The Beneficial Effects of Cognitive Walking Program on Improving Cognitive Function and Physical Fitness in Older Adults
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Exercise Programs
2.2.1. Cognitive Walking Program
2.2.2. Normal Walking Program
2.3. Measurements
2.3.1. Physical Characteristics
2.3.2. Cognitive Function
2.3.3. Fitness Test
2.3.4. Measurement Frequency
2.4. Statistical Analysis
3. Results
3.1. Cognitive Function
3.2. Fitness Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nied, R.B.; Franklin, B. Promoting and prescribing exercise for the elderly. Am. Fam. Physician. 2002, 65, 419–426. [Google Scholar] [PubMed]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Pamela, W.D.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical activity and public health in older adults: Recommendation from the American Heart Association. Circulation 2007, 28, 1094–1105. [Google Scholar]
- Cui, M.Y.; Lin, Y.; Sheng, J.Y.; Zhang, X.; Cui, R.J. Exercise intervention associated with cognitive improvement in Alzheimer’s disease. Neural Plast. 2018, 11, 9234105. [Google Scholar] [CrossRef]
- Du, Z.; Li, Y.; Li, J.; Zhou, C.; Li, F.; Yang, X. Physical activity can improve cognition in patients with Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Clin. Interv. Aging 2018, 4, 1593–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrucci, L.; Bandinelli, S.; Benvenuti, E.; Iorio, A.D.; Macchi, C.; Harris, T.B.; Guralnik, J.M. Subsystems contributing to the decline in ability to walk: Bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J. Am. Geriatr. Soc. 2000, 48, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Yogev-Seligmann, G.; Hausdorff, J.M.; Giladi, N. The Role of Executive Function and Attention in Gait. Mov. Disord. 2008, 15, 329–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weuve, J.; Kang, J.H.; Manson, J.E.; Breteler, M.M.; Ware, J.H.; Grodstein, F. Physical activity including walking, and cognitive function in older women. JAMA 2004, 292, 1454–1461. [Google Scholar] [CrossRef] [Green Version]
- Prohaska, T.R.; Eisenstein, A.R.; Satariano, W.A.; Hunter, R.; Bayles, C.M.; Kurtovich, E.; Kealey, M.; Ivey, S.L. Walking and the preservation of cognitive function in older populations. Gerontologist 2009, 49, S86–S93. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.D.; White, L.R.; Ross, G.W.; Kamal, H.; Masaki, J.; Curb, D.; Petrovitch, H. Walking and dementia in physically capable elderly men. JAMA 2004, 22, 447–453. [Google Scholar]
- Yaffe, K.; Barnes, D.; Nevitt, M.; Lui, L.Y.; Covinsky, K. A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Arch. Intern. Med. 2001, 23, 1703–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggermont, L.; Swaab, D.; Luiten, P.; Scherder, E. Exercise, cognition and Alzheimer’s disease: More in not necessarily better. Neurosci. Biobehav. Rev. 2006, 30, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, L.; Swaab, D.; Hol, E.; Scherder, E. Walking the line: A randomized trial on the effects of a short term walking programme on cognition in dementia. J. Neurol. Neurosurg. Psychiatry. 2009, 80, 802–804. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.E.; Yaffe, K.; Satariano, W.A.; Tager, I.B. A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J. Am. Geriatr. Soc. 2003, 51, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Voelcker-Rehage, C.; Godde, B.; Staudinger, U.M. Physical and motor fitness are both related to cognition in old age. Eur. J. Neurosci. 2010, 31, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Guiney, H.; Machado, L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon. Bull. Rev. 2013, 20, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.N.; Chaddock-Heyman, L.; Voss, M.W.; Burzynska, A.Z.; Basak, C.; Erickson, K.I.; Prakash, R.S.; Szabo-Reed, A.N.; Phillips, S.M.; Wojcicki, T.; et al. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Front. Aging Neurosci. 2015, 12, 154. [Google Scholar] [CrossRef]
- Lauenroth, A.; Ioannidis, A.E.; Teichmann, B. Influence of combined physical and cognitive training on cognition: A systematic review. BMC Geriatr. 2016, 18, 141. [Google Scholar] [CrossRef] [Green Version]
- Kayama, H.; Okamoto, K.; Nishiguchi, S.; Yamada, M.; Tomohiro, K.; Tomoki, A. Effect of a Kinect-based exercise game on improving executive cognitive performance in community-dwelling elderly: Case control study. J. Med. Internet Res. 2014, 24, e61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Yin, S.; Lang, M. The more the better? a meta-analysis on effects of combined cognitive and physical intervention on cognition in healthy adults. Ageing. Rex. Rev. 2016, 31, 67–79. [Google Scholar] [CrossRef]
- Shigematsu, R.; Okura, T.; Nakagaichi, M. Square-stepping exercise and fall risk factors in older adults: A single-blind, randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Taylor-Piliae, R.E.; Fair, J.M.; Haskell, W.L.; Varady, A.N.; Lribarren, C.; Hlatky, M.A.; Go, A.S.; Fortmann, S.P. Validation of the Stanford Brief Actrivity Survey: Examining psychological factors and physical activity levels in older adults. J. Phys. Act. Health 2010, 7, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.J. Development of step walking exercise program using Natural User Interface and Microsoft Kinetic to prevent dementia. In Proceedings of the Annual Congress of the European College of Sports Science, Vienna, Austria, 6–9 July 2016. [Google Scholar]
- Yang, Y.R.; Wang, R.Y.; Chen, Y.C.; Kao, M.J. Dual-task exercise improves walking ability in chronic stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2007, 88, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Jang, S.; Na, D.L. Seoul Neuropsychological Screening Battery (SNSB- II), 2nd ed.; Human Brain Research & Counsulting Co.: Seoul, Korea, 2012. [Google Scholar]
- Lee, G.J.; Ban, H.J.; Lee, K.M.; Kong, H.H.; Seo, H.S.; Oh, M.W.; Bang, M.Y. A comparison of the effects between 2 computerized cognitive training programs, Bettercog and COMCOG, on elderly patients with MCI and mild dementia. Medicine 2018, 97, e13007. [Google Scholar] [CrossRef]
- Ministry of Culture, Sports, and Tourism. Senior Fitness Promotion Exercise Guideline, 1st ed.; Korea Sports Science Institute: Seoul, Korea, 2012. [Google Scholar]
- Teixeira, C.V.L.; Gobbi, S.; Pereira, J.R.; Vital, T.M.; Hernandéz, S.S.S.; Shigematsu, R.; Gobbi, L.T.B. Effects of square-stepping exercise on cognitive functions of older people. Psychogeriatrics 2013, 13, 148–156. [Google Scholar] [CrossRef]
- Beurskens, R.; Bock, O. Age-related deficits of dual-task walking: A review. Neural Plast. 2012, 131608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srygley, J.M.; Mirelman, A.; Herman, T.; Giladi, N.; Hausdorff, J.M. When does walking alter thinking? age and task associated findings. Brain. Res. 2009, 9, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brustio, P.C.; Magistro, D.; Zecca, M.; Rabaglietti, E.; Liubicich, M.E. Age-related decrements in dual-task performance: Comparison of different mobility and cognitive tasks. A cross sectional study. PLoS ONE 2017, 12, e0181698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tait, J.L.; Duckham, R.L.; Milte, C.M.; Main, L.C.; Daly, R.M. Influence of sequential vs. simultaneous dual-task exercise training on cognitive function in older adults. Front. Aging Neurosci. 2017, 9, 368. [Google Scholar] [CrossRef] [PubMed]
- Weis, S.; Kimbacher, M.; Wenger, E.; Neuhold, A. Morphometric analysis of the corpus callosum using MR: Correlation of measurements with aging in healthy individuals. AJNR. Am. J. Neuroradiol. 1993, 14, 637–645. [Google Scholar] [PubMed]
- Jarrard, L.E. What does the hippocampus really do? Behav. Brain. Res. 1995, 71, 1–10. [Google Scholar] [CrossRef]
- Raz, N.; Rodrigue, K.M.; Kennedy, K.M. Hormone replacement therapy and age-related brain shrinkage: Regional effects. Neuroreport 2004, 15, 2531–2534. [Google Scholar] [CrossRef]
- Long, L.H.; Liu, R.L.; Wang, F.; Liu, J.; Hu, Z.L.; Xie, N.; Jin, Y.; Fu, H.; Chen, J.G. Age-related synaptic changes in the CA1 stratum radiatum and spatial learning impairment in rats. Clin. Exp. Pharmacol. Physiol. 2008, 36, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Smith, P.F.; Darlington, C.L. Glutamate receptor subunits expression in memory-associated brain structures: Regional variations and effects of aging. Synapse 2008, 62, 834–841. [Google Scholar] [CrossRef] [PubMed]
- van Praag, H.; Shubert, T.; Zhao, C.; Gage, F.H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 2005, 25, 8680–8685. [Google Scholar] [CrossRef] [PubMed]
- Cotman, C.W.; Berchtold, N.C. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002, 25, 295–301. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erikson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosce 2008, 9, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Benedetto, S.D.; Müller, L.; Wenger, E. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci. Biobehav. Rev. 2017, 75, 114–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sipilä, S.; Tirkkonen, A.; Hänninen, T.; Laukkanen, P.; Alen, M.; Fielding, R.A.; Kivipelto, M.; Kokko, K.; Kulmala, J.; Rantanen, T.; et al. Promoting safe walking among older people: The effects of a physical and cognitive training intervention vs. physical training alone on mobility and falls among older community-dwelling men and women (the PASSWORD study): Design and methods of a randomized controlled trial. BMC Geriatr. 2018, 15, 215. [Google Scholar]
- Frith, E.; Loprinzi, P.D. The association between lower extremity muscular strength and cognitive function in a national sample of older adults. J. Lifestyle. Med. 2018, 8, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Shaughnessy, K.A.; Hackney, K.J.; Clark, B.C.; Kraemer, W.J.; Terbizan, D.J.; Bailey, R.R.; McGrath, R. A narrative review of handgrip strength and cognitive functioning: Bringing a new characteristic to muscle memory. J. Alzheimers. Dis. 2020, 73, 1265–1278. [Google Scholar] [CrossRef]
- Viscogliosi, G.; Di Bernardo, M.G.; Ettorre, E.; Chiriac, M. Handgrip strength predicts longitudinal changes in clock drawing test performance: An observational study in a sample of older non-demented adults. J. Nutr. Health Aging 2017, 21, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Dupre, M.E.; Østbye, T.; Vorderstrasse, A.A.; Wu, B. Residential mobility and cognitive function among middle-aged and older adults in China. Res. Aging 2019, 41, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Prakash, R.S.; Voss, M.W.; Erickson, K.I.; Lewis, J.M.; Chaddock, L.; Malkowski, E.; Alves, H.; Kim, J.; Szabo, A.; White, S.M.; et al. Cardiorespiratory fitness and attentional control in the aging brain. Front. Hum. Neurosci. 2011, 14, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, K.I.; Prakash, R.S.; Voss, M.W. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2019, 19, 1030–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pentikäinen, H.; Savonen, K.; Ngandu, T.; Solomon, A.; Komulainen, P.; Paajanen, T.; Antikainen, R.; Kivipelto, M.; Soininen, H.; Rauramaa, R. Cardiorespiratory fitness and cognition: Longitudinal associations in the FINGER study. J. Alzheimers. Dis. 2019, 68, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Northey, J.M.; Cherbuin, N.; Pumpa, K.L. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br. J. Sports Med. 2018, 52, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciencs, 2nd ed.; Eribaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
Group | Age (years) | Body Mass Index (kg/m2) | Waist Circumference (cm) |
---|---|---|---|
CWPAG (n = 20) | 72.40 ± 3.90 | 24.2 ± 1.64 | 86.59 ± 5.19 |
CWPSG (n = 21) | 73.29 ± 4.80 | 24.42 ± 2.34 | 86.34 ± 8.41 |
NWSG (n = 11) | 74.45 ± 4.47 | 25.53 ± 2.13 | 89.95 ± 6.42 |
Cognitive Function | Group | T0 | T1 | T2 | Group | Time | Group × Time Interaction |
---|---|---|---|---|---|---|---|
Attention | CWPAG | 49.97 ± 9.17 | 53.33 ± 8.291 1 | 54.15 ± 8.35 * | F(2) = 0.68, p = 0.510, partial η2 = 0.066 | F(2) = 1.3, p = 0.277, partial η2 = 0.025 | F(4) = 0.91, p = 0.461, partial η2 = 0.034 |
CWPSG | 48.71 ± 8.22 | 50.06 ± 11.28 | 50.93 ± 9.87 | ||||
NWSG | 52.17 ± 8.47 | 51.93 ± 8.9 | 51.71 ± 7.24 | ||||
Visuospatial function | CWPAG | 39.58 ± 17.64 | 45.12 ± 15.73 | 50.87 ± 18.8 ** | F(2) = 2.41, p = 0.097 partial η2 = 0.013 | F(2) = 4.45, p = 0.014, partial η2 = 0.08 | F(4) = 1.53, p = 0.198, partial η2 = 0.056 |
CWPSG | 46.32 ± 15.08 | 52.87 ± 7.7 | 53.99 ± 12.8 * | ||||
NWSG | 49.97 ± 11.16 | 55.52 ± 6.28 | 48.48 ± 15.66 | ||||
Memory | CWPAG | 52.95 ± 8.04 | 55.85 ± 9.35 * | 61.18 ± 12.12 *** | F(2) = 0.38, p = 0.682, partial η2 = 0.046 | F(2) = 47.77, p < 0.001, partial η2 = 0.481 | F(4) = 0.91, p = 0.464, partial η2 = 0.034 |
CWPSG | 48.89 ± 9.83 | 56.37 ± 11.42 ** | 60.33 ± 10.21 *** | ||||
NWSG | 46.68 ± 6.14 | 55.74 ± 6.07 *** | 58.43 ± 6.34 *** | ||||
Frontal/ executive function | CWPAG | 56.26 ± 12.52 | 57.37 ± 12.77 | 59.45 ± 14.42 2 | F(2) = 0.15, p = 0.863, partial η2 = 0.035 | F(2) = 6.55, p = 0.002, partial η2 = 0.113 | F(4) = 0.97, p = 0.425, partial η2 = 0.036 |
CWPSG | 57.88 ± 10.11 | 59.48 ± 11.27 | 60.02 ± 11.77 | ||||
NWSG | 51.7 ± 16.66 | 52.75 ± 16.48 | 58.3 ± 17.59 ** |
Physical Fitness Components | Group | T0 | T1 | T2 | Group | Time | Group × Time Interaction |
---|---|---|---|---|---|---|---|
Cardiorespiratory fitness | CWPAG | 113.9 ± 16.41 | 120.7 ± 10.47 * | 135.65 ± 10.52 *** | F(2) = 0.52, p = 0.599, partial η2 = 0.025 | F(2) = 39.82, p < 0.001, partial η2 = 0.434 | F(4) = 4.26, p = 0.003, partial η2 = 0.141 |
CWPSG | 111.71 ± 19.4 | 124.05 ± 15.15 ** | 125.48 ± 22.46 ** | ||||
NWSG | 97.27 ± 10.94 | 126.82 ± 6.87 *** | 127 ± 13.04 *** | ||||
Lower extremity muscular strength | CWPAG | 16.65 ± 2.62 | 19.6 ± 3.89 | 24.8 ± 5.05 ** | F(2) = 0.24, p = 0.79, partial η2 = 0.004 | F(2) = 10.91, p < 0.001, partial η2 = 0.173 | F(4) = 0.39, p = 0.817, partial η2 = 0.015 |
CWPSG | 17.67 ± 3.38 | 19.9 ± 3.02 | 27.24 ± 26.35 ** | ||||
NWSG | 13.45 ± 2.66 | 20.55 ± 2.7 | 22.55 ± 2.5 * | ||||
Active balance ability | CWPAG | 7.03 ± 0.98 | 6.56 ± 1.02 ** | 5.56 ± 0.56 *** | F(2) = 1.35, p = 0.266, partial η2 = 0.069 | F(2) = 77.65, p < 0.001, partial η2 = 0.599 | F(4) = 4.04, p = 0.004, partial η2 = 0.134 |
CWPSG | 7.37 ± 1.16 | 6.5 ± 0.78 ** | 5.8 ± 0.74 *** | ||||
NWSG | 7.82 ± 0.9 | 5.88 ± 0.69 *** | 5.73 ± 0.74 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.-J.; Kim, B.-H.; Lee, H.; Wang, J. The Beneficial Effects of Cognitive Walking Program on Improving Cognitive Function and Physical Fitness in Older Adults. Healthcare 2021, 9, 419. https://doi.org/10.3390/healthcare9040419
Kang S-J, Kim B-H, Lee H, Wang J. The Beneficial Effects of Cognitive Walking Program on Improving Cognitive Function and Physical Fitness in Older Adults. Healthcare. 2021; 9(4):419. https://doi.org/10.3390/healthcare9040419
Chicago/Turabian StyleKang, Suh-Jung, Byung-Hoon Kim, Hyo Lee, and Jinsung Wang. 2021. "The Beneficial Effects of Cognitive Walking Program on Improving Cognitive Function and Physical Fitness in Older Adults" Healthcare 9, no. 4: 419. https://doi.org/10.3390/healthcare9040419
APA StyleKang, S. -J., Kim, B. -H., Lee, H., & Wang, J. (2021). The Beneficial Effects of Cognitive Walking Program on Improving Cognitive Function and Physical Fitness in Older Adults. Healthcare, 9(4), 419. https://doi.org/10.3390/healthcare9040419