Inequality in Health: The Correlation between Poverty and Injury—A Comprehensive Analysis Based on Income Level in Taiwan: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Variable Definitions
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Health Inequality
4.2. Cause of Injury
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participate
References
- Jutz, R. The role of income inequality and social policies on income-related health inequalities in Europe. Int. J. Equity Health 2015, 14, 117. [Google Scholar] [CrossRef] [Green Version]
- Mangalore, R.; Knapp, M.; Jenkins, R. Income-related inequality in mental health in Britain: The concentration index approach. Psychol. Med. 2007, 37, 1037–1045. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, W.; Jones, K.; Li, Y. An exploratory multilevel analysis of income, income inequality and self-rated health of the elderly in China. Soc. Sci. Med. 2012, 75, 2481–2492. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.L. Health Insurance, 4th ed.; Liwen Publishing Group: Taiwan, 2003. [Google Scholar]
- Tasi, S. Analysis of Low Income’s Medical Expenditure under the National Health Insurance in Taiwan. Master’s Thesis, School of Public Health, National Defense Medical Center, Taipei, Taiwan, 2003. [Google Scholar]
- Wu, C.C. Medical Utilization of Low-Income Families in Taiwan’s National Health Insurance. Master’s Thesis, Colleges of Medical and Healthcare Administration, Asia University, Taichung, Taiwan, 2008. [Google Scholar]
- Ray, D.; Linden, M. Health, inequality and income: A global study using simultaneous model. Econ. Struct. 2018, 7, 22. [Google Scholar] [CrossRef]
- Health and Welfare Data Science Center, Ministry of Health and Welfare (HWDC, MOHW). Available online: https://dep.mohw.gov.tw/DOS/np-2497-113.html (accessed on 25 October 2018).
- Public Assistance Act, Article 4 (30 December 2015). Available online: http://law.moj.gov.tw/Eng/LawClass/LawAll.aspx?PCode=D0050078 (accessed on 22 December 2017).
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Sun, Y.H.; Nfor, O.N.; Huang, J.Y.; Liaw, Y.P. Association between dental amalgam fillings and Alzheimer’s disease: a population-based cross-sectional study in Taiwan. Alz. Res. Ther. 2015, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.C.-S.; Lin, C.-L.; Tu, H.-P. Association between psoriasis, psoriatic arthritis and gout: A nationwide population-based study. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Department of Statistics, Ministry of the Interior, Taiwan (ROC). Monthly Bulletin of Interior Statistics: Households and Persons of Low-Income Families. 2019. Available online: https://www.mohw.gov.tw/dl-27850-056a753c-fbce-4fff-a373-530accaf6572.html (accessed on 19 April 2019).
- Department of Statistics, Ministry of the Interior, Taiwan (ROC). Statistical Yearbook of Interior: Population by Single Year of Age. Available online: https://www.moi.gov.tw/files/site_stuff/321/2/year/y02-02.xls (accessed on 19 April 2019).
- Case, A.; Deaton, A. Deaths of Despair and the Future of Capitalism; Princeton University Press: Princeton, NJ, USA, 2020; ISBN 9780691190785. [Google Scholar]
- Chen, M.S.; Chao, K.; Chien, Y.S.; Kuo, K.N. Socially or economically disadvantaged population. In Healthy People 2020; National Health Research Institutes (NHRI): Miaoli County, Taiwan, 2008; pp. 830–864. [Google Scholar]
- Williams, D.R. Race, socioeconomic status, and health: The added effects of racism and discrimination. In Perspectives in Medical Sociology, 4th ed.; Brown, P., Ed.; Waveland Press Inc.: Long Grove, IL, USA, 2007; pp. 173–188. [Google Scholar]
- Banerjee, A.V.; Duflo, E. Poor Economics: A Radical Rethinking of the Way to Fight Global Poverty; PublicAffairs Inc.: New York City, NY, USA, 2011. [Google Scholar]
- Health Promotion Administration, Ministry of Health and Welfare of Taiwan. Available online: https://www.mohw.gov.tw/dl-15930-a665f30b-c19a-494c-b0c7-7a00a73eac96.html (accessed on 19 April 2019).
- Simpson, K.; Janssen, I.; Craig, W.M.; Pickett, W. Multilevel analysis of associations between socioeconomic status and injury among Canadian adolescents. J. Epidemiol. Community Health 2005, 59, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.K.; Larizgoitia, I.; Audera-Lopez, C.; Prasopa-Plaizier, C.; Waters, H.; Bates, D.W. The global burden of unsafe medical care: Analytic modelling of observational studies. BMJ Qual. Saf. 2013, 22, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Nikoloski, Z.; Mossialos, E. Corruption, inequality and population perception of healthcare quality in Europe. BMC Health Serv. Res. 2013, 13, 472. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, M.K.; Vonschewelov, T.; Karlsson, C.; Rosengren, B.E. Prevention of falls in the elderly: A review. Scand. J. Public Health 2013, 41, 442–454. [Google Scholar] [CrossRef]
- Rubenstein, L.A.; Stevens, J.A.; Scott, V. Interventions to prevent falls among older adults. In Handbook of Injury and Violence Preventio, 1st ed.; Doll, L.S., Ed.; Springer Science + Business Media, LLC: Atlanta, GA, USA, 2008; pp. 37–53. [Google Scholar]
- Sleet, D.A.; Moffett, D.B.; Stevens, J. CDC’s research portfolio in older adult fall prevention: A review of progress, 1985–2005, and future research directions. J. Saf. Res. 2008, 39, 259–267. [Google Scholar] [CrossRef]
- Bueno-Cavanillas, A.; Padilla-Ruiz, F.; Jimenez-Moleon, J.; Peinado-Alonso, C.; Galvez-Vargas, R. Risk factors in falls among the elderly according to extrinsic and intrinsic precipitating causes. Eur. J. Epidemiol. 2000, 16, 849–859. [Google Scholar] [CrossRef]
- Steinweg, K.K. The changing approach to falls in the elderly. Am. Fam. Physician 1997, 56, 1815–1823. [Google Scholar] [PubMed]
- Milner, A.; Spittal, M.J.; Pirkis, J.; LaMontagne, A.D. Suicide by occupation: Systematic review and meta-analysis. Br. J. Psychiatry 2013, 203, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.E.; Jaremin, B.; Lloyd, K. High-risk occupations for suicide. Psychol. Med. 2013, 43, 1231–1240. [Google Scholar] [CrossRef] [Green Version]
- Blakely, T.A.; Collings, S.C.; Atkinson, J. Unemployment and suicide. Evidence for a causal association? JECH 2003, 57, 594–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexopoulos, E.C.; Kavalidou, K.; Messolora, F. Suicide mortality across broad occupational groups in Greece: A descriptive study. Saf. Health Work 2016, 7, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorant, V.; Kampfl, D.; Seghers, A.; Deliège, D.; Closon, M.-C.; Ansseau, M. Socio-economic differences in psychiatric in-patient care. Acta Psychiatr. Scand. 2003, 107, 170–177. [Google Scholar] [CrossRef]
- International Association for Suicide Prevention (IASP). A Global Perspective in the Epidemiology of Suicide. 2002. Available online: http://www.iasp.info/pdf/papers/Bertolote.pdf (accessed on 25 October 2016).
- Chung, C.H.; Lai, C.H.; Chu, C.M.; Pai, L.; Kao, S.; Chien, W.-C. A nationwide, population-based, long-term follow-up study of repeated self-harm in Taiwan. BMC Public Health 2012, 12, 744. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.H.; Pai, L.; Kao, S.; Lee, M.-S.; Yang, T.-T.; Chien, W.-C. The interaction effect between low income and severe illness on the risk of death by suicide after self-harm. Crisis 2013, 34, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Gray, R.; Fazel, S. Violence as a public health problem: An ecological study of 169 countries. Soc. Sci. Med. 2014, 104, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayward, K.; Young, J. Cultural criminology. In The Oxford Handbook of Criminology; Maguire, M., Morgan, R., Reiner, R., Eds.; Oxford University Press: New York, NY, USA, 2007; pp. 361–389. [Google Scholar]
- Savolainen, J. Inequality, welfare state, and homicide: Further support for the institutional anomie theory. Criminology 2000, 38, 1021–1042. [Google Scholar] [CrossRef]
- National Police Agency, Ministry of the Interior of Taiwan. Available online: https://ba.npa.gov.tw/npa/stmain.jsp?sys=100 (accessed on 16 October 2019).
- The department of Statistics, Ministry of Transportation and Communications of Taiwan. Available online: https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301 (accessed on 16 October 2019).
- Banerjee, A.V.; Duflo, E. The Economic Lives of the Poor. J. Econ. Perspect. 2007, 21, 141–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moav, O. Cheap Children and the Persistence of Poverty. Econ. J. 2005, 115, 88–110. [Google Scholar] [CrossRef] [Green Version]
- Mookherjee, D.; Prina, S.; Ray, D. A Theory of Occupational Choice with Endogenous Fertility. Am. Econ. J. Microecon. 2012, 4, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, M.R.; Wolpin, K.I. Are There Increasing Returns to the Intergenerational Production of Human Capital? Maternal Schooling and Child Intellectual Achievement. J. Hum. Resour. 1994, 29, 670–693. [Google Scholar] [CrossRef]
- Wacholder, S.; Hartge, P.; Lubin, J.H.; Dosemeci, M. Non-differential misclassification and bias towards the null: A clarification. Occup. Environ. Med. 1995, 52, 557–558. [Google Scholar] [CrossRef] [Green Version]
Variables | Low-Income (n = 74,337) | Nonlow-Income (n = 4,572,721) | p Value | ||
---|---|---|---|---|---|
N | % | N | % | ||
Gender | <0.001 | ||||
Male | 47,184 | 63.5 | 2,674,428 | 58.5 | <0.001 |
Female | 27,153 | 36.5 | 1,898,293 | 41.5 | <0.001 |
Age | <0.001 | ||||
1–4 | 1805 | 2.4 | 180,605 | 3.9 | 0.001 |
5–14 | 6902 | 9.3 | 231,217 | 5.1 | <0.001 |
15–24 | 9816 | 13.2 | 657,796 | 14.4 | 0.090 |
25–44 | 15,739 | 21.2 | 1,154,947 | 25.3 | <0.001 |
45–64 | 19,980 | 26.9 | 1,166,918 | 25.5 | 0.044 |
≥65 | 20,095 | 27.0 | 1,181,238 | 25.8 | 0.012 |
CCI | 0.6 ± 1.5 | 0.5 ± 1.6 | <0.001 |
Prognosis | Overall | p Value | Nonfatal (Survival) | p Value | Fatal (Mortality) | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Incomes | Low-Income (n = 74,337) | Nonlow-Income (n = 4,572,721) | Low-Income (n = 71,640) | Nonlow-Income (n = 4,477,412) | Low-Income (n = 2697) | Nonlow-Income (n = 95,309) | |||||||||
Causes of Injury | N | % | N | % | N | % | N | % | N | % | N | % | |||
Without E-Code (n = 1,582,244) | 28,400 | 1,553,844 | 27,167 | 1,513,036 | 1233 | 40,808 | |||||||||
With E-Code (n = 3,064,814) | 45,937 | 3,018,877 | 44,473 | 2,964,376 | 1464 | 54,501 | |||||||||
Unintentional | 42,897 | 93.4 | 2,871,022 | 95.1 | <0.001 | 41,566 | 93.5 | 2,821,399 | 95.2 | <0.001 | 1331 | 90.9 | 49,683 | 91.2 | 0.173 |
Transport-related | 13,723 | 29.9 | 1,162,189 | 38.5 | <0.001 | 13,417 | 30.2 | 1,146,981 | 38.7 | <0.001 | 306 | 20.9 | 15,208 | 27.9 | <0.001 |
Poisoning | 783 | 1.7 | 42,254 | 1.4 | 0.571 | 754 | 1.7 | 40,966 | 1.4 | 0.511 | 29 | 2.0 | 1288 | 2.4 | 0.785 |
Medical malpractice | 5973 | 13.0 | 307,619 | 10.9 | <0.001 | 5623 | 12.6 | 294,536 | 9.9 | <0.001 | 350 | 23.9 | 13,083 | 24.0 | 0.896 |
Falls | 12,184 | 26.5 | 714,467 | 23.7 | <0.001 | 11,810 | 26.6 | 701,304 | 23.7 | <0.001 | 374 | 25.5 | 13,163 | 24.2 | 0.771 |
Burns | 201 | 0.4 | 9790 | 0.3 | 0.683 | 184 | 0.4 | 9505 | 0.3 | 0.981 | 17 | 1.2 | 285 | 0.5 | 0.483 |
Natural and environmental factors | 451 | 1.0 | 29,904 | 1.0 | 0.997 | 446 | 1.0 | 29,768 | 1.0 | 0.995 | 5 | 0.3 | 136 | 0.2 | 0.982 |
Drowning | 1221 | 2.7 | 166,939 | 5.5 | 0.408 | 1210 | 2.7 | 166,262 | 5.6 | 0.372 | 11 | 0.8 | 677 | 1.2 | 0.996 |
Suffocation | 358 | 0.8 | 18,964 | 0.6 | 0.703 | 317 | 0.7 | 17,627 | 0.6 | 0.783 | 41 | 2.8 | 1337 | 2.5 | 0.934 |
Crushing, cutting, and piercing | 1763 | 3.8 | 165,598 | 5.5 | <0.001 | 1744 | 3.9 | 164,976 | 5.6 | <0.001 | 19 | 1.3 | 622 | 1.1 | 0.890 |
Others unintentional | 6240 | 13.6 | 253,298 | 8.4 | <0.001 | 6061 | 13.6 | 249,414 | 8.4 | <0.001 | 179 | 12.2 | 3884 | 7.1 | 0.061 |
Intentional | 2479 | 5.4 | 125,816 | 4.2 | 0.001 | 2371 | 5.3 | 121,942 | 4.1 | 0.196 | 108 | 7.4 | 3874 | 7.1 | 0.042 |
Suicide | 1137 | 2.5 | 52,533 | 1.7 | 0.029 | 1049 | 2.4 | 49,173 | 1.7 | 0.185 | 88 | 6.4 | 3360 | 6.1 | 0.047 |
Homicide | 1342 | 2.9 | 73,283 | 2.4 | 0.040 | 1322 | 3.0 | 72,769 | 0.7 | 0.036 | 20 | 1.0 | 514 | 1.0 | 0.975 |
Unspecific and unable to determined | 561 | 1.2 | 22,039 | 0.7 | 0.262 | 536 | 1.2 | 21,095 | 0.7 | 0.124 | 25 | 1.7 | 944 | 1.7 | 0.916 |
Causes of Injury | Overall | p Value | Unintentional | p Value | Intentional | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Incomes | Low-Income (n = 74,337) | Nonlow-Income (n = 4,572,721) | Low-Income (n = 42,897) | Nonlow-Income (n = 2,871,022) | Low-Income (n = 2479) | Nonlow-Income (n = 125,816) | |||||||||
Variables | N | % | N | % | N | % | N | % | N | % | N | % | |||
Surgical operation | <0.001 | <0.001 | 0.001 | ||||||||||||
Yes | 30,930 | 41.6 | 2,351,342 | 51.4 | 20,338 | 47.4 | 1,584,918 | 55.2 | 699 | 28.2 | 68,243 | 30.4 | |||
No | 43,407 | 58.4 | 2,221,379 | 48.6 | 22,559 | 52.6 | 1,286,104 | 44.8 | 1780 | 71.8 | 87,573 | 69.6 | |||
Level of care | <0.001 | <0.001 | 0.005 | ||||||||||||
Medical center | 15,804 | 21.3 | 1,330,952 | 29.1 | 8352 | 19.5 | 737,443 | 25.7 | 566 | 22.8 | 30,812 | 24.5 | |||
Regional hospital | 33,283 | 44.8 | 1,900,118 | 41.6 | 21,786 | 50.8 | 1,379,969 | 48.1 | 1165 | 47.0 | 58,342 | 46.4 | |||
Local hospital | 25,250 | 34.0 | 1,341,651 | 29.3 | 12,759 | 29.7 | 753,610 | 26.2 | 748 | 30.2 | 36,662 | 29.1 | |||
Hospitalization area | <0.001 | <0.001 | <0.001 | ||||||||||||
Northern | 24,020 | 32.3 | 1,628,638 | 35.6 | 12,784 | 29.8 | 858,501 | 29.9 | 768 | 31.0 | 38,818 | 30.9 | |||
Central | 18,358 | 24.7 | 1,406,942 | 30.8 | 12,654 | 29.5 | 1,063,826 | 37.1 | 686 | 27.7 | 44,496 | 35.4 | |||
Southern | 21,881 | 29.4 | 1,239,379 | 27.1 | 12,056 | 28.1 | 759,659 | 26.5 | 716 | 28.9 | 33,892 | 26.9 | |||
Eastern | 9359 | 12.6 | 273,914 | 6.0 | 5034 | 11.7 | 178,115 | 6.2 | 298 | 12.0 | 8380 | 6.7 | |||
Outer islands | 719 | 1.0 | 23,848 | 0.5 | 369 | 0.9 | 10,921 | 0.4 | 11 | 0.4 | 230 | 0.2 | |||
Medical care utilization | |||||||||||||||
Length of stays (day) | 9.9 ± 11.5 | 7.6 ± 8.9 | <0.001 | 9.1 ± 10.4 | 7.1 ± 7.9 | <0.001 | 7.2 ± 9.6 | 5.4 ± 7.0 | <0.001 | ||||||
Medical expenses (USD) | 1681.5 ± 2880.3 | 1573.9 ± 2873.5 | <0.001 | 1638.9 ± 2742.3 | 1484.8 ±2592.6 | <0.001 | 1179.3 ± 2248.1 | 1068.5 ± 2294.9 | <0.001 | ||||||
Prognosis | <0.001 | <0.001 | <0.001 | ||||||||||||
Survival | 71,640 | 96.4 | 4,477,412 | 97.9 | 41,566 | 96.9 | 2,821,399 | 98.3 | 2371 | 95.6 | 121,942 | 96.9 | |||
Mortality | 2697 | 3.6 | 95,309 | 2.1 | 1331 | 3.1 | 49,683 | 1.7 | 108 | 4.4 | 3874 | 3.1 |
Prognosis | Overall | p Value | Nonfatal (Survival) | p Value | Fatal (Mortality) | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Incomes | Low-Income (n = 74,337) | Nonlow-Income (n = 4,572,721) | Low-Income (n = 71,640) | Nonlow-Income (n = 4,477,412) | Low-Income (n = 2697) | Nonlow-Income (n = 95,309) | |||||||||
Variables | N | % | N | % | N | % | N | % | N | % | N | % | |||
Surgical operation | <0.001 | <0.001 | 0.002 | ||||||||||||
Yes | 30,930 | 41.6 | 2,351,342 | 51.4 | 41,699 | 58.2 | 2,163,734 | 48.3 | 1708 | 63.3 | 57,645 | 64.1 | |||
No | 43,407 | 58.4 | 2,221,379 | 48.6 | 29,941 | 41.8 | 2,313,678 | 51.7 | 989 | 36.7 | 37,664 | 35.9 | |||
Level of care | <0.001 | <0.001 | <0.00 | ||||||||||||
Medical center | 15,804 | 21.3 | 1,330,952 | 29.1 | 15,127 | 21.1 | 1,291,532 | 28.8 | 677 | 25.1 | 39,420 | 41.4 | |||
Regional hospital | 33,283 | 44.8 | 1,900,118 | 41.6 | 31,987 | 44.6 | 1,859,108 | 41.5 | 1296 | 48.1 | 41,010 | 43.0 | |||
Local hospital | 25,250 | 34.0 | 1,341,651 | 29.3 | 24,526 | 34.2 | 1,326,772 | 29.6 | 724 | 26.8 | 14,879 | 15.6 | |||
Hospitalization area | <0.001 | <0.001 | <0.001 | ||||||||||||
Northern | 24,020 | 32.3 | 1,628,638 | 35.6 | 22,906 | 32.0 | 1,588,596 | 35.5 | 1114 | 41.3 | 40,042 | 42.0 | |||
Central | 18,358 | 24.7 | 1,406,942 | 30.8 | 17,798 | 24.8 | 1,381,480 | 30.9 | 560 | 20.8 | 25,462 | 26.7 | |||
Southern | 21,881 | 29.4 | 1,239,379 | 27.1 | 21,151 | 29.5 | 1,215,061 | 27.1 | 730 | 27.1 | 24,318 | 25.5 | |||
Eastern | 9359 | 12.6 | 273,914 | 6.0 | 9081 | 12.7 | 268,672 | 6.0 | 278 | 10.3 | 5242 | 5.5 | |||
Outer islands | 719 | 1.0 | 23,848 | 0.5 | 704 | 1.0 | 23,603 | 0.5 | 15 | 0.6 | 245 | 0.3 | |||
Medical care utilization | |||||||||||||||
Length of stays (day) | 9.9 ± 11.5 | 7.6 ± 8.9 | <0.001 | 9.7 ± 11.3 | 7.5 ± 8.7 | <0.001 | 13.8 ± 15.9 | 13.1 ± 15.4 | <0.001 | ||||||
Medical expenses (USD) | 1681.5 ± 2880.3 | 1573.9 ± 2873.5 | <0.001 | 1551.2 ± 2520.1 | 1480.3 ±2565.4 | <0.001 | 5968.6 ± 8201.8 | 5143.0 ± 6896.0 | <0.001 |
Overall | Low-Income | |||||
---|---|---|---|---|---|---|
Variables | Adjusted OR | 95% CI | p Value | Adjusted OR | 95% CI | p Value |
Incomes | ||||||
Nonlow-income | Reference | - | - | - | ||
Low-income | 1.888 | 1.766–2.018 | <0.001 | - | - | - |
Gender | ||||||
Male | 1.482 | 1.451–1.520 | <0.001 | 1.284 | 1.211–1.379 | <0.001 |
Female | Reference | Reference | ||||
Age | ||||||
1–4 | Reference | Reference | ||||
5–14 | 0.501 | 0.431–0.569 | <0.001 | 0.767 | 0.620–0.885 | 0.001 |
15–24 | 1.083 | 0.980–1.186 | 0.088 | 1.120 | 1.013–1.271 | 0.032 |
25–44 | 1.421 | 1.318–1.554 | <0.001 | 1.338 | 1.291–1.498 | <0.001 |
45–64 | 2.125 | 1.973–2.339 | <0.001 | 2.231 | 1.997–2.364 | <0.001 |
≥65 | 5.076 | 4.452–5.561 | <0.001 | 2.695 | 2.372–3.196 | <0.001 |
CCI | 1.142 | 1.133–1.142 | <0.001 | 3.299 | 3.218–3.571 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-H.; Hsing, S.-C.; Sun, C.-A.; Chung, C.-H.; Tsao, C.-H.; Chung, R.-J.; Wang, B.-L.; Huang, Y.-C.; Chien, W.-C. Inequality in Health: The Correlation between Poverty and Injury—A Comprehensive Analysis Based on Income Level in Taiwan: A Cross-Sectional Study. Healthcare 2021, 9, 349. https://doi.org/10.3390/healthcare9030349
Huang S-H, Hsing S-C, Sun C-A, Chung C-H, Tsao C-H, Chung R-J, Wang B-L, Huang Y-C, Chien W-C. Inequality in Health: The Correlation between Poverty and Injury—A Comprehensive Analysis Based on Income Level in Taiwan: A Cross-Sectional Study. Healthcare. 2021; 9(3):349. https://doi.org/10.3390/healthcare9030349
Chicago/Turabian StyleHuang, Shi-Hao, Shih-Chun Hsing, Chien-An Sun, Chi-Hsiang Chung, Chang-Huei Tsao, Ren-Jei Chung, Bing-Long Wang, Yao-Ching Huang, and Wu-Chien Chien. 2021. "Inequality in Health: The Correlation between Poverty and Injury—A Comprehensive Analysis Based on Income Level in Taiwan: A Cross-Sectional Study" Healthcare 9, no. 3: 349. https://doi.org/10.3390/healthcare9030349
APA StyleHuang, S. -H., Hsing, S. -C., Sun, C. -A., Chung, C. -H., Tsao, C. -H., Chung, R. -J., Wang, B. -L., Huang, Y. -C., & Chien, W. -C. (2021). Inequality in Health: The Correlation between Poverty and Injury—A Comprehensive Analysis Based on Income Level in Taiwan: A Cross-Sectional Study. Healthcare, 9(3), 349. https://doi.org/10.3390/healthcare9030349