Effects of Cervical Spine Mobilization on Respiratory Function and Cervical Angles of Stroke Patients: A Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Process
2.2. Participants
2.3. Intervention Methods
Cervical Spine Mobilization
2.4. Assessments
2.4.1. Cervical Angles
2.4.2. Pulmonary Function Test
2.4.3. Chest Circumference
2.5. Statistical Analyses
3. Results
3.1. General Characteristics
3.2. Changes in the Cervical Angles
3.3. Changes in Respiratory Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khedr, E.; El Shinawy, O.; Khedr, T.; Aziz Ali, Y.; Awad, E. Assessment of corticodiaphragmatic pathway and pulmonary function in acute ischemic stroke patients. Eur. J. Neurol. 2000, 7, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, R.D.; Rafferty, G.F.; Moxham, J.; Kalra, L. Respiratory muscle strength and training in stroke and neurology: A systematic review. Int. J. Stroke 2013, 8, 124–130. [Google Scholar] [CrossRef]
- Santos, R.S.a.d.; Dall’Alba, S.C.F.; Forgiarini, S.G.I.; Rossato, D.; Dias, A.S.; Forgiarini Junior, L.A. Relationship between pulmonary function, functional independence, and trunk control in patients with stroke. Arq. De Neuro-Psiquiatr. 2019, 77, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Park, S.; Kim, Y.; Choi, Y.; Lyu, H. Effects of forward head posture on forced vital capacity and respiratory muscles activity. J. Phys. Ther. Sci. 2016, 28, 128–131. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.-I.; Jeong, D.-K.; Choi, H. Correlation between pulmonary functions and respiratory muscle activity in patients with forward head posture. J. Phys. Ther. Sci. 2018, 30, 132–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.-H.; Jang, S.-H. The effects of the neck stabilization exercise on the muscle activity of trunk respiratory muscles and maximum voluntary ventilation of chronic stroke patients. J. Back Musculoskelet. Rehabil. 2019, 32, 863–868. [Google Scholar] [CrossRef]
- Inal-Ince, D.; Cakmak, A. Kinesiology of respiration. In Comparative Kinesiology of the Human Body; Elsevier: Amsterdam, The Netherlands, 2020; pp. 353–363. [Google Scholar]
- Koseki, T.; Kakizaki, F.; Hayashi, S.; Nishida, N.; Itoh, M. Effect of forward head posture on thoracic shape and respiratory function. J. Phys. Ther. Sci. 2019, 31, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-S.; Cha, Y.-J.; Choi, J.-D. Correlation between forward head posture, respiratory functions, and respiratory accessory muscles in young adults. J. Back Musculoskelet. Rehabil. 2017, 30, 711–715. [Google Scholar] [CrossRef]
- Moreira, T.S.; Takakura, A.C.; Czeisler, C.; Otero, J.J. Respiratory and autonomic dysfunction in congenital central hypoventilation syndrome. J. Neurophysiol. 2016, 116, 742–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moustafa, I.M.; Youssef, A.; Ahbouch, A.; Tamim, M.; Harrison, D.E. Is forward head posture relevant to autonomic nervous system function and cervical sensorimotor control? Cross sectional study. Gait Posture 2020, 77, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Muslumanoglu, L.; Akyuz, G.; Aki, S.; Karsidag, S.; Us, O. Evaluation of autonomic nervous system functions in post-stroke patients. Am. J. Phys. Med. Rehabil. 2002, 81, 721–725. [Google Scholar] [CrossRef]
- Cho, J.; Lee, E.; Lee, S. Upper thoracic spine mobilization and mobility exercise versus upper cervical spine mobilization and stabilization exercise in individuals with forward head posture: A randomized clinical trial. Bmc Musculoskelet. Disord. 2017, 18, 1–10. [Google Scholar] [CrossRef]
- Maitland, G.; Hengeveld, E.; Banks, K.; English, K. Maitland’s Vertebral Manipulation, 7th ed.; Elsevier: Philadelphia, PA, USA, 2005. [Google Scholar]
- Park, S.J.; Park, S.E. Effect of upper thoracic mobilization on cervical alignment in stroke patients with forward head posture: A case study. J. Int. Acad. Phys. Ther. Res. 2018, 9, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Park, G.-Y.; Kim, S.-R.; Kim, Y.W.; Jo, K.W.; Lee, E.J.; Kim, Y.M.; Im, S. Decreased diaphragm excursion in stroke patients with dysphagia as assessed by M-mode sonography. Arch. Phys. Med. Rehabil. 2015, 96, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.H.; Cho, K.H.; Park, S.J. Effects of Neuromuscular Electrical Stimulation (NMES) Plus Upper Cervical Spine Mobilization on Forward Head Posture and Swallowing Function in Stroke Patients with Dysphagia. Brain Sci. 2020, 10, 478. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.-H.; Bang, H.-S. Effect of thoracic and cervical joint mobilization on pulmonary function in stroke patients. J. Phys. Ther. Sci. 2016, 28, 257–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuiness, J.; Vicenzino, B.; Wright, A. Influence of a cervical mobilization technique on respiratory and cardiovascular function. Man. Ther. 1997, 2, 216–220. [Google Scholar] [CrossRef]
- Vicenzino, B.; Cartwright, T.; Collins, D.; Wright, A. Cardiovascular and respiratory changes produced by lateral glide mobilization of the cervical spine. Man. Ther. 1998, 3, 67–71. [Google Scholar] [CrossRef]
- Yelvar, G.D.Y.; Çirak, Y.; Demir, Y.P.; Dalkilinç, M.; Bozkurt, B. Immediate effect of manual therapy on respiratory functions and inspiratory muscle strength in patients with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1353. [Google Scholar] [CrossRef] [Green Version]
- Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. 2005, 4, 287–291. [Google Scholar] [CrossRef]
- Nemmers, T.M.; Miller, J.W.; Hartman, M.D. Variability of the forward head posture in healthy community-dwelling older women. J. Geriatr. Phys. Ther. 2009, 32, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Worlikar, A.N.; Shah, M.R. Incidence of Forward Head Posture and Associated Problems in Desktop Users. Int. J. Health Sci. Res. 2019, 9, 96–100. [Google Scholar]
- Lee, K.-S.; Lee, J.-H.J.J.o.p.t.s. Effect of Maitland mobilization in cervical and thoracic spine and therapeutic exercise on functional impairment in individuals with chronic neck pain. J. Phys. Ther. Sci. 2017, 29, 531–535. [Google Scholar] [CrossRef]
- Quek, J.; Pua, Y.-H.; Clark, R.A.; Bryant, A.L. Effects of thoracic kyphosis and forward head posture on cervical range of motion in older adults. Man. Ther. 2013, 18, 65–71. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, S.-Y. Comparison of immediate effects of sling-based manual therapy on specific spine levels in subjects with neck pain and forward head posture: A randomized clinical trial. Disabil. Rehabil. 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rasband, W.S. ImageJ; U.S. National Institutes of Health: Bethesda, MD, USA, 1997–2018. Available online: http://rsb.info.nih.gov/ij/ (accessed on 22 December 2020).
- Ruivo, R.; Carita, A.; Pezarat-Correia, P. The effects of training and detraining after an 8 month resistance and stretching training program on forward head and protracted shoulder postures in adolescents: Randomised controlled study. Man. Ther. 2016, 21, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Singla, D.; Veqar, Z.; Hussain, M.E. Photogrammetric assessment of upper body posture using postural angles: A literature review. J. Chiropr. Med. 2017, 16, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Bockenhauer, S.E.; Chen, H.; Julliard, K.N.; Weedon, J. Measuring thoracic excursion: Reliability of the cloth tape measure technique. J. Am. Osteopath. Assoc. 2007, 107, 191–196. [Google Scholar]
- Iyengar, Y.; Vijayakumar, K.; Abraham, J.; Misri, Z.; Suresh, B.; Unnikrishnan, B. Relationship between postural alignment in sitting by photogrammetry and seated postural control in post-stroke subjects. NeuroRehabilitation 2014, 35, 181–190. [Google Scholar] [CrossRef]
- Gracies, J.M. Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2005, 31, 535–551. [Google Scholar] [CrossRef]
- Fugl-Meyer, A.R.; Grimby, G. Respiration in tetraplegia and in hemiplegia: A review. Int. Rehabil. Med. 1984, 6, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Fugl-Meyer, A.R.; Linderholm, H.; Wilson, A.F. Restrictive ventilatory dysfunction in stroke: Its relation to locomotor function. Scand. J. Rehabil. Med. Suppl. 1983, 9, 118–124. [Google Scholar]
- Snodgrass, S.J.; Rivett, D.A.; Robertson, V.J.; Stojanovski, E. Forces applied to the cervical spine during posteroanterior mobilization. J. Manip. Physiol. Ther. 2009, 32, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Snodgrass, S.J.; Rivett, D.A.; Robertson, V.J. Manual forces applied during cervical mobilization. J. Manip. Physiol. Ther. 2007, 30, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, N.; Barrett, R.; Laakso, L. Relation between changes in posteroanterior stiffness and active range of movement of the cervical spine following manual therapy treatment. Spine 2008, 33, E673–E679. [Google Scholar] [CrossRef] [Green Version]
- Kanlayanaphotporn, R.; Chiradejnant, A.; Vachalathiti, R. The immediate effects of mobilization technique on pain and range of motion in patients presenting with unilateral neck pain: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2009, 90, 187–192. [Google Scholar] [CrossRef]
- Sterling, M.; Jull, G.; Wright, A. Cervical mobilisation: Concurrent effects on pain, sympathetic nervous system activity and motor activity. Man. Ther. 2001, 6, 72–81. [Google Scholar] [CrossRef]
- Wang, S.S.; Meadows, J. Immediate and carryover changes of C5-6 joint mobilization on shoulder external rotator muscle strength. J. Manip. Physiol. Ther. 2010, 33, 102–108. [Google Scholar] [CrossRef]
- Coppieters, M.W.; Stappaerts, K.H.; Wouters, L.L.; Janssens, K. The immediate effects of a cervical lateral glide treatment technique in patients with neurogenic cervicobrachial pain. J. Orthop. Sports Phys. Ther. 2003, 33, 369–378. [Google Scholar] [CrossRef]
- Behne, G.; Silva, P.; Ré, D.d.; Vazatta, M.; Carvalho, A. Maximal respiratory pressures: Comparison between immediate manipulation effect and mobilization of the third cervical vertebra. Arq. De Ciências Da Saúde Da Unipar 2013, 17, 69–76. [Google Scholar]
- Mendelsohn, A.H.; DeConde, A.; Lambert, H.W.; Dodson, S.C.; Daney, B.T.; Stark, M.E.; Berke, G.S.; Wisco, J.J. Cervical variations of the phrenic nerve. Laryngoscope 2011, 121, 1920–1923. [Google Scholar] [CrossRef] [PubMed]
- Botha, G.M. The anatomy of phrenic nerve termination and the motor innervation of the diaphragm. Thorax 1957, 12, 50. [Google Scholar] [CrossRef] [Green Version]
- Zafar, H.; Albarrati, A.; Alghadir, A.H.; Iqbal, Z.A. Effect of different head-neck postures on the respiratory function in healthy males. Biomed Res. Int. 2018, 2018, 4518269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.H.; Cho, K.H.; Park, S.J. Effects of trunk rehabilitation with kinesio and placebo taping on static and dynamic sitting postural control in individuals with chronic stroke: A randomized controlled trial. Top. Stroke Rehabil. 2020, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J. Effects of Inspiratory Muscles Training Plus Rib Cage Mobilization on Chest Expansion, Inspiratory Accessory Muscles Activity and Pulmonary Function in Stroke Patients. Appl. Sci. 2020, 10, 5178. [Google Scholar] [CrossRef]
Classification | Experimental Group (n = 12) | Control Group (n = 12) | p-Value b | p-Value c |
---|---|---|---|---|
Gender (male/female) | 8/4 | 8/4 | 0.100 | |
Paretic side (left/right) | 7/5 | 9/3 | 0.667 | |
Pathogenesis (hemorrhages/infarction) | 9/3 | 7/5 | 0.667 | |
Disease duration (months) a | 13.92 ± 3.32 | 14.42 ± 3.03 | 0.662 | |
Age (years) a | 66.33 ± 10.58 | 65.50 ± 9.18 | 0.795 | |
Weight (kg) a | 64.00 ± 8.34 | 65.30 ± 8.49 | 0.686 | |
Height (cm) a | 165.34 ± 8.56 | 165.57 ± 8.08 | 0.729 | |
K-MMSE (point) a | 26.25 ± 2.01 | 26.33 ± 2.06 | 0.953 |
Measure/Group | Baseline Test a | Post Test a | Mean Difference a | Within Group Difference b | Between Group Difference c | |
---|---|---|---|---|---|---|
CVA (°) | Experimental group | 43.27 ± 2.49 | 47.15 ± 4.08 | 3.88 ± 3.69 | Z = −2.746 p = 0.006 * | U = 41.000 p = 0.073 |
Control group | 42.19 ± 2.90 | 43.88 ± 5.15 | 1.69 ± 3.11 | Z = −1.570 p = 0.117 | ||
CRA (°) | Experimental group | 147.62 ± 9.47 | 152.10 ± 5.74 | 1.41 ± 11.45 | Z = −2.197 p = 0.028 * | U = 62.000 p = 0.564 |
Control group | 145.65 ± 7.85 | 148.63 ± 9.70 | 0.85 ± 8.54 | Z = −1.648 p = 0.099 |
Measure/Group | Baseline Test a | Post Test a | Mean Difference a | Within Group Difference b | Between Group Difference c | |
---|---|---|---|---|---|---|
FVC (ℓ) | Experimental group | 2.77 ± 0.57 | 3.13 ± 0.46 | 0.37 ± 0.29 | Z = −2.758 p = 0.006 * | U = 44.000 p = 0.106 |
Control group | 2.68 ± 0.53 | 2.87 ± 0.56 | 0.19 ± 0.21 | Z = −2.601 p = 0.009 * | ||
FEV1 (ℓ) | Experimental group | 2.34 ± 0.62 | 2.59 ± 0.54 | 0.26 ± 0.19 | Z = −2.847 p = 0.004 * | U = 49.000 p = 0.184 |
Control group | 2.30 ± 0.50 | 2.46 ± 0.49 | 0.16 ± 0.15 | Z = −2.848 p = 0.004 * | ||
PEF (ℓ/min) | Experimental group | 260.58 ± 71.24 | 314.42 ± 61.62 | 53.83 ± 40.59 | Z = −2.847 p = 0.004 * | U = 43.000 p = 0.094 |
Control group | 254.08 ± 69.56 | 283.25 ± 75.52 | 29.17 ± 28.72 | Z = −2758 p = 0.006 * | ||
MIP (mmHg) | Experimental group | 39.67 ± 5.91 | 52.33 ± 3.73 | 12.67 ± 5.23 | Z = −3.065 p = 0.002 * | U = 22.000 p = 0.003 ** |
Control group | 39.50 ± 5.28 | 45.33 ± 3.80 | 5.83 ± 4.22 | Z = −3.070 p = 0.002 * | ||
MEP (mmHg) | Experimental group | 53.08 ± 11.08 | 70.17 ± 11.13 | 17.08 ± 9.98 | Z = −3.061 p = 0.002 * | U = 44.000 p = 0.106 |
Control group | 52.50 ± 10.47 | 63.58 ± 9.63 | 11.08 ± 5.12 | Z = −3.061 p = 0.002 * | ||
Upper chest circumference (cm) | Experimental group | 1.61 ± 0.57 | 2.49 ± 0.84 | 0.88 ± 0.99 | Z = −2.551 p = 0.011 * | U = 70.000 p = 0.908 |
Control group | 1.42 ± 0.53 | 2.19 ± 0.71 | 0.78 ± 0.87 | Z = −2.356 p = 0.018 * | ||
Lower chest circumference (cm) | Experimental group | 1.78 ± 0.61 | 2.76 ± 0.77 | 0.98 ± 1.06 | Z = −2.601 p = 0.009 * | U = 67.500 p = 0.799 |
Control group | 1.68 ± 0.44 | 2.53 ± 0.68 | 0.85 ± 0.73 | Z = −2.551 p = 0.011 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, H.J.; Park, S.J. Effects of Cervical Spine Mobilization on Respiratory Function and Cervical Angles of Stroke Patients: A Pilot Study. Healthcare 2021, 9, 377. https://doi.org/10.3390/healthcare9040377
An HJ, Park SJ. Effects of Cervical Spine Mobilization on Respiratory Function and Cervical Angles of Stroke Patients: A Pilot Study. Healthcare. 2021; 9(4):377. https://doi.org/10.3390/healthcare9040377
Chicago/Turabian StyleAn, Ho Jung, and Shin Jun Park. 2021. "Effects of Cervical Spine Mobilization on Respiratory Function and Cervical Angles of Stroke Patients: A Pilot Study" Healthcare 9, no. 4: 377. https://doi.org/10.3390/healthcare9040377
APA StyleAn, H. J., & Park, S. J. (2021). Effects of Cervical Spine Mobilization on Respiratory Function and Cervical Angles of Stroke Patients: A Pilot Study. Healthcare, 9(4), 377. https://doi.org/10.3390/healthcare9040377