Are We Overdoing It? Changes in Diagnostic Imaging Workload during the Years 2010–2020 including the Impact of the SARS-CoV-2 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Data Analysis
2.3. Analysis of the Hospital Organization Changes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith-Bindman, R.; Miglioretti, D.L.; Larson, E.B. Rising use of diagnostic medical imaging in a large integrated health system. Health Aff. 2008, 27, 1491–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beinfeld, M.T.; Gazelle, G.S. Diagnostic imaging costs: Are they driving up the costs of hospital care? Radiology 2005, 235, 934–939. [Google Scholar] [CrossRef]
- Ciarrapico, A.M.; Ugenti, R.; Di Minco, L.; Santori, E.; Altobelli, S.; Coco, I.; D’Onofrio, S.; Simonetti, G. Diagnostic imaging and spending review: Extreme problems call for extreme measures. Radiol. Med. 2017, 122, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.W.; Bhosale, P.R.; Yang, W.T. Immunotherapy and the role of imaging. Cancer 2018, 124, 2906–2922. [Google Scholar] [CrossRef] [PubMed]
- Frush, D.P.; Applegate, K. Computed tomography and radiation: Understanding the issues. J. Am. Coll. Radiol. 2004, 1, 113–119. [Google Scholar] [CrossRef] [PubMed]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Medical Radiation Exposures, Annex D Report to the General Assembly; United Nations Scientific Committee on the Effects of Atomic Radiation: New York, NY, USA, 2000. [Google Scholar]
- Pearce, M.S.; Salotti, J.A.; Little, M.P.; McHugh, K.; Lee, C.; Kim, K.P.; Howe, N.L.; Ronckers, C.M.; Rajaraman, P.; Sir Craft, A.W.; et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. Lancet 2012, 380, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Berrington de González, A.; Darby, S. Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries. Lancet 2004, 363, 345–351. [Google Scholar] [CrossRef]
- Albert, J.M. Radiation risk from CT: Implications for cancer screening. Am. J. Roentgenol. 2013, 201, 81–87. [Google Scholar] [CrossRef]
- Schauer, D.A.; Linton, O.W. NCRP Report No. 160, Ionizing Radiation Exposure of the Population of the United States, medical exposure--are we doing less with more, and is there a role for health physicists? Health Phys. 2009, 97, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Brenner, D.J.; Hall, E.J. Computed tomography—An increasing source of radiation exposure. N. Engl. J. Med. 2007, 357, 2277–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission–Eurostat. Available online: https://ec.europa.eu/eurostat (accessed on 15 June 2021).
- Organization for Economic Co-operation and Development. Available online: https://data.oecd.org/healthcare/computed-tomography-ct-exams.htm (accessed on 16 June 2021).
- Bruls, R.J.M.; Kwee, R.M. Workload for radiologists during on-call hours: Dramatic increase in the past 15 years. Insights Imaging 2020, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Harry, E.; Sinsky, C.; Dyrbye, L.N.; Makowski, M.S.; Trockel, M.; Tutty, M.; Carlasare, L.E.; West, C.P.; Shanafelt, T.D. Physician Task Load and the Risk of Burnout Among US Physicians in a National Survey. Jt. Comm. J. Qual. Patient Saf. 2021, 47, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Owoc, J.; Mańczak, M.; Tombarkiewicz, M.; Olszewski, R. Burnout, well-being, and self-reported medical errors among physicians. Pol. Arch. Intern. Med. 2021, 131, 626–632. [Google Scholar] [CrossRef]
- Polish Medical Society of Radiology. Available online: https://pltr.pl/wp-content/uploads/2020/04/2020.04.06-PLTR-COVID-19-Wskazania-do-obrazowania-2.pdf (accessed on 10 June 2021).
- American College of Radiology. Available online: https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection (accessed on 10 June 2021).
- Abbasian Ardakani, A.; Acharya, U.R.; Habibollahi, S.; Mohammadi, A. COVIDiag: A clinical CAD system to diagnose COVID-19 pneumonia based on CT findings. Eur. Radiol. 2021, 31, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.; Mirniaharikandehei, S.; Khuzani, A.Z.; Danala, G.; Qiu, Y.; Zheng, B. Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms. Int. J. Med. Inform. 2020, 144, 104284. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Duszak, R., Jr.; Maze, J.; Sessa, C.; Fleishon, H.B.; Golding, L.P.; Nicola, G.N.; Hughes, D.R. Characteristics of COVID-19 Community Practice Declines in Noninvasive Diagnostic Imaging Professional Work. J. Am. Coll. Radiol. 2020, 17, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Vingiani, V.; Abadia, A.F.; Posa, A.; Corvino, A.; Pasqualetto, L.; Presidente, A.; Losco, M.; Gray, H.N.; Schoepf, U.J. How the Workload and Outcome of Imaging Examinations Changed During the COVID-19 Pandemic Lockdown. Acta Biomed 2020, 91, e2020166. [Google Scholar] [CrossRef]
- Herts, B.R.; Perl, J., II; Seney, C.; Lieber, M.L.; Davros, W.J.; Baker, M.E. Comparison of examination times between CT scanners: Are the newer scanners faster? AJR Am. J. Roentgenol. 1998, 170, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartoszkiewicz, M.; Kufel-Grabowska, J.; Litwiniuk, M. The impact of severe acute respiratory syndrome coronavirus 2 on patients in cancer clinical trials. Pol. Arch. Intern. Med. 2021, 131, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Myrda, K.; Błachut, A.; Buchta, P.; Skrzypek, M.; Wnuk-Wojnar, A.M.; Hoffmann, A.; Nowak, S.; Kowalski, O.; Pruszkowska, P.; Sokal, A.; et al. Clinical characteristics of patients with atrial fibrillation or atrial flutter hospitalized during the COVID-19 pandemic: A population analysis of nearly 5 million people. Pol. Arch. Intern. Med. 2021, 131, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Freer, P.E. The Impact of the COVID-19 Pandemic on Breast Imaging. Radiol. Clin. N. Am. 2021, 59, 1–11. [Google Scholar] [CrossRef]
- Statistics Poland. Available online: https://bdl.stat.gov.pl (accessed on 1 June 2021).
- Polish Chamber of Physicians and Dentists. Available online: https://nil.org.pl (accessed on 7 June 2021).
- Liu, N.; Prout, T.M.; Xu, Y.; Smith, J.; Funk, L.M.; Greenberg, J.A.; Shada, A.L.; Lidor, A.O. Unnecessary use of radiology studies in the diagnosis of inguinal hernias: A retrospective cohort study. Surg. Endosc. 2020, 35, 4444–4451. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Husson, O.; Drey, N.; Murray, I.; May, K.; Thurston, J.; Oyen, W. Ionising radiation exposure from medical imaging-A review of Patient’s (un) awareness. Radiography 2020, 26, e25–e30. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Mohacsy, A.; Connell, D.A.; Schneider, M.E. A snapshot of patients’ awareness of radiation dose and risks associated with medical imaging examinations at an Australian radiology clinic. Radiography 2017, 23, 94–102. [Google Scholar] [CrossRef]
- Ciompi, F.; Chung, K.; van Riel, S.J.; Setio, A.; Gerke, P.K.; Jacobs, C.; Scholten, E.T.; Schaefer-Prokop, C.; Wille, M.; Marchianò, A.; et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci. Rep. 2017, 7, 46479. [Google Scholar] [CrossRef]
- Suzuki, K. Overview of deep learning in medical imaging. Radiol. Phys. Technol. 2017, 10, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, Z.; Huang, H.; Lin, M.; Luo, D. Evaluating the performance of a deep learning-based computer-aided diagnosis (DL-CAD) system for detecting and characterizing lung nodules: Comparison with the performance of double reading by radiologists. Thorac. Cancer 2019, 10, 183–192. [Google Scholar] [CrossRef]
- Tyan, Y.S.; Wu, M.C.; Chin, C.L.; Kuo, Y.L.; Lee, M.S.; Chang, H.Y. Ischemic stroke detection system with a computer-aided diagnostic ability using an unsupervised feature perception enhancement method. Int. J. Biomed Imaging 2014, 2014, 947539. [Google Scholar] [CrossRef]
- Li, T.; Wei, W.; Cheng, L.; Zhao, S.; Xu, C.; Zhang, X.; Zeng, Y.; Gu, J. Computer-Aided Diagnosis of COVID-19 CT Scans Based on Spatiotemporal Information Fusion. J. Healthc. Eng. 2021, 2021, 6649591. [Google Scholar] [CrossRef] [PubMed]
- Geijer, H.; Geijer, M. Added value of double reading in diagnostic radiology, a systematic review. Insights Imaging 2018, 9, 287–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, X.; Zhao, X.; Wei, H.; Li, Y. Diagnostic accuracy of different computer-aided diagnostic systems for prostate cancer based on magnetic resonance imaging: A systematic review with diagnostic meta-analysis. Medicine 2021, 100, e23817. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, E.L.; Carlsen, J.F.; Vejborg, I.M.; Nielsen, M.B.; Lauridsen, C.A. The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: A systematic review. Acta Radiol. 2019, 60, 13–18. [Google Scholar] [CrossRef]
- Iussich, G.; Correale, L.; Senore, C.; Hassan, C.; Segnan, N.; Campanella, D.; Bert, A.; Galatola, G.; Laudi, C.; Regge, D. Computer-aided detection for computed tomographic colonography screening: A prospective comparison of a double-reading paradigm with first-reader computer-aided detection against second-reader computer-aided detection. Investig. Radiol. 2014, 49, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Ragab, D.A.; Attallah, O. FUSI-CAD: Coronavirus (COVID-19) diagnosis based on the fusion of CNNs and handcrafted features. PeerJ Comput. Sci. 2020, 6, e306. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Wu, D.; Arru, C.D.; Homayounieh, F.; Neumark, N.; Guan, J.; Buch, V.; Kim, K.; Bizzo, B.C.; Ren, H.; et al. A multi-center study of COVID-19 patient prognosis using deep learning-based CT image analysis and electronic health records. Eur. J. Radiol. 2021, 139, 109583. [Google Scholar] [CrossRef]
Year | X-Ray | Bedside X-Ray | US | CT | Interventional Radiology | Total Number of Examinations | Total Number of Patients * |
---|---|---|---|---|---|---|---|
2020 | 96.9 | 16.4 | 86.5 | 155.7 | 6.3 | 18,929 | 52,316 |
2019 | 99.8 | 13.7 | 81.2 | 139.8 | 6.4 | 22,446 | 65,858 |
2018 | 95.8 | 15.9 | 77.2 | 112.1 | 6.5 | 19,536 | 63,536 |
2017 | 105.6 | 17 | 88.3 | 110.1 | 9.9 | 19,507 | 58,960 |
2016 | 98.4 | 15.1 | 68 | 111.1 | 8.6 | 18,165 | 60,316 |
2015 | 89.8 | 11.7 | 57.5 | 104.2 | 9.8 | 16,714 | 61,232 |
2014 | 89.3 | 12.6 | 58.6 | 111.9 | 9.8 | 16,869 | 59,794 |
2013 | 96.8 | 10.5 | 55.8 | 105.6 | 8.4 | 16,077 | 58,031 |
2012 | 99.2 | 8.2 | 56 | 113 | 9.2 | 17,038 | 59,641 |
2011 | 107.8 | 3.1 | 56.6 | 105.7 | 7.9 | 17,082 | 60,763 |
2010 | 115.1 | 3.1 | 52.1 | 87.4 | 6.2 | 17,834 | 67,555 |
Year | HRCT | All Chest CTs | All CTs That Included the Chest Area | p |
---|---|---|---|---|
2020 | 8.7 | 28.6 | 52.3 | <0.001 |
2019 | 2.0 | 9.5 | 10.8 |
Department | CT | US | X-Ray | CT | US | X-Ray | |||
---|---|---|---|---|---|---|---|---|---|
2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 vs 2019 | |||
ER | 444 | 388 | 211 | 185 | 191 | 192 | 1.14 | 1.14 | 0.99 |
ICU | 1246 | 1087 | 554 | 775 | 1341 * | 1614 * | 1.15 | 0.71 | 0.83 * |
Surgery | 175 | 156 | 263 | 197 | 394 | 245 | 1.12 | 1.34 | 1.61 |
Internal Medicine 1 | 349 | 262 | 82 | 113 | 426 | 569 | 1.33 | 0.73 | 0.75 |
Internal Medicine 2 | 447 | 323 | 759 | 1235 | 792 | 849 | 1.38 | 0.61 | 0.93 |
Gastro-enterology | 117 | 121 | 59 | 58 | 178 | 189 | 0.97 | 1.02 | 0.94 |
Neurology | 147 | 127 | 265 | 218 | 222 | 197 | 1.16 | 1.22 | 1.13 |
Stroke | 752 | 543 | 987 | 1071 | 646 | 643 | 1.38 | 0.92 | 1.00 |
Other ** | 159 | 161 | 57 | 46 | 70 | 84 | 0.99 | 1.24 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winder, M.; Owczarek, A.J.; Chudek, J.; Pilch-Kowalczyk, J.; Baron, J. Are We Overdoing It? Changes in Diagnostic Imaging Workload during the Years 2010–2020 including the Impact of the SARS-CoV-2 Pandemic. Healthcare 2021, 9, 1557. https://doi.org/10.3390/healthcare9111557
Winder M, Owczarek AJ, Chudek J, Pilch-Kowalczyk J, Baron J. Are We Overdoing It? Changes in Diagnostic Imaging Workload during the Years 2010–2020 including the Impact of the SARS-CoV-2 Pandemic. Healthcare. 2021; 9(11):1557. https://doi.org/10.3390/healthcare9111557
Chicago/Turabian StyleWinder, Mateusz, Aleksander Jerzy Owczarek, Jerzy Chudek, Joanna Pilch-Kowalczyk, and Jan Baron. 2021. "Are We Overdoing It? Changes in Diagnostic Imaging Workload during the Years 2010–2020 including the Impact of the SARS-CoV-2 Pandemic" Healthcare 9, no. 11: 1557. https://doi.org/10.3390/healthcare9111557
APA StyleWinder, M., Owczarek, A. J., Chudek, J., Pilch-Kowalczyk, J., & Baron, J. (2021). Are We Overdoing It? Changes in Diagnostic Imaging Workload during the Years 2010–2020 including the Impact of the SARS-CoV-2 Pandemic. Healthcare, 9(11), 1557. https://doi.org/10.3390/healthcare9111557