Investigating the Immediate Influence of Moderate Pedal Exercises during an Assembly Work on Performance and Workload in Healthy Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- An expected medium/moderate effect size (for example, f = 0.25);
- A 5% probability of error for 95% power;
- Two groups (i.e., assembly task with cycling and assembly task without cycling);
- A correlation among both repeated measures of 0.5;
- A correction for nonsphericity of 1.
2.2. Experimental Design
2.3. Task
2.4. Experimental Setup and Procedures
2.5. Response Measures
2.5.1. Performance Measures
2.5.2. Subjective Workload Ratings
2.5.3. Subjective Body Discomfort Ratings
2.5.4. Electroencephalography (EEG) Signal Responses
2.5.5. Electrocardiographic (ECG) Response Analysis
2.6. Statistical Analysis
3. Results
3.1. Completion Time and Percentage Error Analysis
3.2. Subjective Workload Analysis
3.3. Body Discomfort Rating Analysis
3.4. ECG Response Analysis
3.5. EEG Power Spectra
4. Discussion
5. Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, J.; Xiao, L.; Stafford, R.S. Adult obesity and office-based quality of care in the United States. Obesity 2009, 17, 1077–1085. [Google Scholar] [CrossRef] [Green Version]
- Owen, N.; Sparling, P.B.; Healy, G.N.; Dunstan, D.W.; Matthews, C.E. Sedentary behavior: Emerging evidence for a new health risk. Mayo Clin. Proc. 2010, 85, 1138–1141. [Google Scholar] [CrossRef] [Green Version]
- Parry, S.; Straker, L. The contribution of office work to sedentary behaviour associated risk. BMC Public Health 2013. [Google Scholar] [CrossRef] [Green Version]
- Burnet, K.; Kelsch, E.; Zieff, G.; Moore, J.; Stoner, L. How fitting is F.I.T.T.?: A perspective on a transition from the sole use of frequency, intensity, time, and type in exercise prescription. Physiol. Behav. 2019, 199, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Alkhajah, T.A.; Reeves, M.M.; Eakin, E.G.; Winkler, E.A.H.; Owen, N.; Healy, G.N. Sit--stand workstations: A pilot intervention to reduce office sitting time. Am. J. Prev. Med. 2012, 43, 298–303. [Google Scholar] [CrossRef]
- Chau, J.Y.; Grunseit, A.; Chey, T.; Stamatakis, E.; Brown, W.J.; Matthews, C.; Bauman, A.E.; van der Ploeg, H. Daily sitting time and All-Cause mortality: A Meta-Analysis. PLoS ONE 2013, 8, e80000. [Google Scholar] [CrossRef] [Green Version]
- Chau, J.Y.; Grunseit, A.; Midthjell, K.; Holmen, J.; Holmen, T.L.; Bauman, A.E.; Van Der Ploeg, H.P. Sedentary behaviour and risk of mortality from all-causes and cardiometabolic diseases in adults: Evidence from the HUNT3 population cohort. Br. J. Sports Med. 2013, 49, 737–742. [Google Scholar] [CrossRef]
- Grunseit, A.C.; Chau, J.Y.-Y.; Van Der Ploeg, H.P.; Bauman, A. “Thinking on your feet”: A qualitative evaluation of sit-stand desks in an Australian workplace. BMC Public Health 2013, 13, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, M.; Lujan, H.L.; Tonson, A.; Wiseman, R.W.; Dicarlo, S.E. Obesity and inactivity, not hyperglycemia, cause exercise intolerance in individuals with type 2 diabetes: Solving the obesity and inactivity versus hyperglycemia causality dilemma. Med. Hypotheses 2019, 123, 110–114. [Google Scholar] [CrossRef]
- Yao, C.J.; Basner, M. Healthy behaviors competing for time: Associations of sleep and exercise in working Americans. Sleep Health 2018, 5, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, L. Correlates of physical activity of students in secondary school physical education: A systematic review of literature. BioMed Res. Int. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Tronarp, R.; Nyberg, A.; Hedlund, M.; Häger, C.; McDonough, S.; Björklund, M. Office-Cycling: A promising way to raise pain thresholds and increase metabolism with minimal compromising of work performance. BioMed Res. Int. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, C.; Blair, S.N.; Katzmarzyk, P. Less Sitting, More physical activity, or higher fitness? In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2015; Volume 90, pp. 1533–1540. [Google Scholar]
- Ramírez-Vélez, R.; Tordecilla-Sanders, A.; Téllez-T, L.A.; Camelo-Prieto, D.; Hernández-Quiñonez, P.A.; Correa-Bautista, J.E.; Garcia-Hermoso, A.; Ramírez-Campillo, R.; Izquierdo, M. Effect of Moderate-Versus High-Intensity interval exercise training on heart rate variability parameters in inactive Latin-American adults: A randomized clinical trial. J. Strength Cond. Res. 2020, 34, 3403–3415. [Google Scholar] [CrossRef]
- Kohl, H.W.; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S. Lancet physical activity series working group. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Dunstan, D.W.; Kingwell, B.A.; Larsen, R.; Healy, G.N.; Cerin, E.; Hamilton, M.T.; Shaw, J.E.; Bertovic, D.A.; Zimmet, P.Z.; Salmon, J.; et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 2012, 35, 976–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adachi, T.; Kamiya, K.; Kono, Y.; Iwatsu, K.; Shimizu, Y.; Honda, I.; Yamada, S. Predicting the future need of walking device or assistance by moderate to vigorous physical activity: A 2-Year prospective study of women aged 75 years and above. BioMed Res. Int. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too much sitting: The population-health science of sedentary behavior. Exerc. Sport Sci. Rev. 2010, 38, 105. [Google Scholar] [CrossRef]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Haskell, W.L.; Lee, I.-M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081. [Google Scholar] [CrossRef] [Green Version]
- Neuhaus, M.; Eakin, E.; Straker, L.; Owen, N.; Dunstan, D.; Reid, N.; Healy, G. Reducing occupational sedentary time: A systematic review and meta-analysis of evidence on activity-permissive workstations. Obes. Rev. 2014, 15, 822–838. [Google Scholar] [CrossRef] [Green Version]
- Tudor-Locke, C.; Schuna, J.M.; Frensham, L.J.; Proença, M. Changing the way we work: Elevating energy expenditure with workstation alternatives. Int. J. Obes. 2014, 38, 755–765. [Google Scholar] [CrossRef]
- Ozemek, C.; Arena, R. Precision in promoting physical activity and exercise with the overarching goal of moving more. Prog. Cardiovasc. Dis. 2019, 62, 3–8. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Wiesner, G.; Eakin, E.G.; Neuhaus, M.; Owen, N.; Lamontagne, A.D.; Moodie, M.; Winkler, E.A.H.; Fjeldsoe, B.S.; Lawler, S.; et al. Reducing office workers’ sitting time: Rationale and study design for the Stand Up Victoria cluster randomized trial. BMC Public Health 2013, 13, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pronk, N.P.; Katz, A.S.; Lowry, M.; Payfer, J.R. Peer reviewed: Reducing occupational sitting time and improving worker health: The take-a-stand project, 2011. Prev. Chronic Dis. 2012, 9, E154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proença, M.; Schuna Jr, J.M.; Barreira, T.V.; Hsia, D.S.; Pitta, F.; Tudor-Locke, C.; Cowley, A.D.; Martin, C.K. Worker acceptability of the Pennington Pedal DeskTM occupational workstation alternative. Work 2018, 60, 499–506. [Google Scholar] [CrossRef]
- Carr, L.J.; Karvinen, K.; Peavler, M.; Smith, R.; Cangelosi, K. Multicomponent intervention to reduce daily sedentary time: A randomised controlled trial. BMJ Open 2013, 3, e003261. [Google Scholar] [CrossRef] [Green Version]
- Carr, L.J.; Walaska, K.A.; Marcus, B.H. Feasibility of a portable pedal exercise machine for reducing sedentary time in the workplace. Br. J. Sports Med. 2011, 46, 430–435. [Google Scholar] [CrossRef]
- Rovniak, L.S.; Denlinger, L.; Duveneck, E.; Sciamanna, C.N.; Kong, L.; Freivalds, A.; Ray, C. Feasibility of using a compact elliptical device to increase energy expenditure during sedentary activities. J. Sci. Med. Sport 2014, 17, 376–380. [Google Scholar] [CrossRef] [Green Version]
- Chau, J.Y.; van der Ploeg, H.P.; van Uffelen, J.G.; Wong, J.; Riphagen, I.; Healy, G.N.; Gilson, N.D.; Dunstan, D.W.; Bauman, A.E.; Owen, N.; et al. Are workplace interventions to reduce sitting effective? A systematic review. Prev. Med. 2010, 51, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Gevins, A.S.; Bressler, S.L.; Cutillo, B.A.; Illes, J.; Miller, J.; Stern, J.; Jex, H.R. Effects of prolonged mental work on functional brain topography. Electroencephalogr. Clin. Neurophysiol. 1990, 76, 339–350. [Google Scholar] [CrossRef]
- Matousek, M.; Petersén, I. A method for assessing alertness fluctuations from EEG spectra. Electroencephalogr. Clin. Neurophysiol. 1983, 55, 108–113. [Google Scholar] [CrossRef]
- Yamada, F. Frontal midline theta rhythm and eyeblinking activity during a VDT task and a video game: Useful tools for psychophysiology in ergonomics. Ergonomics 1998, 41, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.Z.; Alhaag, M.H.; Abidi, M.H. Effects of viewing displays from different distances on human visual system. Appl. Sci. 2017, 7, 1153. [Google Scholar] [CrossRef] [Green Version]
- Fairclough, S.H.; Venables, L.; Tattersall, A. The influence of task demand and learning on the psychophysiological response. Int. J. Psychophysiol. 2005, 56, 171–184. [Google Scholar] [CrossRef]
- Slobounov, S.; Fukada, K.; Simon, R.; Rearick, M.; Ray, W. Neurophysiological and behavioral indices of time pressure effects on visuomotor task performance. Cogn. Brain Res. 2000, 9, 287–298. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, M.; Liu, J.; Zheng, C. Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator. Accid. Anal. Prev. 2012, 45, 83–90. [Google Scholar] [CrossRef]
- Meshkati, N. Heart Rate Variability and Mental Workload Assessment. Adv. Psychol. 1988, 52, 101–115. [Google Scholar] [CrossRef]
- Miyake, S. Multivariate workload evaluation combining physiological and subjective measures. Int. J. Psychophysiol. 2001, 40, 233–238. [Google Scholar] [CrossRef]
- Dekker, J.M.; Schouten, E.G.; Klootwijk, P.; Pool, J.; Swenne, C.A.; Kromhout, D. Heart Rate Variability from Short Electrocardiographic Recordings Predicts Mortality from All Causes in Middle-aged and Elderly Men: The Zutphen Study. Am. J. Epidemiol. 1997, 145, 899–908. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, H.; Venditti, J.F.J.; Manders, E.S.; Evans, J.C.; Larson, M.; Feldman, C.L.; Levy, D. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation 1994, 90, 878–883. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.L.; Chen, J.-W.; Lin, S.-J.; Hsu, N.-W.; Chang, M.-S.; Ting, C.-T. Parasympathetic withdrawal antedates dynamic myocardial ischemia in patients with syndrome X. Int. J. Cardiol. 1998, 66, 253–260. [Google Scholar] [CrossRef]
- Hedman, A.; Hartikainen, J. Physiological Background Underlying Short-Term Heart Rate Variability. Ann. Noninvasive Electrocardiol. 1998, 3, 267–280. [Google Scholar] [CrossRef]
- Borresen, J.; Lambert, M.I. Autonomic Control of Heart Rate during and after Exercise. Sports Med. 2008, 38, 633–646. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef]
- Hallman, D.M.; Sato, T.; Kristiansen, J.; Gupta, N.; Skotte, J.; Holtermann, A. Prolonged Sitting is Associated with Attenuated Heart Rate Variability during Sleep in Blue-Collar Workers. Int. J. Environ. Res. Public Health 2015, 12, 14811–14827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferretti, G.; Iellamo, F.; Pizzinelli, P.; Kenfack, M.A.; Lador, F.; Lucini, D.; Porta, A.; Narkiewicz, K.; Pagani, M. Prolonged head down bed rest-induced inactivity impairs tonic autonomic regulation while sparing oscillatory cardiovascular rhythms in healthy humans. J. Hypertens. 2009, 27, 551–561. [Google Scholar] [CrossRef] [Green Version]
- Hughson, R.L.; Shoemaker, J.K. Autonomic responses to exercise: Deconditioning/inactivity. Auton. Neurosci. 2015, 188, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Thosar, S.S.; Bielko, S.L.; Mather, K.J.; Johnston, J.D.; Wallace, J.P. Effect of Prolonged Sitting and Breaks in Sitting Time on Endothelial Function. Med. Sci. Sports Exerc. 2015, 47, 843–849. [Google Scholar] [CrossRef] [Green Version]
- Rennie, K.L.; Hemingway, H.; Kumari, M.; Brunner, E.; Malik, M.; Marmot, M. Effects of moderate and vigorous physical activity on heart rate variability in a British study of civil servants. Am. J. Epidemiol. 2003, 158, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Soares-Miranda, L.; Sattelmair, J.; Chaves, P.; Duncan, G.; Siscovick, D.S.; Stein, P.K.; Mozaffarian, D. Response to letter regarding article, “physical activity and heart rate variability in older adults: The cardiovascular health study”. Circulation 2015, 131, e349–e350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadan, M.Z. The Effects of Industrial Protective Gloves and Hand Skin Temperatures on Hand Grip Strength and Discomfort Rating. Int. J. Environ. Res. Public Health 2017, 14, 1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruse, N.T.; Hughes, W.E.; Benzo, R.; Carr, L.; Casey, D. Workplace Strategies to Prevent Sitting-induced Endothelial Dysfunction. Med. Sci. Sports Exerc. 2018, 50, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Kowalsky, R.J.; Jakicic, J.M.; Hergenroeder, A.; Rogers, R.J.; Gibbs, B.B. Acute cardiometabolic effects of interrupting sitting with resistance exercise breaks. Appl. Physiol. Nutr. Metab. 2019, 44, 1025–1032. [Google Scholar] [CrossRef]
- Perdomo, S.J.; Balzer, J.R.; Jakicic, J.M.; Kline, C.E.; Gibbs, B.B. Acute effects of aerobic exercise duration on blood pressure, pulse wave velocity and cerebral blood flow velocity in middle-aged adults. Sport Sci. Health 2019, 15, 647–658. [Google Scholar] [CrossRef]
- Tiwari, P.; Gite, L.; Pandey, M.; Shrivastava, A. Pedal power for occupational activities: Effect of power output and pedalling rate on physiological responses. Int. J. Ind. Ergon. 2011, 41, 261–267. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Advances in Psychology; Hancock, P.A., Meshkati, N., Eds.; Human Mental Workload: North-Holland, The Netherlands, 1988; Volume 52, pp. 139–183. [Google Scholar]
- Vyas, R. Ergonomic Assessment of Prevalence of Musculoskeletal Disorders among Indian Agricultural Workers. J. Ergon. 2015, s4, 4. [Google Scholar] [CrossRef]
- McGuigan, F.J.; Andreassi, J.L. Psychophysiology -- Human Behavior and Physiological Response. Am. J. Psychol. 1981, 94, 359. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–Heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Malik, M.; Cripps, T.; Farrell, T.; Camm, A.J. Prognostic value of heart rate variability after myocardial infarction. A comparison of different data-processing methods. Med. Biol. Eng. Comput. 1989, 27, 603–611. [Google Scholar] [CrossRef]
- Sharek, D. A useable, online NASA-TLX tool. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; SAGE Publications: Los Angeles, CA, USA, 2011; Volume 55, pp. 1375–1379. [Google Scholar]
- Zakavi, I.; Karimian, A.; Isazadeh, R.; Bahadoram, M.; Sough, A.J.; Valipour, A.A. Effect of Aquatic Extract of Ferulago angulata Boiss With Aerobic Exercises on Serum Levels of Interleukin-10 and C-Reactive Protein of Obese Males. Crescent J. Med. Biol. Sci. 2018, 5, 320–326. [Google Scholar]
- Najafi, Z.; Kooshyar, H.; Mazloom, R.; Azhari, A. The Effect of Fun Physical Activities on Sarcopenia Progression among Elderly Residents in Nursing Homes: A Randomized Controlled Trial. J. Caring Sci. 2018, 7, 137–142. [Google Scholar] [CrossRef]
- Pedersen, M.M.; Zebis, M.K.; Langberg, H.; Poulsen, O.; Mortensen, O.S.; Jensen, J.N.; Sjøgaard, G.; Bredahl, T.V.G.; Andersen, L.L. Influence of Self-Efficacy on Compliance to Workplace Exercise. Int. J. Behav. Med. 2012, 20, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Funk, R.E.; Taylor, M.L.; Creekmur, C.C.; Ohlinger, C.M.; Cox, R.H.; Berg, W.P. Effect of Walking Speed on Typing Performance Using an Active Workstation. Percept. Mot. Ski. 2012, 115, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Koepp, G.A.; Manohar, C.U.; McCrady-Spitzer, S.K.; Ben-Ner, A.; Hamann, D.J.; Runge, C.F.; Levine, J.A. Treadmill desks: A 1-year prospective trial. Obesity 2013, 21, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.G.; Levine, J.A. Productivity of transcriptionists using a treadmill desk. Work 2011, 40, 473–477. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.B.; de Mello, M.T.; Tufik, S.; Peres, M.F.P. Weight loss and improved mood after aerobic exercise training are linked to lower plasma anandamide in healthy people. Physiol. Behav. 2019, 201, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Straker, L.; Levine, J.; Campbell, A. The Effects of Walking and Cycling Computer Workstations on Keyboard and Mouse Performance. Hum. Factors: J. Hum. Factors Ergon. Soc. 2009, 51, 831–844. [Google Scholar] [CrossRef]
- Beers, E.A.; Roemmich, J.N.; Epstein, L.H.; Horvath, P.J. Increasing passive energy expenditure during clerical work. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 103, 353–360. [Google Scholar] [CrossRef]
- Elmer, S.J.; Martin, J. A cycling workstation to facilitate physical activity in office settings. Appl. Ergon. 2014, 45, 1240–1246. [Google Scholar] [CrossRef]
Measure | Mean | (Std.) | Measure | Mean | (Std.) |
---|---|---|---|---|---|
Age (yrs.) | 30.19 | 2.60 | Elbow Height (cm) | 107.48 | 3.80 |
Weight (kg) | 74.43 | 14.87 | Body Mass Index (kg/m2) | 26.06 | 4.62 |
Stature Height (cm) | 168.84 | 4.72 | Elbow Sitting Height (cm) | 33.55 | 2.20 |
Parameters | Mean (SD) | Statistics P (ƞ2) | |||||
---|---|---|---|---|---|---|---|
Session | Pre | Post | Session (ƞ2) | Assembly Methods (ƞ2) | Interaction (ƞ2) | ||
Assembly Methods | With | Without | With | Without | |||
mRR (ms) | 735.77 (103.1) | 797.14 (114.48) | 680.04 (108.98) | 787.48 (118.85) | 0.002 (0.496) * | 0.019 (0.313) * | 0.063 (0.212) |
STDRR (ms) | 28.76 (14.8) | 27.53 (12.69) | 28.61 (12.21) | 29.41 (15.57) | 0.600 (0.019) | 0.952 (00) | 0.614 (0.015) |
mHR (bpm) | 83.28 (11.08) | 77.00 (12.06) | 90.59 (13.48) | 78.09 (12.38) | 0.002 (0.492) * | 0.021 (0.307) * | 0.025 (0.293) ** |
RMSSD (ms) | 23.56 (16.54) | 24.34 (14.26) | 21.9 (12.52) | 25.79 (15.23) | 0.946 (0.00) | 0.585 (0.020) | 0.377 (0.052) |
NN50 | 6.81 (10.36) | 5.25 (7.77) | 5.00 (6.98) | 5.94 (7.22) | 0.623 (0.017) | 0.901 (0.001) | 0.279 (0.078) |
PNN50 (%) | 7.94 (13.87) | 8.16 (12.91) | 6.58 (10.44) | 9.02 (12.11) | 0.845 (0.003) | 0.734 (0.008) | 0.349 (0.059) |
VLF (ms2) | 109.98 (144.52) | 110.36 (112.54) | 116.08 (176.71) | 54.82 (50.79) | 0.27 (0.08) | 0.476 (0.034) | 0.113 (0.159) |
LF (ms2) | 520.44 (570.34) | 378.5 (291.85) | 619.87 (747.42) | 635.94 (1132.63) | 0.275 (0.079) | 0.721 (0.009) | 0.652 (0.014) |
HF (ms2) | 295.52 (461.16) | 335.29 (446.11) | 211.47 (263.48) | 399.06 (559.65) | 0.849 (0.002) | 0.43 (0.042) | 0.072 (0.2) |
LF/HF (ms2) | 4.53 (3.98) | 3.49 (4.15) | 7.8 (10.4) | 3.64 (4.44) | 0.119 (0.154) | 0.159 (0.128) | 0.304 (0.070) |
Parameters | Mean (SD) | Statistics P (ƞ2) | |||||
---|---|---|---|---|---|---|---|
Session | Pre | Post | 2 | Assembly Methods (ƞ2) | Interaction (ƞ2) | ||
Assembly Methods | With | Without | With | Without | |||
Theta (θ) | 321.41 (216.39) | 298.28 (127.3) | 956.39 (2425.87) | 543.92 (1019.19) | 0.19 (0.112) | 0.539 (0.026) | 0.571 (0.022) |
Alpha (α) | 568.4 (409.76) | 598.8 (523.95) | 891.66 (765.92) | 760.08 (628.17) | 0.039 (0.255) * | 0.689 (0.011) | 0.522 (0.028) |
Beta (β) | 333.94 (147.7) | 310.57 (129.93) | 556.33 (560.06) | 420.07 (274.81) | 0.043 (0.246) * | 0.389 (0.05) | 0.481 (0.034) |
θ/α | 0.77 (0.45) | 0.82 (0.5) | 0.74 (0.68) | 0.84 (0.62) | 0.943 (0.00) | 0.579 (0.021) | 0.752 (0.007) |
β/α | 0.81 (0.42) | 0.88 (0.61) | 0.76 (0.40) | 0.96 (0.92) | 0.874 (0.002) | 0.282 (0.077) | 0.265 (0.082) |
(α + θ)/β | 2.77 (1.50) | 2.86 (1.53) | 2.88 (1.75) | 2.82 (1.4) | 0.898 (0.001) | 0.945 (0.00) | 0.772 (.087) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhaag, M.H.; Ghaleb, A.M.; Mansour, L.; Ramadan, M.Z. Investigating the Immediate Influence of Moderate Pedal Exercises during an Assembly Work on Performance and Workload in Healthy Men. Healthcare 2021, 9, 1644. https://doi.org/10.3390/healthcare9121644
Alhaag MH, Ghaleb AM, Mansour L, Ramadan MZ. Investigating the Immediate Influence of Moderate Pedal Exercises during an Assembly Work on Performance and Workload in Healthy Men. Healthcare. 2021; 9(12):1644. https://doi.org/10.3390/healthcare9121644
Chicago/Turabian StyleAlhaag, Mohammed H., Atef M. Ghaleb, Lamjed Mansour, and Mohamed Z. Ramadan. 2021. "Investigating the Immediate Influence of Moderate Pedal Exercises during an Assembly Work on Performance and Workload in Healthy Men" Healthcare 9, no. 12: 1644. https://doi.org/10.3390/healthcare9121644
APA StyleAlhaag, M. H., Ghaleb, A. M., Mansour, L., & Ramadan, M. Z. (2021). Investigating the Immediate Influence of Moderate Pedal Exercises during an Assembly Work on Performance and Workload in Healthy Men. Healthcare, 9(12), 1644. https://doi.org/10.3390/healthcare9121644