The Glucocorticoid Receptor Gene (NR3C1) 9β SNP Is Associated with Posttraumatic Stress Disorder
Abstract
:1. Introduction
2. Material and Methods
2.1. Enrolment of Participants
2.2. Psychosocial Measures
2.3. GR gene SNPs Genotyping
2.4. Hair Cortisol Measurements
2.5. Statistical Analysis
3. Results
3.1. Associations of Genetic Variation in the GR Gene with Lifetime PTSD
3.2. Association of HCC with the GR Gene SNP 9β
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daskalakis, N.P.; Lehrner, A.; Yehuda, R. Endocrine Aspects of Post-traumatic Stress Disorder and Implications for Diagnosis and Treatment. Endocrinol. Metab. Clin. N. Am. 2013, 42, 503–513. [Google Scholar] [CrossRef] [PubMed]
- De Kloet, C.S.; Vermetten, E.; Geuze, E.; Kavelaars, A.; Heijnen, C.J.; Westenberg, H.G.M. Assessment of HPA-axis function in posttraumatic stress disorder: Pharmacological and non-pharmacological challenge tests, a review. J. Psychiatr. Res. 2006, 40, 550–567. [Google Scholar] [CrossRef] [PubMed]
- Van Zuiden, M.; Geuze, E.; Willemen, H.L.; Vermetten, E.; Maas, M.; Heijnen, C.J.; Kavelaars, A. Pre-Existing High Glucocorticoid Receptor Number Predicting Development of Posttraumatic Stress Symptoms After Military Deployment. Am. J. Psychiatry 2011, 168, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Compas, B.E.; Garber, J. Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: A systematic review and meta-analysis. Clin. Psychol. Rev. 2012, 32, 301–315. [Google Scholar] [CrossRef] [Green Version]
- Stalder, T.; Kirschbaum, C. Analysis of cortisol in hair–State of the art and future directions. Brain Behav. Immun. 2012, 26, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Staufenbiel, S.M.; Penninx, B.W.; Spijker, A.T.; Elzinga, B.M.; Van Rossum, E.F. Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology 2013, 38, 1220–1235. [Google Scholar] [CrossRef]
- Van Zuiden, M.; Savas, M.; Koch, S.B.J.; Nawijn, L.; Staufenbiel, S.M.; Frijling, J.L.; Veltman, D.J.; Van Rossum, E.F.C.; Olff, M. Associations Among Hair Cortisol Concentrations, Posttraumatic Stress Disorder Status, and Amygdala Reactivity to Negative Affective Stimuli in Female Police Officers. J. Trauma Stress 2019, 32, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Sierau, S.; Glaesmer, H.; Klucken, T.; Stalder, T. Hair cortisol, lifetime traumatic experiences and psychopathology in unaccompanied refugee minors. Psychoneuroendocrinology 2019, 104, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.E.; Enlow, M.B.; Plamondon, A.; Lyons-Ruth, K. The association between adversity and hair cortisol levels in humans: A meta-analysis. Psychoneuroendocrinology 2019, 103, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Steudte-Schmiedgen, S.; Kirschbaum, C.; Alexander, N.; Stalder, T. An integrative model linking traumatization, cortisol dysregulation and posttraumatic stress disorder: Insight from recent hair cortisol findings. Neurosci. Biobehav. Rev. 2016, 69, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Sartor, C.E.; Grant, J.D.; Lynskey, M.T.; McCutcheon, V.V.; Waldron, M.; Statham, D.J.; Bucholz, K.K.; Madden, P.A.F.; Heath, A.C.; Martin, N.G.; et al. Common Heritable Contributions to Low-Risk Trauma, High-Risk Trauma, Posttraumatic Stress Disorder, and Major Depression. Arch. Gen. Psychiatry 2012, 69, 293–299. [Google Scholar] [CrossRef] [Green Version]
- True, W.R.; Rice, J.; Eisen, S.A.; Heath, A.C.; Goldberg, J.; Lyons, M.J.; Nowak, J. A Twin Study of Genetic and Environmental Contributions to Liability for Posttraumatic Stress Symptoms. Arch. Gen. Psychiatry 1993, 50, 257–264. [Google Scholar] [CrossRef]
- Van Rossum, E.F.; Roks, P.H.M.; De Jong, F.H.; Brinkmann, A.O.; Pols, H.A.P.; Koper, J.W.; Lamberts, S.W.J. Characterization of a promoter polymorphism in the glucocorticoid receptor gene and its relationship to three other polymorphisms. Clin. Endocrinol. 2004, 61, 573–581. [Google Scholar] [CrossRef]
- Bachmann, A.W.; Sedgley, T.L.; Jackson, R.V.; Gibson, J.N.; Young, R.M.; Torpy, D.J. Glucocorticoid receptor polymorphisms and post-traumatic stress disorder. Psychoneuroendocrinology 2005, 30, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Hauer, D.; Weis, F.; Papassotiropoulos, A.; Schmoeckel, M.; Beiras-Fernandez, A.; Lieke, J.; Kaufmann, I.; Kirchhoff, F.; Vogeser, M.; Roozendaal, B.; et al. Relationship of a common polymorphism of the glucocorticoid receptor gene to traumatic memories and posttraumatic stress disorder in patients after intensive care therapy. Crit. Care Med. 2011, 39, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Van Zuiden, M.; Geuze, E.; Willemen, H.L.; Vermetten, E.; Maas, M.; Amarouchi, K.; Kavelaars, A.; Heijnen, C.J. Glucocorticoid Receptor Pathway Components Predict Posttraumatic Stress Disorder Symptom Development: A Prospective Study. Biol. Psychiatry 2012, 71, 309–316. [Google Scholar] [CrossRef]
- Castro-Vale, I.; Severo, M.; Carvalho, D. Lifetime PTSD is associated with impaired emotion recognition in veterans and their offspring. Psychiatry Res. 2020, 284, 112666. [Google Scholar] [CrossRef] [PubMed]
- Blake, D.D.; Weathers, F.; Nagy, L.M.; Kaloupek, D.G.; Klauminzer, G.; Charney, D.; Keane, T. A clinician rating scale for assessing current and lifetime PTSD: The CAPS-1. Behav. Ther. 1990, 13, 187–188. [Google Scholar]
- Bernstein, D.P.; Stein, J.A.; Newcomb, M.D.; Walker, E.; Pogge, D.; Ahluvalia, T.; Stokes, J.; Handelsman, L.; Medrano, M.; Desmond, D.; et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abus. Negl. 2003, 27, 169–190. [Google Scholar] [CrossRef]
- Dias, A.; Sales, L.; Carvalho, A.; Castro-Vale, I.; Kleber, R.; Cardoso, R.M. Estudo de propriedades psicométricas do Questionário de Trauma de Infância–Versão breve numa amostra portuguesa não clínica. Laboratório de Psicologia 2014, 11, 103–120. [Google Scholar] [CrossRef] [Green Version]
- Noppe, G.; de Rijke, Y.B.; Dorst, K.; van den Akker, E.L.; van Rossum, E.F. LC-MS/MS-based method for long-term steroid profiling in human scalp hair. Clin. Endocrinol. 2015, 83, 162–166. [Google Scholar] [CrossRef] [PubMed]
- DeRijk, R.H.; Schaaf, M.J.; Turner, G.; Datson, N.A.; Vreugdenhil, E.; Cidlowski, J.; De Kloet, E.R.; Emery, P.; Sternberg, E.M.; Detera-Wadleigh, S.D. A human glucocorticoid receptor gene variant that increases the stability of the glucocorticoid receptor beta-isoform mRNA is associated with rheumatoid arthritis. J. Rheumatol. 2001, 28, 2383–2388. [Google Scholar] [PubMed]
- Schaaf, M.J.; Cidlowski, J.A. AUUUA motifs in the 3′UTR of human glucocorticoid receptor α and β mRNA destabilize mRNA and decrease receptor protein expression. Steroids 2002, 67, 627–636. [Google Scholar] [CrossRef]
- Kumsta, R.; Entringer, S.; Koper, J.W.; van Rossum, E.F.C.; Hellhammer, D.H.; Wüst, S. Sex Specific Associations between Common Glucocorticoid Receptor Gene Variants and Hypothalamus-Pituitary-Adrenal Axis Responses to Psychosocial Stress. Biol. Psychiatry 2007, 62, 863–869. [Google Scholar] [CrossRef]
- Van den Akker, E.L.; Russcher, H.; van Rossum, E.F.; Brinkmann, A.O.; de Jong, F.H.; Hokken, A.; Pols, H.A.; Koper, J.W.; Lamberts, S.W. Glucocorticoid receptor polymorphism affects transrepression but not transactivation. J. Clin. Endocrinol. Metab. 2006, 91, 2800–2803. [Google Scholar] [CrossRef] [PubMed]
- Panarelli, M.; Holloway, C.D.; Fraser, R.; Connell, J.M.; Ingram, M.C.; Anderson, N.H.; Kenyon, C.J. Glucocorticoid receptor polymorphism, skin vasoconstriction, and other metabolic intermediate phenotypes in normal human subjects. J. Clin. Endocrinol. Metab. 1998, 83, 1846–1852. [Google Scholar] [CrossRef]
- Pujols, L.; Mullol, J.; Roca-Ferrer, J.; Torrego, A.; Xaubet, A.; Cidlowski, J.A.; Picado, C. Expression of glucocorticoid receptor α- and β-isoforms in human cells and tissues. Am. J. Physiol. Physiol. 2002, 283, C1324–C1331. [Google Scholar] [CrossRef] [Green Version]
- Manenschijn, L.; van den Akker, E.L.; Lamberts, S.W.; van Rossum, E.F. Clinical features associated with glucocorticoid receptor polymorphisms. An overview. Ann. N. Y. Acad. Sci. 2009, 1179, 179–198. [Google Scholar] [CrossRef] [PubMed]
- Passos, I.C.; Vasconcelos-Moreno, M.P.; Costa, L.G.; Kunz, M.; Brietzke, E.; Quevedo, J.; Salum, G.; Magalhaes, P.V.; Kapczinski, F.; Kauer-Sant’Anna, M. Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2015, 2, 1002–1012. [Google Scholar] [CrossRef]
- Van den Akker, E.L.; Koper, J.W.; van Rossum, E.F.; Dekker, M.J.; Russcher, H.; de Jong, F.H.; Uitterlinden, A.G.; Hofman, A.; Pols, H.A.; Witteman, J.C.; et al. Glucocorticoid receptor gene and risk of cardiovascular disease. Arch. Intern. Med. 2008, 168, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellon, S.H.; Gautam, A.; Hammamieh, R.; Jett, M.; Wolkowitz, O.M. Metabolism, Metabolomics, and Inflammation in Posttraumatic Stress Disorder. Biol. Psychiatry 2018, 83, 866–875. [Google Scholar] [CrossRef] [Green Version]
- Spijker, A.T.; Van Rossum, E.F.; Hoencamp, E.; DeRijk, R.H.; Haffmans, J.; Blom, M.; Manenschijn, L.; Koper, J.W.; Lamberts, S.W.; Zitman, F.G. Functional polymorphism of the glucocorticoid receptor gene associates with mania and hypomania in bipolar disorder. Bipolar Disord. 2009, 11, 95–101. [Google Scholar] [CrossRef]
- Spijker, A.T.; van Rossum, E.F.C. Glucocorticoid Sensitivity in Mood Disorders. Neuroendocrinology 2012, 95, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Meewisse, M.L.; Reitsma, J.B.; de Vries, G.J.; Gersons, B.P.; Olff, M. Cortisol and post-traumatic stress disorder in adults: Systematic review and meta-analysis. Br. J. Psychiatry 2007, 191, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Hu, X.; Liu, X.; Ma, X.; Guo, W.; Qiu, C.; Wang, Y.; Wang, Q.; Zhang, X.; Zhang, W.; et al. Hair Cortisol Level as a Biomarker for Altered Hypothalamic-Pituitary-Adrenal Activity in Female Adolescents with Posttraumatic Stress Disorder after the 2008 Wenchuan Earthquake. Biol. Psychiatry 2012, 72, 65–69. [Google Scholar] [CrossRef]
- Klengel, T.; Binder, E.B. FKBP5 Allele-Specific Epigenetic Modification in Gene by Environment Interaction. Neuropsychopharmacology 2014, 40, 244–246. [Google Scholar] [CrossRef] [Green Version]
- de Quervain, D.; Schwabe, L.; Roozendaal, B. Stress, glucocorticoids and memory: Implications for treating fear-related disorders. Nat. Rev. Neurosci. 2017, 18, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vale, I.; Carvalho, D. The Pathways between Cortisol-Related Regulation Genes and PTSD Psychotherapy. Healthcare 2020, 8, 376. [Google Scholar] [CrossRef]
- Sheerin, C.M.; Lind, M.J.; Bountress, K.E.; Marraccini, M.E.; Amstadter, A.B.; Bacanu, S.-A.; Nugent, N.R. Meta-analysis of Associations Between Hypothalamic-Pituitary-Adrenal Axis Genes and Risk of Posttraumatic Stress Disorder. J. Trauma. Stress 2020. [Google Scholar] [CrossRef] [PubMed]
Locus/Genotype | No PTSD n (%) | PTSD n (%) | OR (95% CI) | p-Value |
---|---|---|---|---|
Tth111I (rs10052957) | n = 28 | n = 32 | ||
CC | 15 (53.6) | 14 (43.8) | ||
CT | 11 (39.3) | 13 (40.6) | ||
TT | 2 (7.1) | 5 (15.6) | ||
T carrier vs. CC b | 13 (46.4)/15 (53.6) | 18 (56.3/43.8) | 1.48 (0.54–4.11) | 0.448 |
ER22/23EK (rs6189/rs6190)c | n = 24 | n = 31 | ||
GG/GG | 22 (91.7) | 29 (93.5) | ||
GA/GA | 2 (8.3) | 2 (6.5) | ||
AA/AA | 0 | 0 | ||
A/A carrier vs. GG/GG b | 2 (8.3)/22 (91.7) | 2 (6.5)/29 (93.5) | 0.76 (0.10–5.82) | 0.790 |
N363S (rs6195) | n = 28 | n = 33 | ||
AA | 25 (89.3) | 32 (97.0) | ||
AG | 3 (10.7) | 1 (3.0) | ||
GG | 0 | 0 | ||
G carrier vs. AA b | 3 (10.7)/25 (89.3) | 1 (3.0)/31 (97.0) | 0.26 (0.03–2.66) | 0.266 |
BclI (rs41423247) | n = 27 | n = 32 | ||
CC | 9 (33.3) | 14 (43.8) | ||
CG | 17 (63.0) | 13 (40.6) | ||
GG | 1 (3.7) | 5 (15.6) | ||
G carrier vs. CC b | 18 (66.7)/9 (33.3) | 18 (56.3)/14 (43.8) | 0.64 (0.22–1.86) | 0.415 |
9β (rs6198) | n = 28 | n = 32 | ||
AA | 23 (82.1) | 18 (56.3) | ||
AG | 5 (17.9) | 12 (37.5) | ||
GG | 0 | 2 (6.3) | ||
G carrier vs. AA b | 5 (17.9)/23 (82.1) | 14 (43.8)/18 (56.3) | 3.58 (1.09–11.80) | 0.036 |
Genotype | Veterans’ PTSD Situation (%) | Univariate Analysis | |||
---|---|---|---|---|---|
Never Had b n (%) | Had in the Past n (%) | Have Current PTSD n (%) | Odds (95% CI) | p-Value | |
Tth111l(rs10052957) | |||||
CC | 15 (53.6) | 10 (47.6) | 4 (36.4) | ||
CT | 11 (39.3) | 9 (42.9) | 4 (36.4) | ||
TT | 2 (7.1) | 2 (9.5) | 3 (27.3) | ||
T carrrier versus CC c | 13 (46.4)/15 (53.6) | 11 (52.4)/10 (47.6) | 7 (63.6)/4 (36.4) | 0.64 (0.24–1.67) | 0.357 |
ER22/23K (rs6189/rs6190) | |||||
GG/GG | 22 (91.7) | 20 (95.2) | 9 (90.0) | ||
GA/GA | 2 (8.3) | 1 (4.8) | 1 (10.0) | ||
AA/AA | 0 | 0 | 0 | ||
A/A carrier versus GG/GG c | 2 (8.3)/22 (91.7) | 1 (4.8)/20 (95.2) | 1 (10.0)/9 (90.0) | 1.06 (0.16–7.15) | 0.954 |
N363S (rs6195) | |||||
AA | 25 (89.3) | 21 (100.0) | 11 (91.7) | ||
AG | 3 (10.7) | 0 | 1 (8.3) | ||
GG | 0 | 0 | 0 | ||
G carrier versus AA c | 3 (10.7)/25 (89.3) | 0/21 (100.0) | 1 (8.3)/11 (91.7) | 2.82 (0.33–24.45) | 0.346 |
BclI (rs41423247) | |||||
CC | 9 (33.3) | 8 (40.0) | 6 (16.7) | ||
CG | 17 (63.0) | 9 (45.0) | 4 (33.3) | ||
GG | 1 (3.7) | 3 (15.0) | 2 (50.0) | ||
G carrier versus CC c | 18 (66.7)/9 (33.3) | 12 (60.0)/8 (40.0) | 6 (50.0)/6 (50.0) | 1.62 (0.61–4.33) | 0.333 |
9β (rs6198) | |||||
AA | 23 (82.1) | 12 (60.0) | 6 (50.0) | ||
AG | 5 (17.9) | 6 (30.0) | 6 (50.0) | ||
GG | 0 | 2 (10.0) | 0 | ||
G carrier versus AA c | 5 (17.9)/23 (82.1) | 8 (40.0)/12 (60.0) | 6 (50.0)/6 (50.0) | 0.31 (0.11–0.90) | 0.030 |
GC Hypersensitivity (N363S_BclI)d | |||||
Carrier versus non carrier c | 21 (75.0)/7 (25.0) | 12 (60.0)/8 (40.0) | 7 (58.3)/5 (41.7) | 1.87(0.68–5.11) | 0.224 |
GC Resistance (ER22/23EK_9β) e | |||||
Carrier versus non carrier c | 5 (20.0)/20 (80.0) | 8 (40.0)/12 (60.0) | 6 (54.5)/5 (45.5) | 0.32 (0.11–0.92) | 0.035 |
Haplotypes a | Haplotypes no. | No PTSD | PTSD | OR | CI (95%) | p-Value |
---|---|---|---|---|---|---|
CGACA b | Haplotype 1 | 0.445 | 0.385 | 1.00 | ||
CGAGA | Haplotype 2 | 0.212 | 0.240 | 2.49 | 0.76–8.22 | 0.133 |
TGAGA | Haplotype 3 | 0.143 | 0.107 | 1.57 | 0.38–6.52 | 0.532 |
TGACG | Haplotype 4 | 0.127 | 0.203 | 19.03 | 1.59–227.92 | 0.020 |
TAACG | Haplotype 5 | 0.039 | 0.031 | 0.84 | 0.08–8.33 | 0.881 |
CGGCA | Haplotype 6 | 0.027 | 0.016 | 1.35 | 0.03–63.65 | 0.877 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Vale, I.; Durães, C.; van Rossum, E.F.C.; Staufenbiel, S.M.; Severo, M.; Lemos, M.C.; Carvalho, D. The Glucocorticoid Receptor Gene (NR3C1) 9β SNP Is Associated with Posttraumatic Stress Disorder. Healthcare 2021, 9, 173. https://doi.org/10.3390/healthcare9020173
Castro-Vale I, Durães C, van Rossum EFC, Staufenbiel SM, Severo M, Lemos MC, Carvalho D. The Glucocorticoid Receptor Gene (NR3C1) 9β SNP Is Associated with Posttraumatic Stress Disorder. Healthcare. 2021; 9(2):173. https://doi.org/10.3390/healthcare9020173
Chicago/Turabian StyleCastro-Vale, Ivone, Cecília Durães, Elisabeth F. C. van Rossum, Sabine M. Staufenbiel, Milton Severo, Manuel C. Lemos, and Davide Carvalho. 2021. "The Glucocorticoid Receptor Gene (NR3C1) 9β SNP Is Associated with Posttraumatic Stress Disorder" Healthcare 9, no. 2: 173. https://doi.org/10.3390/healthcare9020173
APA StyleCastro-Vale, I., Durães, C., van Rossum, E. F. C., Staufenbiel, S. M., Severo, M., Lemos, M. C., & Carvalho, D. (2021). The Glucocorticoid Receptor Gene (NR3C1) 9β SNP Is Associated with Posttraumatic Stress Disorder. Healthcare, 9(2), 173. https://doi.org/10.3390/healthcare9020173