Factors Influencing Self-Reported Medication Use in the Survey of Health Aging and Retirement in Europe (SHARE) Dataset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Extracted Variables
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Börsch-Supan, A.; Brandt, M.; Hunkler, C.; Kneip, T.; Korbmacher, J.; Malter, F.; Schaan, B.; Stuck, S.; Zuber, S. Data resource profile: The survey of health, ageing and retirement in europe (share). Int. J. Epidemiol. 2013, 42, 992–1001. [Google Scholar] [CrossRef]
- van de Straat, V.; Buffel, V.; Bracke, P. Medicalization of sleep problems in an aging population: A longitudinal cross-national study of medication use for sleep problems in older european adults. J. Aging Health 2017, 30, 816–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Midão, L.; Giardini, A.; Menditto, E.; Kardas, P.; Costa, E. Polypharmacy prevalence among older adults based on the survey of health, ageing and retirement in europe. Arch. Gerontol. Geriatr. 2018, 78, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Shuldiner, J.; Tur-Sinai, A.; Bentur, N. Musculoskeletal pain medication use in middle age and older adults in 15 european countries and israel. Pain Manag. Nurs. 2020, 21, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Gellad, W.F.; Grenard, J.L.; Marcum, Z.A. A systematic review of barriers to medication adherence in the elderly: Looking beyond cost and regimen complexity. Am. J. Geriatr. Pharmacother. 2011, 9, 11–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Börsch-Supan, A. Survey of Health, Ageing and Retirement in Europe (Share) Wave 7, Release version 7.1.1. SHARE-ERIC. Data Set; Available online: http://www.share-project.org/data-documentation/waves-overview/wave-7.html (accessed on 25 November 2021).
- Bergmann, M.; Scherpenzeel, A.; Börsch-Supan, A. Share Wave 7 Methodology: Panel Innovations and Life Histories; Munich Center for the Economics of Aging (MEA): Munich, Germany, 2019. [Google Scholar]
- Hafferty, J.D.; Campbell, A.I.; Navrady, L.B.; Adams, M.J.; MacIntyre, D.; Lawrie, S.M.; Nicodemus, K.; Porteous, D.J.; McIntosh, A.M. Self-reported medication use validated through record linkage to national prescribing data. J. Clin. Epidemiol. 2018, 94, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Klungel, O.H.; de Boer, A.; Paes, A.H.; Herings, R.M.; Seidell, J.C.; Bakker, A. Influence of question structure on the recall of self-reported drug use. J. Clin. Epidemiol. 2000, 53, 273–277. [Google Scholar] [CrossRef]
- Nielsen, M.W.; Søndergaard, B.; Kjøller, M.; Hansen, E.H. Agreement between self-reported data on medicine use and prescription records vary according to method of analysis and therapeutic group. J. Clin. Epidemiol. 2008, 61, 919–924. [Google Scholar] [CrossRef]
- Cotterchio, M.; Kreiger, N.; Darlington, G.; Steingart, A. Comparison of self-reported and physician-reported antidepressant medication use. Ann. Epidemiol. 1999, 9, 283–289. [Google Scholar] [CrossRef]
- Richardson, K.; Kenny, R.A.; Peklar, J.; Bennett, K. Agreement between patient interview data on prescription medication use and pharmacy records in those aged older than 50 years varied by therapeutic group and reporting of indicated health conditions. J. Clin. Epidemiol. 2013, 66, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Stirratt, M.J.; Dunbar-Jacob, J.; Crane, H.M.; Simoni, J.M.; Czajkowski, S.; Hilliard, M.E.; Aikens, J.E.; Hunter, C.M.; Velligan, D.I.; Huntley, K.; et al. Self-report measures of medication adherence behavior: Recommendations on optimal use. Transl. Behav. Med. 2015, 5, 470–482. [Google Scholar] [CrossRef] [Green Version]
- Yap, A.F.; Thirumoorthy, T.; Kwan, Y.H. Systematic review of the barriers affecting medication adherence in older adults. Geriatr. Gerontol. Int. 2016, 16, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, M.J.; Hinkin, C.H.; Barclay, T.R.; Levine, A.J.; Marion, S.; Castellon, S.A.; Longshore, D.; Newton, T.; Durvasula, R.S.; Lam, M.N.; et al. Discrepancies between self-report and objective measures for stimulant drug use in hiv: Cognitive, medication adherence and psychological correlates. Addict. Behav. 2007, 32, 2727–2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insel, K.; Morrow, D.; Brewer, B.; Figueredo, A. Executive function, working memory, and medication adherence among older adults. J. Gerontol. Ser. B 2006, 61, P102–P107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monster, T.B.; Janssen, W.M.; de Jong, P.E.; de Jong-van den Berg, L.T. Pharmacy data in epidemiological studies: An easy to obtain and reliable tool. Pharmacoepidemiol. Drug Saf. 2002, 11, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Klungel, O.H.; de Boer, A.; Paes, A.H.; Herings, R.M.; Seidell, J.C.; Bakker, A. Agreement between self-reported antihypertensive drug use and pharmacy records in a population-based study in the netherlands. Pharm. World Sci. 1999, 21, 217–220. [Google Scholar] [CrossRef]
- Lam, W.Y.; Fresco, P. Medication adherence measures: An overview. BioMed Res. Int. 2015, 2015, 217047. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.M.; La Caze, A.; Cottrell, N. What are validated self-report adherence scales really measuring? A systematic review. Br. J. Clin. Pharmacol. 2014, 77, 427–445. [Google Scholar] [CrossRef]
- Van den Brandt, P.A.; Petri, H.; Dorant, E.; Goldbohm, R.A.; Van de Crommert, S. Comparison of questionnaire information and pharmacy data on drug use. Pharm. Weekbl. Sci. Ed. 1991, 13, 91–96. [Google Scholar] [CrossRef]
- Rauma, P.H.; Koivumaa-Honkanen, H.; Kröger, H.; Tuppurainen, M.T.; Kauhanen, J.; Honkanen, R.J. The relationship between self-reported and registry-based data on use of psychoactive medications in postmenopausal women. BMC Psychiatry 2013, 13, 180. [Google Scholar] [CrossRef] [Green Version]
- Duncan, N.A.; Kronenberger, W.G.; Roberson, C.P.; Janson, I.A.; Shapiro, A.D. Adherence is a human behaviour, assessing it requires multimethod evaluation with validated measures: Comment on guedes VG et al (2019). Haemophilia 2020, 26, 934–936. [Google Scholar] [CrossRef] [PubMed]
- Guedes, V.G.; Corrente, J.E.; Farrugia, A.; Thomas, S.; Wachholz, P.A.; de Oliveira Vidal, E.I. Comparing objective and self-reported measures of adherence in haemophilia. Haemophilia 2019, 25, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Prell, T.; Grosskreutz, J.; Mendorf, S.; Franke, G.H.; Witte, O.W.; Kunze, A. Clusters of non-adherence to medication in neurological patients. Res. Soc. Adm. Pharm. 2019, 15, 1419–1424. [Google Scholar] [CrossRef]
- Haapea, M.; Miettunen, J.; Lindeman, S.; Joukamaa, M.; Koponen, H. Agreement between self-reported and pharmacy data on medication use in the northern finland 1966 birth cohort. Int. J. Methods Psychiatr. Res. 2010, 19, 88–96. [Google Scholar] [CrossRef]
- Goldstein, B. Cognitive Psychology: Connecting Mind, Research, and Everyday Experience, 3rd ed.; Wadsworth: Belmont, CA, USA, 2011. [Google Scholar]
- Harris, S.J.; Dowson, J.H. Recall of a 10-word list in the assessment of dementia in the elderly. Br. J. Psychiatry J. Ment. Sci. 1982, 141, 524–527. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, S.; Huppert, F.; McWilliams, B.; Melzer, D. Health, Wealth and Lifestyles of the Older Population in England: The 2002 English Longitudinal Study of Ageing; IFS: Chicago, IL, USA, 2003. [Google Scholar]
- Prince, M.J.; Reischies, F.; Beekman, A.T.F.; Fuhrer, R.; Jonker, C.; Kivela, S.L.; Lawlor, B.A.; Lobo, A.; Magnusson, H.; Fichter, M.; et al. Development of the euro–d scale—A european union initiative to compare symptoms of depression in 14 european centres. Br. J. Psychiatry 1999, 174, 330–338. [Google Scholar] [CrossRef]
- Larraga, L.; Saz, P.; Dewey, M.E.; Marcos, G.; Lobo, A. Validation of the spanish version of the euro-d scale: An instrument for detecting depression in older people. Int. J. Geriatr. Psychiatry 2006, 21, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Guerra, M.; Ferri, C.; Llibre, J.; Prina, A.M.; Prince, M. Psychometric properties of euro-d, a geriatric depression scale: A cross-cultural validation study. BMC Psychiatry 2015, 15, 12. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Gallucci, M. Jamm: Jamovi Advanced Mediation Models. [Jamovi Module]. Available online: https://jamovi-amm.github.io/ (accessed on 16 September 2021).
- Rucker, D.D.; Preacher, K.J.; Tormala, Z.L.; Petty, R.E. Mediation analysis in social psychology: Current practices and new recommendations. Soc. Pers. Psychol. Compass 2011, 5, 359–371. [Google Scholar] [CrossRef]
- Zhao, X.; Lynch, J.G., Jr.; Chen, Q. Reconsidering baron and kenny: Myths and truths about mediation analysis. J. Consum. Res. 2010, 37, 197–206. [Google Scholar] [CrossRef]
- Hoel, R.W.; Giddings Connolly, R.M.; Takahashi, P.Y. Polypharmacy management in older patients. Mayo Clin. Proc. 2021, 96, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Ozkok, S.; Aydin, C.O.; Sacar, D.E.; Catikkas, N.M.; Erdogan, T.; Kilic, C.; Karan, M.A.; Bahat, G. Associations between polypharmacy and physical performance measures in older adults. Arch. Gerontol. Geriatr. 2021, 98, 104553. [Google Scholar] [CrossRef]
- Schüz, B.; Wolff, J.K.; Warner, L.M.; Ziegelmann, J.P.; Wurm, S. Multiple illness perceptions in older adults: Effects on physical functioning and medication adherence. Psychol. Health 2014, 29, 442–457. [Google Scholar] [CrossRef]
- Chandrasekhar, D.; Samjas, M.; Pattani, D. Evaluation of potentially inappropriate medications among hospitalized geriatric patients in tertiary care referral hospital using stopp/start criteria. Clin. Epidemiol. Glob. Health 2019, 7, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Gangannagaripalli, J.; Porter, I.; Davey, A.; Cabello, I.R.; Greenhalgh, J.; Anderson, R.; Briscoe, S.; Hughes, C.; Payne, R.; Cockcroft, E.; et al. Stopp/start interventions to improve medicines management for people aged 65 years and over: A realist synthesis. Health Serv. Deliv. Res 2021, 9, 23. [Google Scholar] [CrossRef]
- Alshammari, H.; Al-Saeed, E.; Ahmed, Z.; Aslanpour, Z. Reviewing potentially inappropriate medication in hospitalized patients over 65 using explicit criteria: A systematic literature review. Drug Healthc. Patient Saf. 2021, 13, 183–210. [Google Scholar] [CrossRef]
- Mukhtar, O.; Weinman, J.; Jackson, S.H. Intentional non-adherence to medications by older adults. Drugs Aging 2014, 31, 149–157. [Google Scholar] [CrossRef]
- Börsch-Supan, A.J.; Bristle, K.; Andersen-Ranberg, A.; Brugiavini, F.; Jusot, H.L.; Weber, G. Health and Socio-Economic Status Over the Life Course. First Results from Share Waves 6 and 7; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Holt, E.W.; Rung, A.L.; Leon, K.A.; Firestein, C.; Krousel-Wood, M.A. Medication adherence in older adults: A qualitative study. Educ. Gerontol. 2014, 40, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Tsai, K.T.; Chen, J.H.; Wen, C.J.; Kuo, H.K.; Lu, I.S.; Chiu, L.S.; Wu, S.C.; Chan, D.C. Medication adherence among geriatric outpatients prescribed multiple medications. Am. J. Geriatr. Pharmacother. 2012, 10, 61–68. [Google Scholar] [CrossRef] [PubMed]
Variable | M | Mdn | SD | IQR | |
---|---|---|---|---|---|
Age (years) | 68.5 | 68 | 10.0 | 61–76 | |
Depression (EURO-D) | 2.4 | 2 | 2.3 | 1–4 | |
Memory (delayed recall for ten words list learning) | 3.7 | 4 | 2.2 | 2–5 | |
n | % | ||||
Sex | Male | 33,150 | 42.9 | ||
Female | 44,111 | 57.1 | |||
Number of chronic diseases | Refusal | 39 | 0.1 | ||
Don’t know | 118 | 0.2 | |||
0 | 16,061 | 20.9 | |||
1 | 21,187 | 27.6 | |||
2 | 16,463 | 21.4 | |||
3 | 11,096 | 14.4 | |||
4 | 6233 | 8.1 | |||
5 | 3123 | 4.1 | |||
6 | 1455 | 1.9 | |||
7 | 627 | 0.8 | |||
8 | 295 | 0.4 | |||
9 | 116 | 0.2 | |||
10 | 42 | 0.1 | |||
11 | 18 | 0.0 | |||
12 | 7 | 0.0 | |||
13 | 2 | 0.0 | |||
Limitations with instrumental activities of daily living | Refusal | 35 | 0.0 | ||
Don’t know | 107 | 0.1 | |||
0 | 61,575 | 80.6 | |||
1 | 5919 | 7.8 | |||
2 | 2367 | 3.1 | |||
3 | 1592 | 2.1 | |||
4 | 1158 | 1.5 | |||
5 | 827 | 1.1 | |||
6 | 679 | 0.9 | |||
7 | 633 | 0.8 | |||
8 | 487 | 0.6 | |||
9 | 980 | 1.3 | |||
Taking at least five different drugs on a typical day | Refusal | 20 | 0.0 | ||
Don’t know | 135 | 0.2 | |||
Yes | 18,320 | 30.5 | |||
No | 41,615 | 69.3 |
Ever Diagnosed/Currently Have | Drugs for | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
High Blood Cholesterol | High Blood Pressure | Coronary Diseases | Other Heart Diseases | Diabetes | Chronic Bronchitis | Anxiety or Depression | Joint Pain | Stomach Burns | Other Pain | Sleep Problems | Osteoporosis | Suppressing Inflammation | None | |
High blood cholesterol | 0.704 | 0.243 | 0.145 | 0.121 | 0.170 | 0.052 | 0.074 | 0.094 | 0.119 | 0.067 | 0.095 | 0.073 | 0.037 | −0.229 |
High blood pressure or hypertension | 0.255 | 0.825 | 0.153 | 0.163 | 0.190 | 0.053 | 0.056 | 0.128 | 0.088 | 0.084 | 0.083 | 0.049 | 0.041 | −0.421 |
Heart attack | 0.182 | 0.174 | 0.437 | 0.513 | 0.107 | 0.076 | 0.052 | 0.098 | 0.087 | 0.073 | 0.096 | 0.042 | 0.053 | −0.174 |
Diabetes or high blood sugar | 0.221 | 0.213 | 0.128 | 0.101 | 0.882 | 0.052 | 0.057 | 0.088 | 0.072 | 0.056 | 0.073 | 0.022 | 0.035 | −0.189 |
Chronic lung disease | 0.052 | 0.063 | 0.097 | 0.100 | 0.052 | 0.524 | 0.070 | 0.103 | 0.102 | 0.080 | 0.087 | 0.074 | 0.096 | −0.082 |
Other affective/ emotional disorders | 0.057 | 0.045 | 0.062 | 0.066 | 0.041 | 0.078 | 0.537 | 0.119 | 0.122 | 0.133 | 0.257 | 0.081 | 0.074 | −0.098 |
Rheumatoid arthritis | 0.069 | 0.107 | 0.073 | 0.093 | 0.069 | 0.084 | 0.093 | 0.359 | 0.113 | 0.171 | 0.114 | 0.155 | 0.134 | −0.123 |
Osteoarthritis/other rheumatism | 0.081 | 0.088 | 0.063 | 0.072 | 0.041 | 0.076 | 0.088 | 0.338 | 0.141 | 0.173 | 0.123 | 0.224 | 0.114 | −0.137 |
Stomach or duodenal ulcer, peptic ulcer | 0.059 | 0.057 | 0.072 | 0.074 | 0.040 | 0.090 | 0.089 | 0.111 | 0.330 | 0.116 | 0.098 | 0.084 | 0.078 | −0.064 |
Alzheimer’s disease, dementia, senility | 0.037 | 0.036 | 0.088 | 0.055 | 0.051 | 0.047 | 0.146 | 0.060 | 0.043 | 0.069 | 0.114 | 0.049 | 0.045 | −0.057 |
Stroke | 0.109 | 0.128 | 0.313 | 0.150 | 0.084 | 0.066 | 0.081 | 0.070 | 0.068 | 0.077 | 0.098 | 0.050 | 0.051 | −0.087 |
Predictor. | p | Odds Ratio | 95% CI Lower | 95% CI Upper | Model Fit Measures | Overall Model Test | |||
---|---|---|---|---|---|---|---|---|---|
R²N | AIC | χ² | df | p | |||||
Model 1 | |||||||||
Intercept | <0.001 | 4.162 | 3.673 | 4.715 | 0.0570 | 14330 | 477 | 3 | < 0.001 |
Depression | <0.001 | 0.956 | 0.939 | 0.973 | |||||
Memory | 0.007 | 0.974 | 0.956 | 0.993 | |||||
Polypharmacy No–Yes | <0.001 | 0.372 | 0.338 | 0.409 | |||||
Model 2 | |||||||||
Intercept | <0.001 | 0.0413 | 0.0206 | 0.0825 | 0.7221 | 6379 | 8439 | 8 | <0.001 |
Depression | 0.333 | 0.9846 | 0.9540 | 1.0160 | |||||
Memory | 0.395 | 1.0146 | 0.9813 | 1.0491 | |||||
Polypharmacy No–Yes | <0.001 | 0.3342 | 0.2849 | 0.3920 | |||||
Age | <0.001 | 1.0403 | 1.0316 | 1.0491 | |||||
Number of chronic Illnesses | <0.001 | 0.8597 | 0.8137 | 0.9084 | |||||
Instrumental activities of daily life (IADL) | 0.022 | 0.9474 | 0.9047 | 0.9922 | |||||
Sex: Female–Male | 0.031 | 0.8637 | 0.7559 | 0.9868 | |||||
Hypertension: Selected–Not selected | <0.001 | 156.4674 | 130.6701 | 187.3576 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schönenberg, A.; Prell, T. Factors Influencing Self-Reported Medication Use in the Survey of Health Aging and Retirement in Europe (SHARE) Dataset. Healthcare 2021, 9, 1752. https://doi.org/10.3390/healthcare9121752
Schönenberg A, Prell T. Factors Influencing Self-Reported Medication Use in the Survey of Health Aging and Retirement in Europe (SHARE) Dataset. Healthcare. 2021; 9(12):1752. https://doi.org/10.3390/healthcare9121752
Chicago/Turabian StyleSchönenberg, Aline, and Tino Prell. 2021. "Factors Influencing Self-Reported Medication Use in the Survey of Health Aging and Retirement in Europe (SHARE) Dataset" Healthcare 9, no. 12: 1752. https://doi.org/10.3390/healthcare9121752
APA StyleSchönenberg, A., & Prell, T. (2021). Factors Influencing Self-Reported Medication Use in the Survey of Health Aging and Retirement in Europe (SHARE) Dataset. Healthcare, 9(12), 1752. https://doi.org/10.3390/healthcare9121752