Effect of e-Health Literacy on COVID-19 Infection-Preventive Behaviors of Undergraduate Students Majoring in Healthcare
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting and Participants
2.3. Data Collection and Procedure
2.4. Measures
2.4.1. General Characteristics of Participants
2.4.2. e-Health Literacy
2.4.3. Infection-Preventive Behaviors
2.5. Analysis
3. Results
3.1. Characteristics of Participants and the Level of e-HL and Infection-Preventive Behaviors
3.2. e-HL and Infection-Preventive Behaviors according to the General Characteristics
3.3. Correlations between e-HL and Infection-Preventive Behaviors
3.4. Regression Results on Infection-Preventive Behaviors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winker, M.A.; Flanagin, A.; Chi-Lum, B.; White, J.; Andrews, K.; Kennett, R.L.; DeAngelis, C.D.; Musacchio, R.A. Guidelines for medical and health information sites on the Internet. JAMA 2000, 283, 1600–1606. [Google Scholar] [CrossRef]
- Stellefson, M.; Hanik, B.; Chaney, B.; Chaney, D.; Tennant, B.; Chavarria, E.A. eHealth literacy among college students: A systematic review with implications for eHealth education. J. Med. Internet Res. 2011, 13, e102. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.S.; Nass, C. Conceptualizing sources in online news. J. Commun. 2001, 51, 52–72. [Google Scholar] [CrossRef]
- WHO. The COVID-19 Timeline. Available online: https://www.who.int/news-room/detail/27-04-2020-who-timeline---covid-19 (accessed on 27 January 2021).
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19–11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 27 January 2021).
- Greenhalgh, T.; Schmid, M.B.; Czypionka, T.; Bassler, D.; Gruer, L. Face masks for the public during the COVID-19 crisis. BMJ 2020, 369, m1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.; Liu, W.; Lee, T.-Y.; Zhao, H.; Ji, J. Risk perception, knowledge, information sources and emotional states among COVID-19 patients in Wuhan, Chna. Nurs. Outlook 2021, 69, 13–21. [Google Scholar] [CrossRef]
- Nielsen, R.K.; Fletcher, R.; Newman, N.; Brennen, J.S.; Howard, P.N. Navigating the ‘Infodemic’: How People in Six Countries Access and Rate News and Information about Coronavirus. 2020. Available online: https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2020-04/Navigating%20the%20Coronavirus%20Infodemic%20FINAL.pdf (accessed on 27 May 2020).
- Okan, O.; Bollweg, T.M.; Berens, E.-M.; Hurrelmann, K.; Bauer, U.; Schaeffer, D. Coronavirus-related health literacy: A cross-sectional study in adults during the COVID-19 Infodemic in Germany. Int. J. Environ. Res. Public Health 2020, 17, 5503. [Google Scholar] [CrossRef]
- Duong, T.V.; Aringazina, A.; Baisunova, G.; Pham, T.V.; Pham, K.M.; Truong, T.Q.; Nguyen, K.T.; Oo, W.M.; Mohamad, E.; Su, T.T.; et al. Measuring health literacy in Asia: Validation of the HLS-EU-Q47 survey tool in six Asian countries. J. Epidemiol. 2017, 27, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Oh, H.J.; Hong, D.Y.; Shim, J.C.; Jang, J.H. The impact of media on the risk perception and preventive behavior intentions related to a new infectious disease. J. Advert. Res. 2018, 119, 123–152. [Google Scholar] [CrossRef]
- Norman, C.D.; Skinner, H.A. eHEALS: The eHealth Literacy Scale. J. Med. Internet Res. 2006, 8, e27. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, Q. Social media use, eHealth literacy, disease knowledge, and preventive behaviors in the COVID-19 pandemic: Cross-sectional study on Chinese netizens. J. Med. Internet Res. 2020, 22, e19684. [Google Scholar] [CrossRef]
- Yang, B.X.; Xia, L.; Huang, R.; Chen, P.; Luo, D.; Liu, Q.; Kang, L.J.; Zhang, Z.-J.; Liu, Z.; Yu, S.; et al. Relationship between eHealth literacy and psychological status during COVID-19 pandemic: A survey of Chinese residents. J. Nurs. Manag. 2020, 1–8. [Google Scholar] [CrossRef]
- National Information Society Agency. Internet Usage Survey of Korea. 2019. Available online: https://www.nia.or.kr/site/nia_kor/ex/bbs/View.do?cbIdx=99870&bcIdx=21930&parentSeq=21930 (accessed on 25 May 2020).
- Newspaper Report. “You’ll be Infected to COVID-19 if You’re unlucky, but I’m Healthy,” A Statement from a Woman in Her 20s. Available online: https://www.hankookilbo.com/News/Read/202005111722745947 (accessed on 25 May 2020).
- Gilmour, J.A. Reducing disparities in the access and use of Internet health information. A discussion paper. Int. J. Nurs. Stud. 2007, 44, 1270–1278. [Google Scholar] [CrossRef]
- Tsukahara, S.; Yamaguchi, S.; Igarashi, F.; Uruma, R.; Ikuina, N.; Iwakura, K.; Sato, Y. Association of eHealth literacy with lifestyle behaviors in university students: Questionnaire-based cross-sectional study. J. Med. Internet Res. 2020, 22, e18155. [Google Scholar] [CrossRef]
- Tubaishat, A.; Habiballah, L. eHealth literacy among undergraduate nursing students. Nurs. Educ. Today. 2016, 42, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Barranco, R.; Vallega Bernucci Du Tremoul, L.; Ventura, F. Hospital-acquired SARS-CoV-2 infections in patients: Inevitable conditions or medical malpractice? Int. J. Environ. Res. Public Health 2021, 18, 489. [Google Scholar] [CrossRef]
- Lee, S.R. A Study for Developing eHealth Literacy Scale. Ph.D. Thesis, Hanyang University, Seoul, Korea, 18 April 2018. [Google Scholar]
- Lee, S.Y.; Yang, H.J.; Kim, G.; Cheong, H.K.; Choi, B.Y. Preventive behaviors by the level of perceived infection sensitivity during the Korea outbreak of Middle East Respiratory Syndrome in 2015. Epidemiol. Health 2016, 38, e2016051. [Google Scholar] [CrossRef] [Green Version]
- Hwang, A.R.; Gang, H.W. Influence of eHealth Literacy on health promoting behaviors among university students. J. Korean Soc. Sch. Health 2019, 32, 165–174. [Google Scholar] [CrossRef]
- Hsu, W.C.; Chiang, C.H.; Yang, S.C. The effect of individual factors on health behaviors among college students: The mediating effects of eHealth literacy. J. Med. Internet Res. 2014, 16, e287. [Google Scholar] [CrossRef]
- Yang, S.-C.; Luo, Y.F.; Chiang, C.H. The associations among individual factors, eHealth literacy, and health-promoting lifestyles among college students. J. Med. Internet Res. 2017, 19, e15. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare, COVID-19 Infection Prevention Measures. Available online: http://ncov.mohw.go.kr/baroView4.do?brdId=4&brdGubun=44 (accessed on 10 February 2021).
- Jacobs, R.J.; Lou, J.Q.; Ownby, R.L.; Caballero, J. A systematic review of eHealth interventions to improve health literacy. J. Health Inform. 2016, 22, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Britt, R.K.; Collins, W.B.; Wilson, K.; Linnemeier, G.; Englebert, A.M. eHealth literacy and health behaviors affecting modern college students: A pilot study of issues identified by the American college health association. J. Med. Internet Res. 2017, 19, e392. [Google Scholar] [CrossRef]
- Yuan, T.; Liu, H.; Li, X.D.; Liu, H.R. Factors affecting infection control behaviors to prevent COVID-19: An online survey of nursing students in Anhui, China in March and April 2020. Med. Sci. Monit. 2020, 26, e925877. [Google Scholar] [CrossRef] [PubMed]
- Do, B.N.; Tran, T.V.; Phan, D.T.; Nguyen, H.C.; Nguyen, T.T.P.; Nguyen, H.C.; Ha, T.H.; Dao, H.K.; Trinh, M.V.; Do, T.V.; et al. Health literacy, e-health literacy, adherence to infection prevention and control procedures, lifestyle changes, and suspected COVID-19 symptoms among health care workers during lockdown: Online survey. J. Med. Internet Res. 2020, 22, e22894. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Mumtaz, S.; Khattak, O.; Mumtaz, R.; Ahmed, A. Comparing the preventive behavior of medical students and physicians in the era of COVID-19: Novel medical problems demand novel curricular interventions. Biochem. Mol. Biol. Edu. 2020, 48, 473–481. [Google Scholar] [CrossRef]
- Xie, B. Effects of an eHealth literacy intervention for older adults. J. Med. Internet Res. 2011, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Categories | N (%) or M ± SD | Range (Min-Max) |
---|---|---|---|
Gender | Male | 37 (13.5) | |
Female | 237 (86.5) | ||
Major | Nursing | 138 (50.4) | |
Clinical pathology | 43 (15.7) | ||
Occupational therapy | 93 (33.9) | ||
Grade | 1 | 79 (28.8) | |
2 | 90 (32.8) | ||
3 | 60 (21.9) | ||
4 | 45 (16.4) | ||
Health status | Poor or moderate | 100 (36.4) | |
Healthy | 174 (63.5) | ||
Health concerns | Low or moderate | 99 (36.1) | |
High | 175 (63.8) | ||
Health management time (h) | <1 | 122 (44.5) | |
1–<4 | 85 (31.0) | ||
≥4 | 67 (24.4) | ||
e-Health literacy | Overall | 3.62 ± 0.60 | 1–5 (2.06–5.00) |
Functional | 3.98 ± 0.66 | 1–5 (1.13–5.00) | |
Communicative | 3.41 ± 0.80 | 1–5 (1.09–5.00) | |
Critical | 3.58 ± 0.66 | 1–5 (1.92–5.00) | |
Preventive behaviors | Overall | 4.22 ± 0.51 | 1–5 (2.50–5.00) |
Not touching eyes or mouth with unwashed hands | 3.46 ± 1.04 | 1–5 (1–5) | |
Covering mouth when sneezing or coughing | 3.71 ± 1.13 | 1–5 (1–5) | |
Avoiding someone showing respiratory symptoms or fever | 4.46 ± 0.80 | 1–5 (1–5) | |
Wearing a mask outdoors | 4.91 ± 0.36 | 1–5 (3–5) | |
Avoiding crowded places | 4.41 ± 0.78 | 1–5 (2–5) | |
Refraining from visiting hospitals | 4.37 ± 0.87 | 1–5 (1–5) |
Variables | Categories | e-Health Literacy | Preventive Behavior | ||
---|---|---|---|---|---|
M ± SD | t or F | M ± SD | t or F | ||
Gender | Male | 3.74 ± 0.62 | 1.29 (0.199) | 4.20 ± 0.55 | −0.22 (0.824) |
Female | 3.61 ± 0.60 | 4.22 ± 0.51 | |||
Major | Nursing | 3.75 ± 0.57 | 6.54 (0.002) a > b, c | 4.29 ± 0.50 | 2.56 (0.079) |
Clinical pathology | 3.44 ± 0.47 | 4.12 ± 0.54 | |||
Occupational therapy | 3.52 ± 0.67 | 4.17 ± 0.52 | |||
Grade | 1 | 3.59 ± 0.61 | 1.19 (0.313) | 4.30 ± 0.52 | 2.46 (0.063) |
2 | 3.63 ± 0.57 | 4.24 ± 0.48 | |||
3 | 3.55 ± 0.67 | 4.07 ± 0.55 | |||
4 | 3.76 ± 0.55 | 4.24 ± 0.50 | |||
Health status | Poor or moderate | 3.50 ± 0.56 | −2.71 (0.007) | 4.09 ± 0.54 | −3.23 (0.001) |
Healthy | 3.70 ± 0.61 | 4.30 ± 0.48 | |||
Health concerns | Low or moderate | 3.40 ± 0.58 | −4.71 (<0.001) | 4.09 ± 0.55 | −3.27 (0.001) |
High | 3.75 ± 0.58 | 4.30 ± 0.48 | |||
Health management time (h) | <1 | 3.54 ± 0.60 | 2.52 (0.082) | 4.16 ± 0.54 | 2.55 (0.080) |
1–<4 | 3.64 ± 0.60 | 4.21 ± 0.47 | |||
≥4 | 3.75 ± 0.60 | 4.34 ± 0.51 |
Variables | Functional e-HL | Communicative e-HL | Critical e-HL | Overall e-HL | Preventive Behaviors |
---|---|---|---|---|---|
Functional e-HL | 1.00 | ||||
Communicative e-HL | 0.47 (<0.001) | 1.00 | |||
Critical e-HL | 0.62 (<0.001) | 0.60 (<0.001) | 1.00 | ||
Overall e-HL | 0.77 (<0.001) | 0.86 (<0.001) | 0.88 (<0.001) | 1.00 | |
Preventive behaviors | 0.24 (0.001) | 0.19 (0.001) | 0.30 (<0.001) | 0.29 (<0.001) | 1.00 |
Variables | Categories | Beta | SE | t | p |
---|---|---|---|---|---|
e-Health literacy | 0.23 | 0.05 | 3.81 | <0.001 | |
Gender (vs. male) | Female | 0.08 | 0.09 | 1.37 | 0.173 |
Major (vs. nursing) | Clinical pathology | −0.01 | 0.09 | −0.20 | 0.840 |
Occupational therapy | −0.03 | 0.07 | −0.41 | 0.685 | |
Grade (vs. 1) | 2 | −0.05 | 0.08 | −0.74 | 0.457 |
3 | −0.17 | 0.09 | −2.41 | 0.016 | |
4 | −0.07 | 0.09 | −1.09 | 0.277 | |
Health status (vs. poor or moderate) | Healthy | 0.11 | 0.06 | 1.87 | 0.062 |
Health concerns (vs. low or moderate) | High | 0.09 | 0.07 | 1.42 | 0.157 |
Health management time (h, vs. <1) | 1–<4 | −0.02 | 0.07 | −0.24 | 0.810 |
≥4 | 0.07 | 0.08 | 1.07 | 0.284 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, K.J.; Park, N.L.; Heo, S.Y.; Jung, S.H.; Lee, Y.B.; Hwang, J.H. Effect of e-Health Literacy on COVID-19 Infection-Preventive Behaviors of Undergraduate Students Majoring in Healthcare. Healthcare 2021, 9, 573. https://doi.org/10.3390/healthcare9050573
Hong KJ, Park NL, Heo SY, Jung SH, Lee YB, Hwang JH. Effect of e-Health Literacy on COVID-19 Infection-Preventive Behaviors of Undergraduate Students Majoring in Healthcare. Healthcare. 2021; 9(5):573. https://doi.org/10.3390/healthcare9050573
Chicago/Turabian StyleHong, Kyung Jin, Noo Lee Park, Soo Yeon Heo, Seo Hyun Jung, Ye Been Lee, and Ji Hoon Hwang. 2021. "Effect of e-Health Literacy on COVID-19 Infection-Preventive Behaviors of Undergraduate Students Majoring in Healthcare" Healthcare 9, no. 5: 573. https://doi.org/10.3390/healthcare9050573
APA StyleHong, K. J., Park, N. L., Heo, S. Y., Jung, S. H., Lee, Y. B., & Hwang, J. H. (2021). Effect of e-Health Literacy on COVID-19 Infection-Preventive Behaviors of Undergraduate Students Majoring in Healthcare. Healthcare, 9(5), 573. https://doi.org/10.3390/healthcare9050573