Effectiveness of Whole-Body Vibration Training to Improve Muscle Strength and Physical Performance in Older Adults: Prospective, Single-Blinded, Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Randomization
2.3. Participants
2.4. Sample Size
2.5. Intervention
2.6. Outcome Measurements
2.6.1. Primary Outcome Measurements
2.6.2. Secondary Outcome Measurements
2.6.3. Adverse Effects
2.7. Statistical Analysis
3. Results
3.1. Participants
3.2. Primary Outcomes
3.3. Secondary Outcomes
3.3.1. Grip Strength
3.3.2. Short Physical Performance Battery
3.3.3. 36-Item Short Form Survey
3.3.4. Body Composition Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Machado, A.; García-López, D.; González-Gallego, J.; Garatachea, N. Whole-body vibration training increases muscle strength and mass in older women: A randomized-controlled trial. Scand. J. Med. Sci. Sports 2009, 20, 200–207. [Google Scholar] [CrossRef]
- Lam, F.M.; Lau, R.W.; Chung, R.C.; Pang, M.Y. The effect of whole body vibration on balance, mobility and falls in older adults: A systematic review and meta-analysis. Maturitas 2012, 72, 206–213. [Google Scholar] [CrossRef]
- Kawanabe, K.; Kawashima, A.; Sashimoto, I.; Takeda, T.; Sato, Y.; Iwamoto, J. Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly. Keio J. Med. 2007, 56, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melchiorri, G.; Rainoldi, A. Muscle fatigue induced by two different resistances: Elastic tubing versus weight machines. J. Electromyogr. Kinesiol. 2011, 21, 954–959. [Google Scholar] [CrossRef]
- Tsuzuku, S.; Kajioka, T.; Endo, H.; Abbott, R.D.; Curb, J.D.; Yano, K. Favorable effects of non-instrumental resistance training on fat distribution and metabolic profiles in healthy elderly people. Graefe’s Arch. Clin. Exp. Ophthalmol. 2007, 99, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.-C.; Jeng, J.-S.; Chen, W.-S.; Pan, G.-S.; Bs, W.-Y.C.P.; Lee, Y.-Y.; Teng, T.; Chuang, P.W.-Y. Early Mobilization of Mild-Moderate Intracerebral Hemorrhage Patients in a Stroke Center: A Randomized Controlled Trial. Neurorehabilit. Neural Repair 2019, 34, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Merriman, H.; Jackson, K.J. The effects of whole-body vibration training in aging adults: A systematic review. J. Geriatr. Phys. 2009, 32, 134–145. [Google Scholar] [CrossRef]
- Yang, X.; Wang, P.; Liu, C.; He, C.; Reinhardt, J.D. The effect of whole body vibration on balance, gait performance and mobility in people with stroke: A systematic review and meta-analysis. Clin. Rehabil. 2014, 29, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Barbosa, F.; del Pozo-Cruz, J.; del Pozo-Cruz, B.; García-Hermoso, A.; Alfonso-Rosa, R.M. Effects of Whole-Body Vibration on Functional Mobility, Balance, Gait Strength, and Quality of Life in Institutionalized Older People: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Aging Phys. Act. 2019, 28, 219–230. [Google Scholar] [CrossRef]
- Rahimi, G.R.M.; Smart, N.A.; Liang, M.T.C.; Bijeh, N.; Albanaqi, A.L.; Fathi, M.; Niyazi, A.; Rahimi, N.M. The Impact of Different Modes of Exercise Training on Bone Mineral Density in Older Postmenopausal Women: A Systematic Review and Meta-analysis Research. Calcif. Tissue Int. 2020, 106, 577–590. [Google Scholar] [CrossRef]
- Yañez-Álvarez, A.; Bermúdez-Pulgarín, B.; Hernández-Sánchez, S.; Albornoz-Cabello, M. Effects of exercise combined with whole body vibration in patients with patellofemoral pain syndrome: A randomised-controlled clinical trial. BMC Musculoskelet. Disord. 2020, 21, 582. [Google Scholar] [CrossRef]
- Jung, Y.; Chung, E.-J.; Chun, H.-L.; Lee, B.-H. Effects of whole-body vibration combined with action observation on gross motor function, balance, and gait in children with spastic cerebral palsy: A preliminary study. J. Exerc. Rehabil. 2020, 16, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Butler, A.J. Efficacy of Controlled Whole-Body Vibration Training on Improving Fall Risk Factors in Stroke Survivors: A Meta-analysis. Neurorehabilit. Neural Repair 2020, 34, 275–288. [Google Scholar] [CrossRef]
- Michels, M.D.L.; D’Acampora, A.C.; Spivakoski, C.S.; Mattje, P.N.D.; Réus, B.D.S.; Alves, D.M.D.S.; Pilletti, K.; Ronsoni, M.F.; Hohl, A.; Van De Sande-Lee, S. MON-624 Effect of Whole Body Vibration on Glycemic Control in Adults with Type 2 Diabetes. J. Endocr. Soc. 2020, 4, MON-624. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, W.; Zheng, J.; Chen, S.; Qiao, J.; Wang, X. Whole Body Vibration Exercise for Chronic Musculoskeletal Pain: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arch. Phys. Med. Rehabil. 2019, 100, 2167–2178. [Google Scholar] [CrossRef]
- Lin, P.-C.; Chang, S.-F.; Ho, H.-Y. Effect of Whole-Body Vibration Training on the Physical Capability, Activities of Daily Living, and Sleep Quality of Older People with Sarcopenia. Appl. Sci. 2020, 10, 1695. [Google Scholar] [CrossRef] [Green Version]
- Ritzmann, R.; Krämer, A.; Bernhardt, S.; Gollhofer, A. Whole Body Vibration Training—Improving Balance Control and Muscle Endurance. PLoS ONE 2014, 9, e89905. [Google Scholar] [CrossRef] [Green Version]
- Šarabon, N.; Kozinc, Ž.; Löfler, S.; Hofer, C. Resistance Exercise, Electrical Muscle Stimulation, and Whole-Body Vibration in Older Adults: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 2902. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, M.F.; Brandão, D.C.; de Sá, R.B.; de Souza, H.C.M.; Fuzari, H.K.B.; Andrade, A.D. Effects of whole body vibration on muscle strength and quality of life in health elderly: A meta-analysis. Fifioter. Mov. 2017, 30, 171–182. [Google Scholar] [CrossRef]
- Lai, C.-C.; Tu, Y.-K.; Wang, T.-G.; Huang, Y.-T.; Chien, K.-L. Effects of resistance training, endurance training and whole-body vibration on lean body mass, muscle strength and physical performance in older people: A systematic review and network meta-analysis. Age Ageing 2018, 47, 367–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwamoto, J.; Osugi, T.; Yamazaki, M.; Takakuwa, M. Effect of a combination of whole body vibration exercise and squat training on body balance, muscle power, and walking ability in the elderly. Ther. Clin. Risk Manag. 2014, 10, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Rosenberger, A.; Beijer, Å.; Johannes, B.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J. Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training. J. Musculoskelet. Neuronal Interact. 2017, 17, 38–49. [Google Scholar]
- Osawa, Y.; Oguma, Y. Effects of resistance training with whole-body vibration on muscle fitness in untrained adults. Scand. J. Med. Sci. Sports 2013, 23, 84–95. [Google Scholar] [CrossRef]
- McHugh, M.P.; Cosgrave, C.H. To stretch or not to stretch: The role of stretching in injury prevention and performance. Scand. J. Med. Sci. Sports 2009, 20, 169–181. [Google Scholar] [CrossRef]
- Kang, Y.W.; Na, D.L.; Hahn, S.H. A validity study on the Korean Mini-Mental State Examination (K-MMSE) in dementia patients. J. Korean Neurol. Assoc. 1997, 15, 300–308. [Google Scholar]
- Tankisheva, E.; Bogaerts, A.; Boonen, S.; Feys, H.; Verschueren, S. Effects of Intensive Whole-Body Vibration Training on Muscle Strength and Balance in Adults with Chronic Stroke: A Randomized Controlled Pilot Study. Arch. Phys. Med. Rehabil. 2014, 95, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Seo, S.B.; Kang, S.R.; Kim, K.; Kwon, T.K. Effect of vibration on muscle strength imbalance in lower extremity using multi-control whole body vibration platform. Bio-Med. Mater. Eng. 2015, 26, S673–S683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subashi, G.; Nawayseh, N.; Matsumoto, Y.; Griffin, M. Nonlinear subjective and dynamic responses of seated subjects exposed to horizontal whole-body vibration. J. Sound Vib. 2009, 321, 416–434. [Google Scholar] [CrossRef]
- Oh, J.-H.; Kang, S.-R.; Kwon, T.-K.; Min, J.-Y. The Effect on Muscle Activation in the Trunk and Lower Limbs While Squatting with Slope-whole-body Vibration. Korean J. Sport Biomech. 2015, 25, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P.; American College of Sports Medicine Position Stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Paz, G.A.; Almeida, L.; Ruiz, L.; Casseres, S.; Xavier, G.; Lucas, J.; Santana, H.G.; Miranda, H.; Bonnette, S.; Willardson, J. Myoelectric Responses of Lower-Body Muscles Performing Squat and Lunge Exercise Variations Adopting Visual Feedback with a Laser Sensor. J. Sport Rehabil. 2020, 29, 1–7. [Google Scholar] [CrossRef]
- American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Drinkwater, E.J.; Pritchett, E.J.; Behm, D.G. Effect of Instability and Resistance on Unintentional Squat-Lifting Kinetics. Int. J. Sports Physiol. Perform. 2007, 2, 400–413. [Google Scholar] [CrossRef] [Green Version]
- Whelan, D.; O’Reilly, M.; Ward, T.; Delahunt, E.; Caulfield, B. Evaluating Performance of the Lunge Exercise with Multiple and Individual Inertial Measurement Units. In Proceedings of the 10th EAI International Conference on Pervasive Computing Technologies for Healthcare, Cancun, Mexico, 16–20 May 2016. [Google Scholar]
- Tunwattanapong, P.; Kongkasuwan, R.; Kuptniratsaikul, V. The effectiveness of a neck and shoulder stretching exercise program among office workers with neck pain: A randomized controlled trial. Clin. Rehabil. 2016, 30, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Nordez, A.; Casari, P.; Cornu, C. Accuracy of Biodex system 3 pro computerized dynamometer in passive mode. Med. Eng. Phys. 2008, 30, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Perrin, D.H. Reliability of isokinetic measures. Athl. Train. 1986, 21, 319–321. [Google Scholar]
- Kim, G.; Won, Y.; Seo, J.; Ko, M. Effects of newly developed compact robot-aided upper extremity training system (Neuro-X®) in patients with stroke: A pilot study. J. Rehabil. Med. 2018, 50, 607–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, A.N.; Guerra, R.O.; Alvarado, B.; Guralnik, J.M.; Zunzunegui, M.V. Validity and Reliability of the Short Physical Performance Battery in Two Diverse Older Adult Populations in Quebec and Brazil. J. Aging Health 2012, 24, 863–878. [Google Scholar] [CrossRef]
- Brazier, J.E.; Harper, R.; Jones, N.M.; O’Cathain, A.; Thomas, K.J.; Usherwood, T.; Westlake, L. Validating the SF-36 health survey questionnaire: New outcome measure for primary care. BMJ 1992, 305, 160–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, K.J.; Saint-Maurice, P.F.; Karsai, I.; Ihász, F.; Csányi, T. Agreement Between Omron 306 and Biospace InBody 720 Bioelectrical Impedance Analyzers (BIA) in Children and Adolescents. Res. Q. Exerc. Sport 2015, 86, S58–S65. [Google Scholar] [CrossRef] [PubMed]
- Howe, T.E.; Rochester, L.; Neil, F.; Skelton, D.A.; Ballinger, C. Exercise for improving balance in older people. Cochrane Database Syst. Rev. 2011, 11, CD004963. [Google Scholar] [CrossRef] [PubMed]
- Bachettini, N.P.; Bielemann, R.M.; Barbosa-Silva, T.G.; Menezes, A.M.B.; Tomasi, E.; Gonzalez, M.C. Sarcopenia as a mortality predictor in community-dwelling older adults: A comparison of the diagnostic criteria of the European Working Group on Sarcopenia in Older People. Eur. J. Clin. Nutr. 2019, 74, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Awick, E.A.; Ehlers, D.K.; Aguiñaga, S.; Daugherty, A.M.; Kramer, A.F.; McAuley, E. Effects of a randomized exercise trial on physical activity, psychological distress and quality of life in older adults. Gen. Hosp. Psychiatry 2017, 49, 44–50. [Google Scholar] [CrossRef]
- Barha, C.K.; Hsiung, G.-Y.R.; Best, J.R.; Davis, J.C.; Eng, J.J.; Jacova, C.; Lee, P.E.; Munkacsy, M.; Cheung, W.; Liu-Ambrose, T. Sex Difference in Aerobic Exercise Efficacy to Improve Cognition in Older Adults with Vascular Cognitive Impairment: Secondary Analysis of a Randomized Controlled Trial. J. Alzheimer Dis. 2017, 60, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.C.; McArthur, C.; Wark, J.D.; Thabane, L.; Scherer, S.C.; Prasad, S.; Papaioannou, A.; Mittmann, N.; Laprade, J.; Kim, S.; et al. The Effects of Home Exercise in Older Women with Vertebral Fractures: A Pilot Randomized Controlled Trial. Phys. Ther. 2020, 100, 662–676. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Chaouachi, A. A review of the acute effects of static and dynamic stretching on performance. Eur. J. Appl. Physiol. 2011, 111, 2633–2651. [Google Scholar] [CrossRef] [PubMed]
- Simic, L.; Sarabon, N.; Markovic, G. Does pre-exercise static stretching inhibit maximal muscular performance? A meta-analytical review. Scand. J. Med. Sci. Sports 2012, 23, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Son, W.-M.; Kwon, O.-S. Effects of whole body vibration training on body composition, skeletal muscle strength, and cardiovascular health. J. Exerc. Rehabil. 2015, 11, 289–295. [Google Scholar] [CrossRef]
- Rittweger, J. Vibration as an exercise modality: How it may work, and what its potential might be. Eur. J. Appl. Physiol. 2010, 108, 877–904. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.; Vialleron, T.; Laffaye, G.; Fourcade, P.; Hussein, T.; Chèze, L.; Deleu, P.-A.; Honeine, J.-L.; Yiou, E.; Delafontaine, A. Long-Term Effects of Whole-Body Vibration on Human Gait: A Systematic Review and Meta-Analysis. Front. Neurol. 2019, 10, 627. [Google Scholar] [CrossRef]
- Index, L.S.; Deflection, M.L.M. Changes in body balance and functional performance following whole-body vibration training in patients with fibromyalgia syndrome: A randomized controlled trial. J. Rehabil. Med. 2013, 45, 678–684. [Google Scholar]
- Grubbs, B.F.; Figueroa, A.; Kim, J.-S.; Contreras, R.J.; Schmitt, K.; Panton, L.B. Whole-body Vibration Training in Frail, Skilled Nursing Home Residents. Int. J. Exerc. Sci. 2020, 13, 140–156. [Google Scholar]
- Zou, L.; Wang, C.; Tian, Z.; Wang, H.; Shu, Y. Effect of Yang-Style Tai Chi on Gait Parameters and Musculoskeletal Flexibility in Healthy Chinese Older Women. Sports 2017, 5, 52. [Google Scholar] [CrossRef] [PubMed]
- Marín-Cascales, E.; Alcaraz, P.E.; Rubio-Arias, J.A. Effects of 24 Weeks of Whole Body Vibration Versus Multicomponent Training on Muscle Strength and Body Composition in Postmenopausal Women: A Randomized Controlled Trial. Rejuvenation Res. 2017, 20, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Elsawy, B.; Higgins, K.E. Physical activity guidelines for older adults. Am. Fam. Physician 2010, 81, 55–59. [Google Scholar] [PubMed]
- Cha, M.Y.; Hong, H.S. Effect and Path Analysis of Laughter Therapy on Serotonin, Depression and Quality of Life in Middle-aged Women. J. Korean Acad. Nurs. 2015, 45, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Furness, T.P.; Maschette, W.E. Influence of whole body vibration platform frequency on neuromuscular performance of community-dwelling older adults. J. Strength Cond. Res. 2009, 23, 1508–1513. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, J.J.; Tynan, M.N.; Oliver, J.M.; Jagim, A.R.; Jones, M.T. Effect of Post-Exercise Whole Body Vibration with Stretching on Mood State, Fatigue, and Soreness in Collegiate Swimmers. Sports 2017, 5, 7. [Google Scholar] [CrossRef] [Green Version]
Variable | Control Group (N = 20) | WBVT Group (N = 20) | p-Value |
---|---|---|---|
Age | 73.45 ± 4.58 | 74.35 ± 3.53 | 0.491 1 |
Sex (Men/Women) | 9/11 | 9/11 | 1.000 3 |
K-MMSE | 28.80 ± 1.11 | 28.30 ± 1.34 | 0.225 2 |
E1 | E2 | E3 | Effect Time | Effect Time × Group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WBVT | Control | WBVT | Control | WBVT | Control | F | p | F | p | |||
Mean peak torque | 48.18 (11.64) | 51.61 (22.13) | 55.20 (13.88) | 55.10 (22.61) | 53.38 (14.50) | 57.02 (23.90) | 13.781 | <0.001 | 0.266 | 1.645 | 0.200 | 0.041 |
Mean average power | 24.43 (5.90) | 26.96 (13.31) | 28.18 (7.08) | 30.48 (13.00) | 28.38 (8.36) | 31.80 (14.45) | 20.511 | <0.001 | 0.351 | 0.319 | 0.675 | 0.008 |
WBVT | Control | |||||||
---|---|---|---|---|---|---|---|---|
Overall Sig Diff | E1-E2 | E1-E3 | E2-E3 | Overall Sig Diff | E1-E2 | E1-E3 | E2-E3 | |
Mean Peak Torque | 0.002 | 0.009 | 0.045 | 0.857 | 0.003 | 0.048 | 0.012 | 0.154 |
Mean Average Power | 0.004 | 0.009 | 0.033 | 1.000 | <0.001 | 0.003 | 0.001 | 0.280 |
E1 | E2 | E3 | Effect Time | Effect Time × Group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WBVT | Control | WBVT | Control | WBVT | Control | F | p | F | p | |||
Mean grip strength | 26.93 (8.44) | 27.05 (9.20) | 28.65 (8.88) | 27.83 (9.74) | 27.93 (8.51) | 29.18 (10.08) | 3.626 | 0.038 | 0.087 | 1.431 | 0.246 | 0.036 |
SPPB | 10.75 (1.12) | 10.65 (1.14) | 11.40 (0.68) | 10.95 (1.00) | 11.40 (1.05) | 11.25 (0.79) | 6.375 | 0.003 | 0.144 | 0.536 | 0.587 | 0.014 |
SF-36 | 122.65 (14.89) | 122.00 (14.98) | 124.75 (3.30) | 132.30 (10.54) | 123.20 (12.55) | 131.45 (12.71) | 5.483 | 0.006 | 0.126 | 3.104 | 0.051 | 0.076 |
Body weight | 59.94 (6.84) | 63.06 (14.32) | 59.88 (7.02) | 62.72 (13.74) | 59.90 (6.97) | 62.91 (14.00) | 0.783 | 0.442 | 0.020 | 0.384 | 0.647 | 0.010 |
Skeletal muscle mass | 24.05 (4.12) | 24.39 (6.26) | 23.71 (4.37) | 23.98 (6.08) | 23.73 (4.03) | 24.09 (5.86) | 4.611 | 0.017 | 0.108 | 0.056 | 0.924 | 0.001 |
Body fat mass | 15.45 (4.51) | 18.23 (8.45) | 15.97 (4.56) | 18.51 (8.33) | 15.98 (4.52) | 18.49 (8.57) | 2.893 | 0.067 | 0.071 | 0.292 | 0.748 | 0.008 |
WBVT | Control | |||||||
---|---|---|---|---|---|---|---|---|
Overall Sig Diff | E1-E2 | E1-E3 | E2-E3 | Overall Sig Diff | E1-E2 | E1-E3 | E2-E3 | |
Mean grip strength | 0.094 | 0.117 | 0.666 | 1.000 | 0.110 | 1.000 | 0.254 | 0.161 |
SPPB | 0.014 | 0.025 | 0.058 | 1.000 | 0.104 | 1.000 | 0.057 | 0.689 |
SF-36 | 0.771 | 1.000 | 1.000 | 1.000 | <0.001 | 0.004 | 0.006 | 1.000 |
Skeletal muscle mass | 0.233 | 0.206 | 0.712 | 1.000 | 0.022 | 0.007 | 0.233 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, N.-G.; Kang, S.-R.; Ko, M.-H.; Yoon, J.-Y.; Kim, H.-S.; Han, K.-S.; Kim, G.-W. Effectiveness of Whole-Body Vibration Training to Improve Muscle Strength and Physical Performance in Older Adults: Prospective, Single-Blinded, Randomized Controlled Trial. Healthcare 2021, 9, 652. https://doi.org/10.3390/healthcare9060652
Jo N-G, Kang S-R, Ko M-H, Yoon J-Y, Kim H-S, Han K-S, Kim G-W. Effectiveness of Whole-Body Vibration Training to Improve Muscle Strength and Physical Performance in Older Adults: Prospective, Single-Blinded, Randomized Controlled Trial. Healthcare. 2021; 9(6):652. https://doi.org/10.3390/healthcare9060652
Chicago/Turabian StyleJo, Nam-Gyu, Seung-Rok Kang, Myoung-Hwan Ko, Ju-Yul Yoon, Hye-Seong Kim, Kap-Soo Han, and Gi-Wook Kim. 2021. "Effectiveness of Whole-Body Vibration Training to Improve Muscle Strength and Physical Performance in Older Adults: Prospective, Single-Blinded, Randomized Controlled Trial" Healthcare 9, no. 6: 652. https://doi.org/10.3390/healthcare9060652
APA StyleJo, N. -G., Kang, S. -R., Ko, M. -H., Yoon, J. -Y., Kim, H. -S., Han, K. -S., & Kim, G. -W. (2021). Effectiveness of Whole-Body Vibration Training to Improve Muscle Strength and Physical Performance in Older Adults: Prospective, Single-Blinded, Randomized Controlled Trial. Healthcare, 9(6), 652. https://doi.org/10.3390/healthcare9060652