Al-Neyadi, H.S.; Abdallah, S.; Malik, M. Measuring patient’s satisfaction of healthcare services in the UAE hospitals: Using SERVQUAL. Int. J. Health Manag. 2018, 11, 96–105. [Google Scholar] [CrossRef]
- Wagland, R.; Recio-Saucedo, A.; Simon, M.; Bracher, M.; Hunt, K.; Foster, C.; Downing, A.; Glaser, A.; Corner, J. Development and testing of a text-mining approach to analyse patients’ comments on their experiences of colorectal cancer care. BMJ Qual. Saf. 2016, 25, 604–614. [Google Scholar] [CrossRef]
- Bernama. MOH, Architects to Further Improve Hospital Infrastructure. Available online: https://www.astroawani.com/berita-malaysia/moh-architects-further-improve-hospital-infrastructure-health-dg-250636 (accessed on 7 August 2021).
- Lawal, A.K.; Rotter, T.; Kinsman, L.; Sari, N.; Harrison, L.; Jeffery, C.; Kutz, M.; Khan, M.F.; Flynn, R. Lean management in health care: Definition, concepts, methodology and effects reported (systematic review protocol). Syst. Rev. 2014, 3, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mata, Á.N.D.S.; de Azevedo, K.P.M.; Braga, L.P.; de Medeiros, G.C.B.S.; Segundo, V.H.D.O.; Bezerra, I.N.M.; Pimenta, I.D.S.F.; Nicolás, I.M.; Piuvezam, G. Training in communication skills for self-efficacy of health professionals: A systematic review. Hum. Resour. Health 2021, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cai, X.; Wang, M. Social media ratings of nursing homes associated with experience of care and “Nursing Home Compare” quality measures. BMC Health Serv. Res. 2019, 19, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kherwa, P.; Bansal, P. Topic Modeling: A Comprehensive Review. ICST Trans. Scalable Inf. Syst. 2018, 7, 159623. [Google Scholar] [CrossRef] [Green Version]
Multilabel Classifier | Model | Accuracy | Recall | Precision | F1-Score | Hamming Loss |
---|---|---|---|---|---|---|
Binary Relevance | NB | 0.147 | 0.761 | 0.701 | 0.730 | 0.315 |
SVM | 0.211 | 0.763 | 0.745 | 0.754 | 0.278 | |
LR | 0.193 | 0.775 | 0.732 | 0.753 | 0.285 | |
Label Powerset | NB | 0.130 | 0.896 | 0.633 | 0.741 | 0.349 |
SVM | 0.166 | 0.799 | 0.679 | 0.734 | 0.323 | |
LR | 0.158 | 0.825 | 0.669 | 0.739 | 0.326 | |
Chains Classifier | NB | 0.149 | 0.756 | 0.705 | 0.730 | 0.313 |
SVM | 0.215 | 0.761 | 0.753 | 0.757 | 0.273 | |
LR | 0.191 | 0.770 | 0.727 | 0.748 | 0.290 | |
RAkEL | NB | 0.157 | 0.749 | 0.699 | 0.722 | 0.322 |
SVM | 0.186 | 0.764 | 0.724 | 0.743 | 0.295 | |
LR | 0.180 | 0.765 | 0.726 | 0.745 | 0.293 | |
MLkNN | N/A | 0.140 | 0.737 | 0.697 | 0.715 | 0.327 |
BRkNN | N/A | 0.157 | 0.648 | 0.732 | 0.687 | 0.330 |
Variable | n | (%) | Median | (IQR) | |
---|---|---|---|---|---|
Hospital Features | |||||
Region | East Coast | 189 | (10.4) | ||
North | 393 | (21.5) | |||
West | 922 | (50.5) | |||
South | 178 | (9.8) | |||
East Malaysia | 143 | (7.8) | |||
Location | Rural | 234 | (12.8) | ||
Urban | 1591 | (87.2) | |||
Hospital Type | Primary | 125 | (6.8) | ||
Secondary | 80 | (4.4) | |||
Tertiary | 1620 | (88.8) | |||
Beds | 730 | (563) | |||
Facebook Features | |||||
Previous Facebook Star Ratings | 4.70 | (1.5) | |||
Admin Response | No | 1651 | (90.5) | ||
Yes | 174 | (9.5) | |||
Adequate Hospital Information | No | 1651 | (90.5) | ||
Yes | 174 | (9.5) | |||
Patient Satisfaction | Dissatisfied | 483 | (26.5) | ||
Satisfied | 1342 | (73.5) |
Variables | Crude OR | 95% CI | p-Value * | |
---|---|---|---|---|
(Lower, Upper) | ||||
Hospital Features | ||||
Region | East Malaysia | Ref | ||
East Coast | 0.63 | 0.41, 0.96 | 0.031 | |
North | 1.08 | 0.75, 1.55 | 0.695 | |
West | 2.11 | 1.35, 3.30 | 0.001 | |
South | 2.38 | 1.49, 3.80 | <0.001 | |
Location | Urban | Ref | ||
Rural | 1.87 | 1.40, 2.49 | <0.001 | |
Hospital Type | Primary | Ref | ||
Secondary | 0.97 | 0.54, 1.76 | 0.924 | |
Tertiary | 0.65 | 0.44, 0.96 | 0.030 | |
Beds | 1.00 | 1.00, 1.00 | 0.275 | |
Facebook Features | ||||
Admin Response to Review | No | Ref | ||
Yes | 1.24 | 0.88, 1.75 | 0.210 | |
Adequate Hosp Info | No | Ref | ||
Yes | 0.80 | 0.53, 1.22 | 0.306 | |
Facebook Star Ratings | 0.86 | 0.80, 0.93 | <0.001 | |
SERVQUAL | ||||
Tangible | No | Ref | ||
Yes | 1.25 | 0.93, 1.69 | 0.137 | |
Reliability | No | Ref | ||
Yes | 1.52 | 1.20, 1.92 | 0.001 | |
Responsiveness | No | Ref | ||
Yes | 2.10 | 1.45, 3.04 | <0.001 | |
Assurance | No | Ref | ||
Yes | 0.96 | 0.74, 1.25 | 0.766 | |
Empathy | No | Ref | ||
Yes | 1.57 | 1.25, 1.97 | <0.001 |
Variable | Adjusted | Adjusted 95% CI | p-Value * | |
---|---|---|---|---|
OR | (Lower, Upper) | |||
Location | Urban | Ref | ||
Rural | 2.00 | 1.49, 2.68 | <0.001 | |
Reliability | No | Ref | ||
Yes | 2.13 | 1.63, 2.78 | <0.001 | |
Responsive | No | Ref | ||
Yes | 1.61 | 1.09, 2.38 | 0.016 | |
Empathy | No | Ref | ||
Yes | 2.08 | 1.61, 2.69 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahim, A.I.A.; Ibrahim, M.I.; Musa, K.I.; Chua, S.-L.; Yaacob, N.M. Patient Satisfaction and Hospital Quality of Care Evaluation in Malaysia Using SERVQUAL and Facebook. Healthcare 2021, 9, 1369. https://doi.org/10.3390/healthcare9101369
Rahim AIA, Ibrahim MI, Musa KI, Chua S-L, Yaacob NM. Patient Satisfaction and Hospital Quality of Care Evaluation in Malaysia Using SERVQUAL and Facebook. Healthcare. 2021; 9(10):1369. https://doi.org/10.3390/healthcare9101369
Chicago/Turabian StyleRahim, Afiq Izzudin A., Mohd Ismail Ibrahim, Kamarul Imran Musa, Sook-Ling Chua, and Najib Majdi Yaacob. 2021. "Patient Satisfaction and Hospital Quality of Care Evaluation in Malaysia Using SERVQUAL and Facebook" Healthcare 9, no. 10: 1369. https://doi.org/10.3390/healthcare9101369
APA StyleRahim, A. I. A., Ibrahim, M. I., Musa, K. I., Chua, S. -L., & Yaacob, N. M. (2021). Patient Satisfaction and Hospital Quality of Care Evaluation in Malaysia Using SERVQUAL and Facebook. Healthcare, 9(10), 1369. https://doi.org/10.3390/healthcare9101369