Stereoscopic Depth Perception and Visuospatial Dysfunction in Alzheimer’s Disease
Abstract
:1. Introduction
1.1. Preclinical AD
1.2. Visuospatial Dysfunction as a Biomarker for AD
1.3. Stereopsis in AD
1.4. The Present Study
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Beach, T.G.; Monsell, S.E.; Phillips, L.E.; Kukull, W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J. Neuropathol. Exp. Neurol. 2012, 71, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Klatka, L.A.; Schiffer, R.B.; Powers, J.M.; Kazee, A.M. Incorrect diagnosis of Alzheimer’s disease, a clinicopathological study. Arch. Neurol. 1996, 53, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, M.N.; Lue, L.F.; Fayard, D.; Shi, J. Increasing precision of clinical diagnosis of Alzheimer’s disease Using a combined algorithm incorporating clinical and novel biomarker data. Neurol. Ther. 2017, 6 (Suppl. 1), 83–95. [Google Scholar] [CrossRef] [PubMed]
- Varma, A.R.; Snowden, J.S.; Lloyd, J.J.; Talbot, P.R.; Mann, D.M.; Neary, D. Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 1999, 66, 184–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrenberg, A.J.; Suemoto, C.K.; França Resende, E.P.; Petersen, C.; Leite, R.E.P.; Rodriguez, R.D.; Ferretti-Rebustini, R.E.L.; You, M.; Oh, J.; Nitrini, R.; et al. Neuropathologic correlates of psychiatric symptoms in Alzheimer’s disease. J. Alzheimers Dis. 2018, 66, 115–126. [Google Scholar] [CrossRef]
- Counts, S.E.; Ikonomovic, M.D.; Mercado, N.; Vega, I.E.; Mufson, E.J. Biomarkers for the early detection and progression to Alzheimer’s disease. Neurotherapeutics 2017, 14, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Khoury, R.; Ghossoub, E. Diagnostic biomarkers of Alzheimer’s disease: A state-of-the-art review. Biomark. Neuropsychiatry 2019, 1, 1–6. [Google Scholar] [CrossRef]
- Molinuevo, J.L.; Ayton, S.; Batrla, R.; Bednar, M.M.; Bittner, T.; Cummings, J.; Fagan, A.M.; Hampel, H.; Mielke, M.M.; Mikulskis, A.; et al. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018, 136, 821–853. [Google Scholar] [CrossRef] [Green Version]
- Gordon, B.A.; Blazey, T.M.; Su, Y.; Hari-Raj, A.; Dincer, A.; Flores, S.; Christensen, J.; McDade, E.; Wang, G.; Xiong, C.; et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: A longitudinal study. Lancet Neurol. 2018, 17, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Kawas, C.H.; Corrada, M.M.; Brookmeyer, R.; Morrison, A.; Resnick, S.M.; Zonderman, A.B.; Arenberg, D. Visual memory predicts Alzheimer’s disease more than a decade before diagnosis. Neurology 2003, 60, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C.; Au, R.; Cabral, H.J.; Kowall, N.W.; Seshadri, S.; Kubilus, C.A.; Drake, J.; Wolf, P.A. Visual association pathology in preclinical Alzheimer disease. J. Neuropathol. Exp. Neurol. 2006, 65, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Rajan, K.B.; Wilson, R.S.; Weuve, J.; Barnes, L.L.; Evans, D.A. Cognitive impairment 18 years before clinical diagnosis of Alzheimer disease dementia. Neurology 2015, 85, 898–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieman, E.M.; Quiroz, Y.T.; Fleisher, A.S.; Chen, K.; Velez-Pardo, C.; Jienez-Del-Rio, M.; Fagan, A.M.; Shah, A.R.; Alvarez, S.; Arbelaez, A.; et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: A case-control study. Lancet Neurol. 2012, 11, 1048–1056. [Google Scholar] [CrossRef] [Green Version]
- Mehta, D.; Jackson, R.; Paul, G.; Shi, J.; Sabbagh, M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010–2015. Expert Opin. Investig. Drugs 2017, 26, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Yiannopoulou, K.G.; Anastasiou, A.I.; Zachariou, V.; Pelidou, S.H. Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. Biomedicines 2019, 7, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasa, M.; Gelpi, E.; Antonell, A.; Rey, M.J.; Sánchez-Valle, R.; Molinuevo, J.L.; Lladó, A. Clinical features and APOE genotype of pathologically proven early-onset Alzheimer’s disease. Neurology 2011, 76, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Bertoux, M.; Lebouvier, T.; Sarazin, M.; Le Ber, I. Does amnesia specifically predict Alzheimer’s pathology? A neuropathological study. Neurobiol. Aging 2020, 95, 123–130. [Google Scholar] [CrossRef]
- Castiglioni, S.; Pelati, O.; Zuffi, M.; Somalvico, F.; Marino, L.; Tentorio, T.; Franceschi, M. The frontal assessment battery does not differentiate frontotemporal dementia from Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2006, 22, 125–131. [Google Scholar] [CrossRef]
- Coughlan, G.; Laczó, J.; Hort, J.; Minihane, A.M.; Hornberger, M. Spatial navigation deficits—Overlooked cognitive marker for preclinical Alzheimer disease? Nat. Rev. Neurol. 2018, 14, 496–506. [Google Scholar] [CrossRef]
- Salimi, S.; Irish, M.; Foxe, D.; Hodges, J.R.; Piguet, O.; Burrell, J.R. Can visuospatial measures improve the diagnosis of Alzheimer’s disease? Alzheimers Dement. 2018, 10, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Salimi, S.; Irish, M.; Foxe, D.; Hodges, J.R.; Piguet, O.; Burrell, J.R. Visuospatial dysfunction in Alzheimer’s disease and behavioural variant frontotemporal dementia. J. Neurol. Sci. 2019, 402, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.Y.L.; Lowe, J.; Ardiles, A.; Lim, J.; Grey, A.C.; Robertson, K.; Danesh-Meyer, H.; Palacios, A.G.; Acosta, M.L. Alzheimer’s disease in the human eye. Clinical tests that identify ocular and visual information processing deficit as biomarkers. Alzheimers Dement. 2014, 10, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Javaid, F.Z.; Brenton, J.; Guo, L.; Cordeiro, M.F. Visual and ocular manifestations of Alzheimer’s Disease and their use as biomarkers for diagnosis and progression. Front. Neurol. 2016, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Kirby, E.; Bandelow, S.; Hogervorst, E. Visual impairment in Alzheimer’s disease: A critical review. J. Alzheimers Dis. 2010, 21, 15–34. [Google Scholar] [CrossRef]
- Lim, J.K.H.; Li, Q.-X.; He, Z.; Vingrys, A.J.; Wong, V.H.Y.; Currier, N.; Mullen, J.; Bui, B.V.; Nguyen, C.T.O. The eye as a biomarker for Alzheimer’s disease. Front. Neurosci. 2016, 10, 536. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, M.; Anderson, S.W.; Dawson, J.; Nawrot, M. Vision and cognition in Alzheimer’s disease. Neuropsychologia 2000, 38, 1157–1169. [Google Scholar] [CrossRef]
- Farley, K.L.; Higginson, C.I.; Sherman, M.F.; MacDougall, E. The ecological validity of clinical tests of visuospatial function in community-dwelling older adults. Arch. Clin. Neuropsychol. 2011, 26, 728–738. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.B.; Atri, A. Dementia screening and mental status examination in clinical practice. In Dementia: Comprehensive Principles and Practice; Dickerson, B., Atri, A., Eds.; Oxford University Press: New York, NY, USA, 2014; pp. 461–486. [Google Scholar]
- Cushman, L.A.; Stein, K.; Duffy, C.J. Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology 2008, 71, 888–895. [Google Scholar] [CrossRef] [Green Version]
- Kiyosawa, M.; Bosley, T.M.; Chawluk, J.; Jamieson, D.; Schatz, N.J.; Savino, P.J.; Sergott, R.C.; Reivich, M.; Alavi, A. Alzheimer’s disease with prominent visual symptoms. Clinical and metabolic evaluation. Ophthalmology 1989, 96, 1077–1086. [Google Scholar] [CrossRef]
- Mapstone, M.; Steffenella, T.M.; Duffy, C.J. A visuospatial variant of mild cognitive impairment: Getting lost between aging and AD. Neurology 2003, 60, 802–808. [Google Scholar] [CrossRef] [PubMed]
- McShane, R.; Gedling, K.; Keene, J.; Fairburn, C.; Jacoby, R.; Hope, T. Getting lost in dementia: A longitudinal study of a behavioral symptom. Int. Psychogeriatr. 1998, 10, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.-C.; Lee, C.-C. The Incidence and recurrence of getting lost in community-dwelling people with Alzheimer’s disease: A two and a half-year followup. PLoS ONE 2016, 11, e0155480. [Google Scholar] [CrossRef] [PubMed]
- Rowe, M.A.; Vandeveer, S.S.; Greenblum, C.A.; List, C.N.; Fernandez, R.M.; Mixson, N.E.; Ahn, H.C. Persons with dementia missing in the community: Is it wandering or something unique? BMC Geriatr. 2011, 11, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yatawara, C.; Lee, D.R.; Lim, L.; Zhou, J.; Kandiah, N. Getting lost behavior in patients with mild Alzheimer’s disease: A cognitive and anatomical model. Front. Med. 2017, 4, 201. [Google Scholar] [CrossRef] [Green Version]
- Mendez, M.F.; Cherrier, M.M.; Meadows, R.S. Depth perception in Alzheimer’s disease. Percept. Mot. Skills 1996, 83, 987–995. [Google Scholar] [CrossRef]
- Thiyagesh, S.N.; Farrow, T.F.D.; Parks, R.W.; Accosta-Mesa, H.; Young, C.; Wilkinson, I.D.; Hunter, M.D.; Woodruff, P.W.R. The neural basis of visuospatial perception in Alzheimer’s disease and healthy elderly comparison subjects: An fMRI study. Psychiatry Res. 2009, 172, 109–116. [Google Scholar] [CrossRef]
- Yamasaki, T.; Horie, S.; Muranaka, H.; Kaseda, Y.; Mimori, Y.; Tobimatsu, S. Relevance of in vivo neurophysiological biomarkers for mild cognitive impairment and Alzheimer’s Disease. J. Alzheimers Dis. 2012, 31 (Suppl. 3), S137–S154. [Google Scholar] [CrossRef]
- Goodale, M.A.; Milner, A.D. Separate visual pathways for perception and action. Trends Neurosci. 1992, 15, 20–25. [Google Scholar] [CrossRef]
- Milner, A.D.; Goodale, M.A. Two visual systems re-viewed: Consciousness and perception: Insights and hindsights—A festschrift in honour of Larry Weiskrantz. Neuropsychologia 2008, 46, 774–785. [Google Scholar] [CrossRef]
- Morrison, J.H.; Hof, P.R. Life and death of neurons in the aging brain. Science 1997, 278, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruner, E.; Jacobs, H.I. Alzheimer’s disease: The downside of a highly evolved parietal lobe? J. Alzheimers Dis. 2013, 35, 227–240. [Google Scholar] [CrossRef]
- Jacobs, H.I.; Van Boxtel, M.P.; Uylings, H.B.; Gronenschild, E.H.; Verhey, F.R.; Jolles, J. Atrophy of the parietal lobe in preclinical dementia. Brain Cogn. 2011, 75, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat. Rev. Neurol. 2018, 14, 168–181. [Google Scholar] [CrossRef]
- De la Monte, S.M.; Tong, M. Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem. Pharmacol. 2014, 88, 548–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tramutola, A.; Lanzillotta, C.; Di Domenico, F.; Head, E.; Butterfield, D.; Perluigi, M.; Barone, E. Brain insulin resistance triggers early onset Alzheimer disease in Down syndrome. Neurobiol. Dis. 2020, 104772. [Google Scholar] [CrossRef]
- Jacobs, H.I.; Van Boxtel, M.P.; Jolles, J.; Verhey, F.R.; Uylings, H.B. Parietal cortex matters in Alzheimer’s disease: An overview of structural, functional and metabolic findings. Neurosci. Biobehav. Rev. 2012, 36, 297–309. [Google Scholar] [CrossRef]
- Berron, D.; van Westen, D.; Ossenkoppele, R.; Strandberg, O.; Hansson, O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 2020, 143, 1233–1248. [Google Scholar] [CrossRef]
- Hutchinson, A.D.; Mathias, J.L. Neuropsychological deficits in frontotemporal dementia and Alzheimer’s disease: A meta-analytic review. J. Neurol. Neurosurg. Psychiatry 2007, 78, 917–928. [Google Scholar] [CrossRef] [Green Version]
- Mansoor, Y.; Jastrzab, L.; Dutt, S.; Miller, B.L.; Seeley, W.W.; Kramer, J.H. Memory profiles in pathology or biomarker confirmed Alzheimer disease and frontotemporal dementia. Alzheimer Dis. Assoc. Disord. 2015, 29, 135–140. [Google Scholar] [CrossRef]
- Yew, B.; Alladi, S.; Shailaja, M.; Hodges, J.R.; Hornberger, M. Lost and forgotten? Orientation versus memory in Alzheimer’s disease and frontotemporal dementia. J. Alzheimers Dis. 2013, 33, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, K.; Carrière, I.; Howett, D.; Su, L.; Hornberger, M.; O’Brien, J.T.; Ritchie, C.W.; Chan, D. Allocentric and egocentric spatial processing in middle-aged adults at high risk of late-onset Alzheimer’s disease: The PREVENT dementia study. J. Alzheimers Dis. 2018, 65, 885–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, R.S.; Gillam, B.J.; Vecellio, E. Binocular depth discrimination and estimation beyond interaction space. J. Vis. 2009, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- McKee, S.P.; Taylor, D.G. The precision of binocular and monocular depth judgments in natural settings. J. Vis. 2010, 10, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassi, C.J.; Solomon, K.; Young, D. Vision in aging and dementia. Optom. Vis. Sci. 1993, 70, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Cronin-Golomb, A.; Corkin, S.; Growdon, J.H. Visual dysfunction predicts cognitive deficits in Alzheimer’s disease. Optom. Vis. Sci. 1995, 72, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.N.; Ko, D.; Suh, Y.W.; Park, K.W. Cognitive functions and stereopsis in patients with Parkinson’s disease and Alzheimer’s disease using 3-dimensional television: A case controlled trial. PLoS ONE 2015, 10, e0123229. [Google Scholar] [CrossRef]
- Mendola, J.D.; Cronin-Golomb, A.; Corkin, S.; Growdon, J.H. Prevalence of visual deficits in Alzheimer’s disease. Optom. Vis. Sci. 1995, 72, 155–167. [Google Scholar] [CrossRef]
- Brown, B.; Yap, M.K.H.; Fan, W.C.S. Decrease in stereoacuity in the seventh decade of life. Ophthalmic Physiol. Opt. 1993, 13, 138–142. [Google Scholar] [CrossRef]
- Haegerstrom-Portnoy, G.; Schneck, M.E.; Brabyn, J.A. Seeing into old age: Vision function beyond acuity. Optom. Vis. Sci. 1999, 76, 141–158. [Google Scholar] [CrossRef]
- Laframboise, S.; De Guise, D.; Faubert, J. Effect of aging on stereoscopic interocular correlation. Optom. Vis. Sci. 2006, 83, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Wright, L.A.; Wormald, R.P.L. Stereopsis and ageing. Eye 1992, 6, 473–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, J.F.; Crabtree, C.E.; Herrmann, M.; Thompson, S.R.; Shular, C.F.; Clayton, A.M. Aging and the perception of 3-D shape from dynamic patterns of binocular disparity. Percept. Psychophys. 2006, 68, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, J.F.; Dawson, T.E.; Butler, A.K. The effects of age upon the perception of depth and 3-D shape from differential motion and binocular disparity. Perception 2000, 29, 1335–1359. [Google Scholar] [CrossRef]
- Norman, J.F.; Norman, H.F.; Craft, A.E.; Walton, C.L.; Bartholomew, A.N.; Burton, C.L.; Wiesemann, E.Y.; Crabtree, C.E. Stereopsis and aging. Vis. Res. 2008, 48, 2456–2465. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, L.M.; Allison, R.S. Coarse-fine dichotomies in human stereopsis. Vis. Res. 2009, 49, 2653–2665. [Google Scholar] [CrossRef] [Green Version]
- Cronin-Golomb, A. Heterogeneity of visual presentation in Alzheimer’s disease. In Vision in Alzheimer’s Disease; Cronin-Golomb, A., Hof, P.R., Eds.; Karger: Basel, Switzerland, 2004; pp. 96–125. [Google Scholar]
- Landers, D.D.; Cormack, L.K. Asymmetries and errors in perception of depth from disparity suggest a multicomponent model of disparity processing. Percept. Psychophys. 1997, 59, 219–231. [Google Scholar] [CrossRef]
- Fendick, M.; Westheimer, G. Effects of practice and the separation of test targets on foveal and peripheral stereoacuity. Vis. Res. 1983, 23, 145–150. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Petersen, R.C. Early diagnosis of Alzheimer’s disease: Is MCI too late? Curr. Alzheimer Res. 2009, 6, 324–330. [Google Scholar] [CrossRef]
- Hort, J.; Laczo, J.; Vyhnalek, M.; Bojar, M.; Bures, J.; Vlcek, K. Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. USA 2007, 104, 4042–4047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, P.K.; Joshi, J.; Saharan, S. Visuospatial perception: An emerging biomarker for Alzheimer’s disease. J. Alzheimers Dis. 2012, 31, 117–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishioka, C.; Poh, C.; Sun, S.-W. Diffusion tensor imaging reveals visual pathway damage in patients with mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis. 2014, 45, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlcek, K.; Laczo, J. Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer’s disease. Front. Behav. Neurosci. 2014, 8, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.C.; Park, J.H. Korean version of the mini-mental state examination (MMSE-K). Part I: Development of the test for the elderly. J. Korean Neuropsychiatry Assoc. 1989, 28, 125–135. [Google Scholar]
- Folstein, M.; Folstein, S.; McHugh, P. “Mini-Mental State”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Morris, J.C. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef]
- Chopin, A.; Bavelier, D.; Levi, D.M. The prevalence and diagnosis of ‘stereoblindness’ in adults less than 60 years of age: A best evidence synthesis. Ophthalmic Physiol. Opt. 2019, 39, 66–85. [Google Scholar] [CrossRef] [Green Version]
- Manning, M.L.; Finlay, D.C.; Neill, R.A.; Frost, B.G. Detection threshold differences to crossed and uncrossed disparities. Vis. Res. 1987, 27, 1683–1686. [Google Scholar] [CrossRef]
- Mustillo, P. Binocular mechanisms mediating crossed and uncrossed stereopsis. Psychol. Bull. 1985, 97, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.; Martin, W.L. Human stereopsis. Hum. Factors 1992, 34, 669–692. [Google Scholar] [CrossRef] [PubMed]
- Lezak, M.D.; Howieson, D.B.; Bigler, E.D.; Tranel, D. Neuropsychological Assessment, 5th ed.; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Hartle, B.; Wilcox, L.M. Depth magnitude from stereopsis: Assessment techniques and the role of experience. Vis. Res. 2016, 125, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Zaroff, C.M.; Knutelska, M.; Frumkes, T.E. Variation in stereoacuity: Normative description, fixation disparity, and the roles of aging and gender. Investig. Ophthalmol. Vis. Sci. 2003, 44, 891–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badcock, D.R.; Schor, C.M. Depth-increment detection function for individual spatial channels. J. Opt. Soc. Am. A 1985, 2, 1211–1216. [Google Scholar] [CrossRef]
- DeAngelis, G.C. Seeing in three dimensions: The neurophysiology of stereopsis. Trends Cogn. Sci. 2000, 4, 80–90. [Google Scholar] [CrossRef]
- DeAngelis, G.C.; Newsome, W.T. Organization of disparity-selective neurons in macaque area MT. J. Neurosci. 1999, 19, 1398–1415. [Google Scholar] [CrossRef] [Green Version]
- Uka, T.; DeAngelis, G.C. Contribution of middle temporal area to coarse depth discrimination: Comparison of neuronal and psychophysical sensitivity. J. Neurosci. 2003, 23, 3515–3530. [Google Scholar] [CrossRef] [Green Version]
- Uka, T.; DeAngelis, G.C. Linking neural representation to function in stereoscopic depth perception: Roles of the middle temporal area in coarse versus fine disparity discrimination. J. Neurosci. 2006, 26, 6791–6802. [Google Scholar] [CrossRef] [Green Version]
- Cronin-Golomb, A.; Gilmore, G.C.; Neargarder, S.A.; Morrison, S.R.; Laudate, T.M. Enhanced stimulus strength improves visual cognition in aging and Alzheimer’s disease. Cortex 2007, 43, 952–966. [Google Scholar] [CrossRef]
- Gilmore, G.C.; Morrison, S.R.; Groth, K.E. Magnocellular deficit hypothesis in Alzheimer’s disease. In Vision in Alzheimer’s Disease; Cronin-Golomb, A., Hof, P.R., Eds.; Karger: Basel, Switzerland, 2004; pp. 173–198. [Google Scholar]
- Kim, N.-G.; Park, J.-H. Learning to perceive structure from motion and neural plasticity in patients with Alzheimer’s disease. Neuropsychologia 2010, 48, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Kurylo, D.D.; Corkin, S.; Dolan, R.P.; Rizzo, J.F.; Parker, S.W.; Growdon, J.H. Broad-band visual capacities are not selectively impaired in Alzheimer’s disease. Neurobiol. Aging 1994, 15, 305–311. [Google Scholar] [CrossRef]
- Rizzo, M.; Nawrot, M. Perception of movement and shape in Alzheimer’s disease. Brain 1998, 121, 2259–2270. [Google Scholar] [CrossRef] [Green Version]
- Duffy, C.J.; Cushman, L.; Kavcic, V. Visuospatial disorientation in Alzheimer’s disease: Impaired spatiotemporal integration in visual information processing. In Vision in Alzheimer’s Disease; Cronin-Golomb, A., Hof, P.R., Eds.; Karger: Basel, Switzerland, 2004; pp. 155–172. [Google Scholar]
- Kavcic, V.; Duffy, C.J. Attentional dynamics and visual perception: Mechanisms of spatial disorientation in Alzheimer’s disease. Brain 2003, 126, 1173–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavcic, V.; Fernandez, R.; Logan, D.J.; Duffy, C.J. Neurophysiological and perceptual correlates of navigational impairment in Alzheimer’s disease. Brain 2006, 129, 736–746. [Google Scholar] [CrossRef] [Green Version]
- Mapstone, M.; Duffy, C.J. Approaching objects cause confusion in patients with Alzheimer’s disease regarding their direction of self-movement. Brain 2010, 133, 2690–2701. [Google Scholar] [CrossRef]
- Tetewsky, S.; Duffy, C.J. Visual loss and getting lost in Alzheimer’s disease. Neurology 1999, 52, 958–965. [Google Scholar] [CrossRef]
- Cheng, K.; Fujita, H.; Kanno, I.; Miura, S.; Tanaka, K. Human cortical regions activated by wide-field visual motion: An H2(15)O PET study. J. Neurophysiol. 1995, 74, 413–427. [Google Scholar] [CrossRef]
- Claeys, K.G.; Lindsey, D.T.; De Schutter, E.; Orban, G.A. A higher order motion region in human inferior parietal lobule: Evidence from fMRI. Neuron 2003, 40, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Edelman, G.M.; Gally, J.A. Degeneracy and complexity in biological systems. Proc. Natl. Acad. Sci. USA 2001, 98, 13763–13768. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.J.; Price, C.J. Degeneracy and redundancy in cognitive anatomy. Trends Cogn. Sci. 2003, 7, 151–152. [Google Scholar] [CrossRef]
EC (n = 21) | AD (n = 21) | MCI (n = 23) | p-Values | |
---|---|---|---|---|
Age (years) | 69.5 ± 7.8 | 71.6 ± 9.7 | 72.8 ± 7.9 | 0.43 |
Edu (years) | 9.2 ± 3.7 | 6.7 ± 4.4 | 9.2 ± 4.2 | 0.08 |
MMSE | 28.4 ± 1.7 | 21.5 ± 4.1 | 25.4 ± 2.8 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.-G.; Lee, H.-W. Stereoscopic Depth Perception and Visuospatial Dysfunction in Alzheimer’s Disease. Healthcare 2021, 9, 157. https://doi.org/10.3390/healthcare9020157
Kim N-G, Lee H-W. Stereoscopic Depth Perception and Visuospatial Dysfunction in Alzheimer’s Disease. Healthcare. 2021; 9(2):157. https://doi.org/10.3390/healthcare9020157
Chicago/Turabian StyleKim, Nam-Gyoon, and Ho-Won Lee. 2021. "Stereoscopic Depth Perception and Visuospatial Dysfunction in Alzheimer’s Disease" Healthcare 9, no. 2: 157. https://doi.org/10.3390/healthcare9020157
APA StyleKim, N. -G., & Lee, H. -W. (2021). Stereoscopic Depth Perception and Visuospatial Dysfunction in Alzheimer’s Disease. Healthcare, 9(2), 157. https://doi.org/10.3390/healthcare9020157