Musculoskeletal Changes in Hemophilia Patients Subsequent to COVID−19 Lockdown
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Outcome Variables
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Joint Changes
4. Discussion
4.1. Limitations
4.2. Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EU Open Data Portal. EU Open Data Portal. Available online: https://data.europa.eu/euodp/es/data/dataset/covid-19-coronavirus-data (accessed on 28 July 2020).
- Gao, Y.-M.; Xu, G.; Wang, B.; Liu, B.-C. Cytokine storm syndrome in coronavirus disease 2019: A narrative review. J. Intern. Med. 2020, 289, 147–161. [Google Scholar] [CrossRef]
- Machhi, J.; Herskovitz, J.; Senan, A.M.; Dutta, D.; Nath, B.; Oleynikov, M.D.; Blomberg, W.R.; Meigs, D.D.; Hasan, M.; Patel, M.; et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J. Neuroimmune Pharmacol. 2020, 15, 359–386. [Google Scholar] [CrossRef] [PubMed]
- Peçanha, T.; Goessler, K.F.; Roschel, H.; Gualano, B. Social isolation during the COVID-19 pandemic can increase physical inactivity and the global burden of cardiovascular disease. Am. J. Physiol. Heart Circ. 2020, 318, H1441–H1446. [Google Scholar] [CrossRef]
- Grigoletto, I.; Cavalheri, V.; de Lima, F.F.; Ramos, E.M.C. Recovery after COVID-19: The potential role of pulmonary rehabilitation. Braz. J. Phys. Ther. 2020, 24, 463–464. [Google Scholar] [CrossRef]
- White, G.C.; Rosendaal, F.; Aledort, L.M.; Lusher, J.M.; Rothschild, C.; Ingerslev, J. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thromb. Haemost. 2001, 85, 560. [Google Scholar]
- Manco-Johnson, M.J.; Abshire, T.C.; Shapiro, A.D.; Riske, B.; Hacker, M.R.; Kilcoyne, R.; Ingram, J.D.; Manco-Johnson, M.L.; Funk, S.; Jacobson, L.; et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N. Engl. J. Med. 2007, 357, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Tusell, J.M.; Aznar, J.A.; Querol, F.; Quintana, M.; Moreno, M.; Gorina, E.; Orthopaedic Study Group. Results of an orthopaedic survey in young patients with severe haemophilia in Spain. Haemophilia 2002, 8, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Kuijlaars, I.A.R.; Timmer, M.A.; de Kleijn, P.; Pisters, M.F.; Fischer, K. Monitoring joint health in haemophilia: Factors associated with deterioration. Haemophilia 2017, 23, 934–940. [Google Scholar] [CrossRef]
- Tagliaferri, A.; Feola, G.; Molinari, A.C.; Santoro, C.; Rivolta, G.F.; Cultrera, D.B.; Gagliano, F.; Zanon, E.; Mancuso, M.E.; Valdré, L.; et al. Benefits of prophylaxis versus on-demand treatment in adolescents and adults with severe haemophilia A: The POTTER study. Thromb Haemost. 2015, 114, 35–45. [Google Scholar]
- Pettersson, H.; Ahlberg, A.; Nilsson, I.M. A radiologic classification of hemophilic arthropathy. Clin. Orthop. Relat. Res. 1980, 149, 153–159. [Google Scholar] [CrossRef]
- Cuesta-Barriuso, R.; Donoso-Úbeda, E.; Meroño-Gallut, J.; Pérez-Llanes, R.; López-Pina, J.A. Functionality and range of motion in patients with hemophilic ankle arthropathy treated with fascial therapy. A randomized clinical trial. Musculoskelet. Sci. Pract. 2020, 49, 102194. [Google Scholar] [CrossRef] [PubMed]
- Feldman, B.M.; Funk, S.M.; Bergstrom, B.M.; Zourikian, N.; Hilliard, P.; van der Net, J.; Engelbert, R.; Petrini, P.; van den Berg, H.M.; Manco-Johnson, M.J.; et al. Validation of a new pediatric joint scoring system from the International Hemophilia Prophylaxis Study Group: Validity of the hemophilia joint health score. Arthritis Care Res. 2011, 63, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Leffler, A.S.; Kosek, E.; Lerndal, T.; Nordmark, B.; Hansson, P. Somatosensory perception and function of diffuse noxious inhibitory controls (DNIC) in patients suffering from rheumatoid arthritis. Eur. J. Pain 2002, 6, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Skou, S.T.; Simonsen, O.; Rasmussen, S. Examination of Muscle Strength and Pressure Pain Thresholds in Knee Osteoarthritis: Test-Retest Reliability and Agreement. J. Geriatr. Phys. Ther. 2015, 38, 141–147. [Google Scholar] [CrossRef]
- Dhondt, W.; Willaeys, T.; Verbruggen, L.A.; Oostendorp, R.A.B.; Duquet, W. Pain Threshold in Patients with Rheumatoid Arthritis and Effect of Manual Oscillations. Scand. J. Rheumatol. 1999, 28, 88–93. [Google Scholar] [PubMed]
- Cleffken, B.; van Breukelen, G.; van Mameren, H.; Brink, P.; Damink, S.O. Test-retest reproducibility of elbow goniometric measurements in a rigid double-blinded protocol: Intervals for distinguishing between measurement error and clinical change. J. Shoulder Elbow Surg. 2007, 16, 788–794.e2. [Google Scholar] [CrossRef]
- Gerhardt, J.; Cocchiarella, L.; Lea, R. The Practical Guide to Range of Motion Assessment; American Medical Association: Chicago, IL, USA, 2002. [Google Scholar]
- Pinto , T.F.; Cocchiarella, L.; de Carvalho, C.R.F. SARS CoV-2 (COVID-19): Lessons to be learned by Brazilian Physical Therapists. Braz. J. Phys. Ther. 2020, 24, 185–186. [Google Scholar]
- Stephensen, D.; Tait, R.C.; Brodie, N.; Collins, P.; Cheal, R.; Keeling, D.; Melton, K.; Dolan, G.; Haye, H.; Hayman, E.; et al. Changing patterns of bleeding in patients with severe haemophilia A. Haemophilia 2009, 15, 1210–1214. [Google Scholar] [CrossRef] [PubMed]
- Löfqvist, T.; Nilsson, I.M.; Berntorp, E.; Pettersson, H. Haemophilia prophylaxis in young patients--a long-term follow-up. J. Intern. Med. 1997, 241, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; van der Bom, J.G.; Mauser-Bunschoten, E.P.; Roosendaal, G.; Prejs, R.; Grobbee, D.E.; van den Berg, H.M. Changes in treatment strategies for severe haemophilia over the last 3 decades: Effects on clotting factor consumption and arthropathy. Haemophilia 2001, 7, 446–452. [Google Scholar] [CrossRef]
- Pérez-Llanes, R.; Meroño-Gallut, J.; Donoso-Úbeda, E.; López-Pina, J.; Cuesta-Barriuso, R. Safety and effectiveness of fascial therapy in the treatment of adult patients with hemophilic elbow arthropathy: A pilot study. Physiother. Theory Pract. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Barriuso, R.; Gómez-Conesa, A.; López-Pina, J.A. The effectiveness of manual therapy in addition to passive stretching exercises in the treatment of patients with haemophilic knee arthropathy: A randomized, single-blind clinical trial. Haemophilia 2020, 27, e110–e118. [Google Scholar] [CrossRef] [PubMed]
- Donoso-Úbeda, E.; Meroño-Gallut, J.; López-Pina, J.A.; Cuesta-Barriuso, R. Effect of manual therapy in patients with hemophilia and ankle arthropathy: A randomized clinical trial. Clin. Rehabil. 2020, 34, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.; Trudel, G.; Laneuville, O. Noninflammatory Joint Contractures Arising from Immobility: Animal Models to Future Treatments. BioMed Res. Int. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.Y.; Li, T.Y.; Cheng, S.N.; Pan, R.Y.; Cheng, C.N.; Wang, H.J.; Hu, S.H.; Chen, Y.C. Obesity and overweight in patients with hemophilia: Prevalence by age, clinical correlates, and impact on joint bleeding. J. Chin. Med. Assoc. 2019, 82, 289–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merskey, H.; Bogduk, N.; International Association for the Study of Pain (Eds.) Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms, 2nd ed.; IASP Press: Washington, DC, USA, 1994. [Google Scholar]
- Cohen, M.; Quintner, J.; Buchanan, D. Is Chronic Pain a Disease? Pain Med. 2013, 14, 1284–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gifford, L. Pain, the Tissues and the Nervous System: A conceptual model. Physiotherapy 1998, 84, 27–36. [Google Scholar] [CrossRef]
- Fullana, M.A.; Hidalgo-Mazzei, D.; Vieta, E.; Radua, J. Coping behaviors associated with decreased anxiety and depressive symptoms during the COVID-19 pandemic and lockdown. J. Affect. Disord. 2020, 275, 80–81. [Google Scholar] [CrossRef]
- Vlaeyen, J.W.S.; International Association for the Study of Pain (Eds.) Pain-Related Fear in Chronic Pain. In Pain-Related Fear: Exposure-Based Treatment for Chronic Pain; IASP Press: Washington, DC, USA, 2012; pp. 25–45. [Google Scholar]
- Latremoliere, A.; Woolf, C.J. Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, J.; Kim, Y.; Han, A.; Nguyen, M.C. The contribution of physical and social activity participation to social support and happiness among people with physical disabilities. Disabil. Health J. 2020, 14, 100974. [Google Scholar] [CrossRef]
- Peters, M.L.; Smeets, E.; Feijge, M.; van Breukelen, G.; Andersson, G.; Buhrman, M.; Linton, S.J. Happy Despite Pain: A Randomized Controlled Trial of an 8-Week Internet-delivered Positive Psychology Intervention for Enhancing Well-being in Patients With Chronic Pain. Clin. J. Pain. 2017, 33, 962–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, L.V. Skeletal Muscle Adaptations with Age, Inactivity, and Therapeutic Exercise. J. Orthop. Sports Phys. Ther. 2002, 32, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Pelicioni, P.H.S.; Lord, S.R. COVID-19 will severely impact older people’s lives, and in many more ways than you think! Braz. J. Phys. Ther. 2020, 24, 293–294. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean (SD) | |
---|---|---|
Anthropometric variables | Age (year) | 37.42 (2.27) |
Height (cm) | 173.37 (1.29) | |
Weight before lockdown (Kg) | 80.50 (16.00) | |
Weight after lockdown (Kg) | 82.50 (14.25) | |
Treatment adherence (%) | 87.37 (1.29) | |
n (%) | ||
Clinical variables | Type of hemophilia (A/B) | 23/4 (85.2/14.8) |
Severity of hemophilia (Mild/Moderate/Severe) | 1/7/19 (3.7/25.9/70.4) | |
Treatment (On demand/Prophylactic) | 8/19 (29.6/70.4) | |
Development of inhibitors (No/Yes) | 20/7 (74.1/25.9) |
Joint | Variables | T0 | T1 | 95% CI | Sig. |
---|---|---|---|---|---|
Elbow | Hemarthrosis (number) | 0.19 (0.51) | 0.33 (0.61) | −0.29; −0.00 | 0.04 * |
Joint status (range 0–20) | 6.30 (4.35) | 6.72 (4.11) | −0.62; −0.23 | 0.00 ** | |
Pain intensity (range 0–10) | 1.11 (2.04) | 1.63 (2.09) | −0.72; −0.30 | 0.00 ** | |
Pressure pain threshold (N) | 70.75 (21.09) | 70.07 (21.74) | 0.27; 1.06 | 0.00 * | |
Flexion (degrees) | 130.43 (9.73) | 129.33 (10.01) | 0.59; 1.59 | 0.00 ** | |
Loss of extension (degrees) | 16.83 (17.39) | 18.00 (17.50) | −1.55; −0.78 | 0.00 ** | |
Knee | Hemarthrosis (number) | 0.35 (0.73) | 0.35 (0.75) | −0.13; 0.13 | 1.00 |
Joint status (range 0–20) | 4.67 (4.80) | 4.94 (5.02) | −0.43; −0.12 | 0.00 * | |
Pain intensity (range 0–10) | 1.17 (1.34) | 1.67 (1.93) | −0.76; −0.23 | 0.00 ** | |
Pressure pain threshold (N) | 63.63 (19.31) | 63.31 (19.46) | 0.02; 0.60 | 0.03 * | |
Flexion (degrees) | 131.59 (4.37) | 130.70 (5.23) | 0.54; 1.23 | 0.00 ** | |
Loss of extension (degrees) | 2.22 (2.66) | 3.06 (3.55) | −1.17; −0.49 | 0.00 ** | |
Ankle | Hemarthrosis (number) | 0.24 (0.51) | 0.11 (0.31) | 0.02; 0.23 | 0.01 * |
Joint status (range 0–20) | 7.94 (3.94) | 8.15 (3.94) | −0.39; −0.01 | 0.03 * | |
Pain intensity (range 0–10) | 1.67 (1.41) | 3.26 (2.45) | −1.98; −1.19 | 0.00 ** | |
Pressure pain threshold (N) | 62.06 (15.65) | 61.68 (15.89) | 0.10; 0.66 | 0.00 * | |
Dorsal flexion (degrees) | 5.00 (4.98) | 3.89 (5.51) | 0.68; 1.53 | 0.00 ** | |
Plantar flexion (degrees) | 25.69 (10.45) | 24.44 (10.98) | 0.85; 1.63 | 0.00 ** |
Joint | Variable | Severity of Hemophilia | Type of Treatment | Development of Inhibitors | |||
---|---|---|---|---|---|---|---|
F (Sig.) | ANOVA (Sig.) | F (Sig.) | t (Sig.) | F (Sig.) | t (Sig.) | ||
Hemarthrosis | 8.61 (0.00) † | 2.25 (0.23) | 0.06 (0.79) | −0.76 (0.44) | 2.78 (0.10) | −0.54 (0.59) | |
Joint status | 1.80 (0.17) | 1.78 (0.17) | 1.17 (0.28) | 2.23 (0.03) * | 0.58 (0.44) | 1.75 (0.08) | |
Elbow | Joint pain intensity | 3.17 (0.05) | 0.63 (0.53) | 1.65 (0.20) | 1.44 (0.15) | 0.45 (0.50) | −1.10 (0.27) |
Pressure pain threshold | 2.08 (0.13) | 8.20 (0.00) * | 5.64 (0.02) ‖ | −0.58 (0.56) | 0.09 (0.92) | 0.33 (0.74) | |
Flexion | 0.64 (0.53) | 1.86 (0.16) | 0.16 (0.69) | −1.22 (0.22) | 0.55 (0.46) | 0.11 (0.90) | |
Loss of extension | 2.28 (0.11) | 0.70 (0.50) | 0.23 (0.62) | 0.07 (0.94) | 0.04 (0.83) | −0.58 (0.56) | |
Hemarthrosis | 2.61 (0.08) | 1.17 (0.31) | 1.25 (0.26) | −0.62 (0.53) | 10.18 (0.00) ‖ | −0.91 (0.37) | |
Joint status | 1.61 (0.20) | 0.63 (0.53) | 0.11 (0.74) | −0.23 (0.81) | 11.97 (0.00) ‖ | −1.85 (0.08) | |
Knee | Joint pain intensity | 42.69 (0.00) † | 2.83 (0.06) | 0.04 (0.83) | −0.92 (0.36) | 0.47 (0.49) | 0.63 (0.52) |
Pressure pain threshold | 0.34 (0.71) | 2.41 (0.10) | 2.33 (0.13) | 0.33 (0.74) | 0.08 (0.77) | −0.96 (0.33) | |
Flexion | 0.29 (0.74) | 1.06 (0.35) | 0.64 (0.42) | −0.41 (0.67) | 7.42 (0.00) ‖ | 1.96 (0.06) | |
Loss of extension | 12.32 (0.00) † | 1.98 (0.32) | 2.43 (0.12) | −0.55 (0.58) | 0.57 (0.45) | −0.33 (0.74) | |
Hemarthrosis | 10.49 (0.00) † | 1.26 (0.29) | 0.13 (0.71) | 0.81 (0.41) | 16.14 (0.00) ‖ | 2.16 (0.04) * | |
Joint status | 1.83 (0.17) | 0.95 (0.39) | 2.62 (0.11) | −1.90 (0.06) | 5.06 (0.02) ‖ | 1.03 (0.30) | |
Ankle | Joint pain intensity | 0.44 (0.64) | 5.21 (0.00) * | 0.28 (0.59) | −1.13 (0.26) | 0.80 (0.37) | 0.27 (0.78) |
Pressure pain threshold | 1.10 (0.33) | 0.83 (0.43) | 0.42 (0.51) | −0.32 (0.74) | 0.15 (0.70) | −0.75 (0.45) | |
Dorsal flexion | 1.00 (0.37) | 3.86 (0.02) * | 0.52 (0.47) | 0.71 (0.47) | 0.79 (0.37) | 0.48 (0.63) | |
Plantar flexion | 3.23 (0.04) † | 9.84 (0.00) ** | 1.53 (0.22) | 2.36 (0.02) * | 2.60 (0.11) | 0.13 (0.89) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuesta-Barriuso, R.; Meroño-Gallut, J.; Pérez-Llanes, R.; Ucero-Lozano, R. Musculoskeletal Changes in Hemophilia Patients Subsequent to COVID−19 Lockdown. Healthcare 2021, 9, 702. https://doi.org/10.3390/healthcare9060702
Cuesta-Barriuso R, Meroño-Gallut J, Pérez-Llanes R, Ucero-Lozano R. Musculoskeletal Changes in Hemophilia Patients Subsequent to COVID−19 Lockdown. Healthcare. 2021; 9(6):702. https://doi.org/10.3390/healthcare9060702
Chicago/Turabian StyleCuesta-Barriuso, Rubén, Javier Meroño-Gallut, Raúl Pérez-Llanes, and Roberto Ucero-Lozano. 2021. "Musculoskeletal Changes in Hemophilia Patients Subsequent to COVID−19 Lockdown" Healthcare 9, no. 6: 702. https://doi.org/10.3390/healthcare9060702
APA StyleCuesta-Barriuso, R., Meroño-Gallut, J., Pérez-Llanes, R., & Ucero-Lozano, R. (2021). Musculoskeletal Changes in Hemophilia Patients Subsequent to COVID−19 Lockdown. Healthcare, 9(6), 702. https://doi.org/10.3390/healthcare9060702