Clinical Factors Associated with COVID-19 Severity in Mexican Patients: Cross-Sectional Analysis from a Multicentric Hospital Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Statistical Analyses
3. Results
3.1. General Characteristics of the Population by Hospital
3.2. Population Characteristics by Severity Groups
3.3. Laboratory and Radiologic Analyses by Severity Group
3.4. Crude Analysis
3.5. Adjusted Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.-C.; Kuo, R.-L.; Shih, S.-R. COVID-19: The first documented coronavirus pandemic in history. Biomed. J. 2020, 43, 328–333. [Google Scholar] [CrossRef]
- Johns Hopkins University & Medicine. Coronavirus Resource Center: COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE). Available online: https://coronavirus.jhu.edu/map.html (accessed on 17 June 2021).
- Bohn, M.K.; Hall, A.; Sepiashvili, L.; Jung, B.; Steele, S.; Adeli, K. Pathophysiology of COVID-19: Mechanisms Underlying Disease Severity and Progression. Physiology 2020, 35, 288–301. [Google Scholar] [CrossRef]
- Sims, J.T.; Krishnan, V.; Chang, C.-Y.; Engle, S.M.; Casalini, G.; Rodgers, G.H.; Bivi, N.; Nickoloff, B.J.; Konrad, R.J.; de Bono, S.; et al. Characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in COVID-19. J. Allergy Clin. Immunol. 2021, 147, 107–111. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H.; Levi, M.; Thachil, J. Coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 2103–2109. [Google Scholar] [CrossRef] [PubMed]
- Gautret, P.; Million, M.; Jarrot, P.-A.; Camoin-Jau, L.; Colson, P.; Fenollar, F.; Leone, M.; La Scola, B.; Devaux, C.; Gaubert, J.Y.; et al. Natural history of COVID-19 and therapeutic options. Expert Rev. Clin. Immunol. 2020, 16, 1159–1184. [Google Scholar] [CrossRef]
- Shenoy, N.; Luchtel, R.; Gulani, P. Considerations for target oxygen saturation in COVID-19 patients: Are we under-shooting? BMC Med. 2020, 18, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.; Calderón-Villarreal, A.; Bojorquez, I.; Hernández, C.V.; Schriger, D.L.; Hirashima, E.T. Excess Out-of-Hospital Mortality and Declining Oxygen Saturation: The Sentinel Role of Emergency Medical Services Data in the COVID-19 Crisis in Tijuana, Mexico. Ann. Emerg. Med. 2020, 76, 413–426. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Hamilton, J.P.; Alqahtani, S.A.; Woreta, T.A. A narrative review of coronavirus disease 2019 (COVID-19): Clinical, epidemiological characteristics, and systemic manifestations. Intern. Emerg. Med. 2021, 16, 815–830. [Google Scholar] [CrossRef]
- Gandhi, R.T.; Lynch, J.B.; Del Rio, C. Mild or Moderate Covid-19. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Teslya, A.; Pham, T.M.; Godijk, N.G.; Kretzschmar, M.E.; Bootsma, M.C.J.; Rozhnova, G. Impact of self-imposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: A modelling study. PLoS Med. 2020, 17, e1003166. [Google Scholar] [CrossRef]
- Lu, Q.-B.; Zhang, Y.; Liu, M.-J.; Zhang, H.-Y.; Jalali, N.; Zhang, A.-R.; Li, J.-C.; Zhao, H.; Song, Q.-Q.; Zhao, T.-S.; et al. Epidemiological parameters of COVID-19 and its implication for infectivity among patients in China, 1 January to 11 February 2020. Eurosurveillance 2020, 25, 2000250. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, W.; Shi, X.; Chen, Z.; Jiang, B.; Liu, J.; Wang, D.; Liu, C.; Meng, Y.; Cui, L.; et al. Early antiviral treatment contributes to alleviate the severity and improve the prognosis of patients with novel coronavirus disease (COVID-19). J. Intern. Med. 2020, 288, 128–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). J. Gen. Intern. Med. 2020, 35, 1545–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, H.; Tu, S.; Gao, S.; Shao, A.; Sheng, J. Current epidemiological and clinical features of COVID-19; A global perspective from China. J. Infect. 2020, 81, 1–9. [Google Scholar] [CrossRef]
- Mehta, O.P.; Bhandari, P.; Raut, A.; Kacimi, S.E.O.; Huy, N.T. Coronavirus Disease (COVID-19): Comprehensive Review of Clinical Presentation. Front. Public Health 2021, 8, 582932. [Google Scholar] [CrossRef]
- Velavan, T.P.; Meyer, C.G. Mild versus severe COVID-19: Laboratory markers. Int. J. Infect. Dis. 2020, 95, 304–307. [Google Scholar] [CrossRef]
- Frater, J.L.; Zini, G.; D’Onofrio, G.; Rogers, H.J. COVID-19 and the clinical hematology laboratory. Int. J. Lab. Hematol. 2020, 42, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Elshazli, R.M.; Toraih, E.A.; Elgaml, A.; El-Mowafy, M.; El-Mesery, M.; Amin, M.; Hussein, M.H.; Killackey, M.T.; Fawzy, M.S.; Kandil, E. Diagnostic and prognostic value of hematological and immunological markers in COVID-19 infection: A meta-analysis of 6320 patients. PLoS ONE 2020, 15, e0238160. [Google Scholar] [CrossRef]
- Falaschi, Z.; Danna, P.S.; Arioli, R.; Pasché, A.; Zagaria, D.; Percivale, I.; Tricca, S.; Barini, M.; Aquilini, F.; Andreoni, S.; et al. Chest CT accuracy in diagnosing COVID-19 during the peak of the Italian epidemic: A retrospective correlation with RT-PCR testing and analysis of discordant cases. Eur. J. Radiol. 2020, 130, 109192. [Google Scholar] [CrossRef]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020, 296, E32–E40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hani, C.; Trieu, N.; Saab, I.; Dangeard, S.; Bennani, S.; Chassagnon, G.; Revel, M.-P. COVID-19 pneumonia: A review of typical CT findings and differential diagnosis. Diagn. Interv. Imaging 2020, 101, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Zarifian, A.; Nour, M.G.; Rezayat, A.A.; Oskooei, R.R.; Abbasi, B.; Sadeghi, R. Chest CT findings of coronavirus disease 2019 (COVID-19): A comprehensive meta-analysis of 9907 confirmed patients. Clin. Imaging 2021, 70, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Prokop, M.; Van Everdingen, W.M.; van Rees Vellinga, T.; Van Ufford, H.Q.; Stöger, L.; Beenen, L.; Geurts, B.; Gietema, H. CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having COVID-19—Definition and Evaluation. Radiology 2020, 296, E97–E104. [Google Scholar] [CrossRef]
- Ward, S.; Lindsley, A.; Courter, J.; Assa’Ad, A. Clinical testing for COVID-19. J. Allergy Clin. Immunol. 2020, 146, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W.; Lemeshow, S. Model-Building Strategies and Methods for Logistic Regression. In Applied Logistic Regression; Wiley: Hoboken, NJ, USA, 2005; pp. 91–142. [Google Scholar]
- Zhang, T.; Huang, W.-S.; Guan, W.; Hong, Z.; Gao, J.; Gao, G.; Wu, G.; Qin, Y.-Y. Risk factors and predictors associated with the severity of COVID-19 in China: A systematic review, meta-analysis, and meta-regression. J. Thorac. Dis. 2020, 12, 7429–7441. [Google Scholar] [CrossRef]
- Li, J.; He, X.; Yuan, Y.; Zhang, W.; Li, X.; Zhang, Y.; Li, S.; Guan, C.; Gao, Z.; Dong, G. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. Am. J. Infect. Control. 2021, 49, 82–89. [Google Scholar] [CrossRef]
- Palaiodimos, L.; Kokkinidis, D.G.; Li, W.; Karamanis, D.; Ognibene, J.; Arora, S.; Southern, W.N.; Mantzoros, C.S. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolic 2020, 108, 154262. [Google Scholar] [CrossRef]
- Rodríguez-Molinero, A.; Gálvez-Barrón, C.; Miñarro, A.; Macho, O.; López, G.F.; Robles, M.T.; Dapena, M.D.; Martínez, S.; Ràfols, N.M.; Monaco, E.E.; et al. Association between COVID-19 prognosis and disease presentation, comorbidities and chronic treatment of hospitalized patients. PLoS ONE 2020, 15, e0239571. [Google Scholar]
- Fu, L.; Wang, B.; Yuan, T.; Chen, X.; Ao, Y.; Fitzpatrick, T.; Li, P.; Zhou, Y.; Lin, Y.-F.; Duan, Q.; et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J. Infect. 2020, 80, 656–665. [Google Scholar] [CrossRef]
- Henry, B.M. COVID-19, ECMO, and lymphopenia: A word of caution. Lancet Respir. Med. 2020, 8, e24. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Li, T.; Han, M.; Li, X.; Wu, D.; Xu, Y.; Zhu, Y.; Liu, Y.; Wang, X.; Wang, L. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020, 92, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensiv. Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- De Smet, K.; De Smet, D.; Ryckaert, T.; Laridon, E.; Heremans, B.; Vandenbulcke, R.; Demedts, I.; Bouckaert, B.; Gryspeerdt, S.; Martens, G.A. Diagnostic Performance of Chest CT for SARS-CoV-2 Infection in Individuals with or without COVID-19 Symptoms. Radiology 2021, 298, E30–E37. [Google Scholar] [CrossRef]
- Schalekamp, S.; Bleeker-Rovers, C.P.; Beenen, L.F.M.; van Ufford, H.M.E.Q.; Gietema, H.A.; Stöger, J.L.; Harris, V.; Reijers, M.H.E.; Rahamat-Langendoen, J.; Korevaar, D.A.; et al. Chest CT in the Emergency Department for Diagnosis of COVID-19 Pneumonia: Dutch Experience. Radiology 2021, 298, E98–E106. [Google Scholar] [CrossRef]
- Gross, A.; Heine, G.; Schwarz, M.; Thiemig, D.; Gläser, S.; Albrecht, T. Structured reporting of chest CT provides high sensitivity and specificity for early diagnosis of COVID-19 in a clinical routine setting. Br. J. Radiol. 2021, 94, 20200574. [Google Scholar] [CrossRef]
- Tong, J.Y.; Wong, A.; Zhu, D.; Fastenberg, J.H.; Tham, T. The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis. Otolaryngol. Neck Surg. 2020, 163, 3–11. [Google Scholar] [CrossRef]
- Romero-Gameros, C.A.; Colin-Martínez, T.; Waizel-Haiat, S.; Vargas-Ortega, G.; Ferat-Osorio, E.; Guerrero-Paz, J.A.; Intriago-Alor, M.; López-Moreno, M.A.; Cuevas-García, C.F.; Mendoza-Zubieta, V.; et al. Diagnostic accuracy of symptoms as a diagnostic tool for SARS-CoV 2 infection: A cross-sectional study in a cohort of 2173 patients. BMC Infect. Dis. 2021, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
City | Hospital Characteristics | Group Sample a | Collection Dates | Inclusion Criteria | Data Obtained |
---|---|---|---|---|---|
Chihuahua, 1 million inhabitants | Christus Murguerza Private, general 60 beds (19 COVID) 10 ICU (5 COVID) | 1) 49 2) 29 3) 37 4) 12 Total = 127 | 15 August 2020 to 1 December 2020 | Age > 18 y Informed consent | Clinical, n = 127 Lab, n = 52 CT, n = 49 |
San Luis Potosí 300,000 inhabitants | Soledad Graciano Public, general90 beds (90 COVID) 8 ICU (8 COVID) | 1) 5 2) 3 3) 39 4) 8 Total = 55 | 15 September 2020 to 1 December 2020 | Age > 18 y Informed consent | Clinical, n = 55 Lab, n = 43 |
Zacatecas, 200,000 inhabitants | General Hospital Public, institutional 207 beds (95 COVID) 10 ICU (5 COVID) | 1) 40 2) 40 3) 40 4) 40 Total = 160 | 15 March 2020 to 1 December 2020 | Age 35–70 y | Clinical, n = 160 Lab, n = 139 |
Variable | Category | Frequency (%) | |||
---|---|---|---|---|---|
CHI n = 127 | SLP n = 55 | ZAC n = 160 | Total n = 342 | ||
Sex | Male | 80 (63.0) | 39 (70.9) | 88 (55.0) | 207 (60.5) |
Female | 47 (37.0) | 16 (29.1) | 72 (45.0) | 135 (39.5) | |
Age in years | Mean ± s.d | 43.3 ± 14.5 | 53.6 ± 15.09 | 53.2 ± 10.2 | 49.6 ± 13.6 |
Age group in years | 20–40 | 62 (48.8) | 11 (20.0) | 29 (18.1) | 102 (29.8) |
41–50 | 26 (20.5) | 14 (25.5) | 34 (21.3) | 74 (21.6) | |
51–60 | 26 (20.5) | 14 (25.5) | 53 (33.1) | 93 (27.2) | |
61–70 | 4 (3.1) | 9 (16.4) | 44 (27.5) | 57 (16.7) | |
>70 | 9 (7.1) | 7 (12.7) | 0 (0.0) | 16 (4.7) | |
Civil status | Single | 36 (28.8) | - | - | 36 (28.8) |
Married/free union | 76 (60.8) | - | - | 76 (60.8) | |
Divorced/separated | 9 (7.2) | - | - | 9 (7.2) | |
Widow(er) | 4(3.2) | - | - | 4(3.2) | |
Occupation | Home | 18 (14.3) | - | - | 18 (14.3) |
Employed | 98 (77.8) | - | - | 98 (77.8) | |
Student | 3 (2.4) | - | - | 3 (2.4) | |
Retired | 7 (5.6) | - | - | 7 (5.6) | |
Physical activity | Sedentary life | 72 (58.5) | - | - | 72 (58.5) |
2–3 days per week | 21 (17.1) | - | - | 21 (17.1) | |
Every day | 30 (24.4) | - | - | 30 (24.4) | |
Current smoking | 22 (17.3) | 2 (3.6) | 15 (9.4) | 39 (11.4) | |
Type 2 diabetes | 12 (9.4) | 23 (41.8) | 38 (23.8) | 73 (21.4) | |
Hypertension | 28 (22.0) | 20 (36.4) | 53 (33.1) | 101 (29.5) | |
COPD or asthma | 9 (7.1) | 3 (5.5) | 6 (3.8) | 18 (5.3) | |
Immunosuppressed | 5 (3.9) | 0 (0.0) | 2 (1.3) | 7 (2.1) | |
Chronic kidney dis. | 4 (3.1) | 2 (3.6) | 5 (3.2) | 11 (3.2) | |
Obesity | BMI ≥ 30 kg/m2 | 43 (33.9) | 21 (38.2) | 39 (24.4) | 103 (30.1) |
BMI (kg/m2) | Mean ± s.d | 29 ± 6.8 | - | - | 29 ± 6.8 |
18.5–24.9 | 23 (21.5) | - | - | 23 (21.5) | |
25–30 | 41 (38.3) | - | - | 41 (38.3) | |
>30 | 43 (40.2) | - | - | 43 (40.2) | |
General symptoms | Fever | 35 (27.8) | 38 (30.9) | 69 (43.6) | 142 (41.6) |
Headache | 31 (24.6) | 36 (65.5) | 107 (66.9) | 174 (51) | |
Myalgia | 48 (38.1) | 32 (58.2) | 83 (51.9) | 163 (47.8) | |
Arthralgia | 45 (35.7) | 30 (54.5) | 76 (47.5) | 151 (44.3) | |
Fatigue | 53 (42.1) | 35 (63.6) | 62 (38.8) | 150 (44) | |
Respirat. symptoms | Cough | 48 (38.1) | 41 (74.5) | 97 (60.6) | 186 (54.5) |
Sore throat | 16 (12.7) | 25 (45.5) | 63 (39.4) | 104 (30.5) | |
Dyspnea | 44 (34.9) | 46 (83.6) | 83 (51.9) | 173 (50.7) | |
Chest pain | 13 (10.3) | 31 (56.4) | 35 (21.9) | 79 (23.2) | |
Other signs/symp. | Anosmia/dysgeusia | 9 (7.1) | 23 (14.4) | 32 (11.2) | 32 (11.2) |
Diarrhea | 13 (10.3) | 15 (27.3) | 19 (11.9) | 47 (13.8) | |
Immunosup. drugs a | Dexamethasone | 44 (34.9) | - | - | 44 (34.9) |
Baricitinib | 24 (19.0) | - | - | 24 (19.0) | |
Tocilizumab | 7 (5.6) | - | - | 7 (5.6) | |
HCQ/azithromycin | 5 (4.0) | - | - | 5 (4.0) | |
Epidemiol. data | COVID contact | 72 (57.1) | - | 65 (40.6) | 137 (47.9) |
Influenza vaccine | 28 (22.2) | 13 (23.6) | 24 (15.4) | 65 (19.3) | |
Recent travel | 15 (11.9) | - | 48 (16.8) | 48 (16.8) |
Indicator b | Measure, Unit | Group a, Frequency (%) | |||
---|---|---|---|---|---|
1 (n = 94) | 2 (n = 72) | 3 (n = 116) | 4 (n = 60) | ||
Sex | Male | 46 (48.9) | 41 (56.9) | 79 (68.1) | 41 (68.3) |
Female | 48 (51.1) | 31 (42.1) | 37 (31.9) | 19 (31.7) | |
Age in years | Mean ± s.d | 41.1 ± 11.7 | 47.5 ± 13.5 | 54.8 ± 12.3 | 55.3 ± 11.5 |
Age group in years | 20–40 | 56 (16.4) | 26 (36.1) | 12 (10.3) | 8 (13.3) |
41–50 | 17 (18.1) | 10 (13.9) | 38 (15.0) | 9 (15.9) | |
51–60 | 14 (4.1) | 22 (30.6) | 34 (29.3) | 23 (27.2) | |
61–70 | 6 (6.4) | 14 (19.4) | 19 (16.4) | 18 (30.0) | |
>70 | 1 (1.1) | 0 (0.0) | 13 (11.2) | 2 (3.3) | |
Current smoking | 10 (10.6) | 11 (3.2) | 13 (11.2) | 5 (1.5) | |
Type 2 diabetes | 5 (5.3) | 5 (6.9) | 43 (37.1) | 20 (33.3) | |
Hypertension | 16 (17.0) | 14 (19.4) | 41 (35.3) | 30 (50.0) | |
COPD or asthma | 4 (4.3) | 3 (4.2) | 7 (6.0) | 4 (6.7) | |
Immunosuppressed | 3 (3.2) | 1 (1.4) | 3 (2.6) | 0 (0.0) | |
Chronic kidney dis. | 1 (1.1) | 1 (1.4) | 6 (5.2) | 3 (5.0) | |
Obesity (BMI ≥ 30) | 20 (21.3) | 13 (18.1) | 45 (38.8) | 25 (41.7) | |
General symptoms | Fever | 1 (1.1) | 27 (37.5) | 73 (62.9) | 41 (68.3) |
Headache | 37 (39.8) | 37 (51.4) | 66 (56.9) | 34 (56.9) | |
Myalgia | 23 (24.7) | 29 (40.3) | 69 (59.5) | 42 (70.0) | |
Arthralgia | 14 (15.1) | 29 (40.3) | 68 (58.6) | 40 (66.7) | |
Fatigue | 15 (16.1) | 23 (31.9) | 79 (68.1) | 33 (55.0) | |
Respiratory symptoms | Cough | 11 (11.8) | 40 (55.6) | 85 (73.3) | 50 (83.3) |
Sore throat | 21 (22.6) | 22 (30.6) | 35 (30.2) | 26 (43.3) | |
Dyspnea | 8 (8.6) | 13 (18.1) | 102 (88) | 50 (83.3) | |
Chest pain | 8 (8.6) | 11 (15.3) | 42 (36.2) | 18 (30.0) | |
Other signs/symptoms | Anosmia/dysgeusia | 1 (1.1) | 12 (17.4) | 14 (18.2) | 5 (9.6) |
Diarrhea | 5 (5.4) | 8 (11.1) | 24 (20.7) | 10 (16.7) |
Indicator | Measure or Unit | Cut-Off | Group a, Frequency/Sample (%) | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
↓ hemoglobin | g/dL | Anemia b | 3/45 (6.7) | 5/34 (14.7) | 29/98 (29.6) | 16/55 (29.1) |
↑ neutrophils | ×103/L | >7.5 | 5/45 (11.1) | 8/34 (23.5) | 67/98 (68.6) | 43/54 (79.6) |
↓ lymphocytes | ×103/L | <1.5 | 7/45 (15.6) | 18/34 (52.9) | 77/98 (78.6) | 47/54 (87.0) |
↑ lymphocytes | ×103/L | >3.5 | 2/45 (4.4) | 2/34 (5.9) | 0/98 (0) | 0/54 (0) |
↓ platelets | ×103/L | <150 | 1/45 (2.2) | 3/34 (8.8) | 8/98 (8.2) | 8/55 (14.5) |
↓ glucose | mg/dL | <60 | 0/46 (0) | 0/33 (0) | 2/99 (2) | 2/55 (3.6) |
↑ glucose | mg/dL | >100 | 16/46 (34.8) | 17/33 (51.5) | 75/99 (75.8) | 43/55 (78.2) |
↑ creatinine | mg/dL | >1.2 | 5/45 (11.1) | 1/34 (2.9) | 14/99 (14.1) | 20/56 (35.7) |
↑ uric acid | mg/dL | >50 | 2/27 (7.4) | 1/15 (6.7) | 23/90 (25.6) | 27/45 (60.0) |
↑ cholesterol | mg/dL | >200 | 1/8 (12.5) | - | 1/43 (2.3) | 1/19 (5.3) |
↑ triglycerides | mg/dL | >150 | 2/7 (28.6) | - | 21/43 (48.8) | 16/19 (84.2) |
For CHI only | ||||||
↑ PCT | ng/mL | >0.5 | 0/2 (0) | - | 5/35 (14.3) | 3/11 (27.3) |
↑ CRP | mg/L | >50 | 2/2 (100) | - | 33/33 (100) | 7/10 (70.0) |
↑ SF | ng/mL | >400 | 0/1 (0) | - | 27/34 (79.4) | 6/6 (100) |
↑ IL-6 | pg/mL | >7 | - | - | 11/12 (91.7) | 5/5 (100) |
IgG, COVID | Positive | 5/48 (10.4) | 0/29 (0) | 10/37 (27.0) | 1/12 (8.3) | |
IgM, COVID | Positive | 8/53 (15.1) | 3/32 (9.4) | 19/76 (25.0) | 2/20 (10.0) | |
CT scan, n (%) | ||||||
CORADS | 1 | - | - | - | - | - |
2 | - | - | - | - | - | |
3 | - | - | - | - | - | |
4 | - | - | - | 3/37 (8.1) | 0/12 (0) | |
5 | - | - | - | 29/37 (78.4) | 7/12 (58.3) | |
6 | - | - | - | 5/37 (13.5) | 5/12 (41.7) |
Variable | Category | Groups a, Crude OR (95% CI) | ||
---|---|---|---|---|
2 vs. 1 | 3 vs. 1 | 4 vs. 1 | ||
Sex | Female | 1.00 | 1.00 | 1.00 |
Male | 1.38 (0.74–2.55) | 2.22 (1.27–3.90) | 2.25 (1.14–4.43) | |
Age group in years | 20-45 | 1.00 | 1.00 | 1.00 |
46-65 | 2.76 (1.43–5.35) | 6.99 (3.66–13.3) | 5.41 (2.54–11.6) | |
>65 | 2.00 (0.46–8.51) | 12.8 (3.97–41.1) | 12.8 (3.61–45.2) | |
Pulmonary disease | yes vs. no | 0.97 (0.21–4.51) | 1.44 (0.41–5.09) | 1.60 (0.38–6.68) |
Current smoking | yes vs. no | 1.51 (0.60–3.79) | 1.06 (0.44–2.53) | 0.76 (0.24–2.35) |
Type 2 diabetes | yes vs. no | 1.32 (0.37–4.77) | 10.4 (3.94–27.8) | 8.90 (3.10–25.3) |
Hypertension | yes vs. no | 1.17 (0.53–2.60) | 2.66 (1.37–5.15) | 4.87 (2.32–10.2) |
Immunosuppressed | yes vs. no | 0.42 (0.04–4.19) | 0.81 (0.16–4.12) | ND |
Chronic kidney disease | yes vs. no | 1.31 (0.08–21.3) | 5.07 (0.60–42.8) | 4.89 (0.49–48.1) |
Obesity | yes vs. no | 0.81 (0.37–1.77) | 2.34 (1.26–4.35) | 2.64 (1.29–5.38) |
Physical activity | Daily | 1.00 | 1.00 | 1.00 |
2–3 times/wk | 1.09 (0.28–4.19) | 4.66 (0.91–23.7) | 1.00 (0.07–13.0) | |
Sedentary | 0.63 (0.22–1.82) | 5.25 (1.34–20.5) | 2.62 (0.49–13.9) | |
Anemia | yes vs. no | 2.41 (0.53–10.9) | 5.88 (1.68–20.5) | 5.74 (1.55–21.5) |
↑ neutrophils | yes vs. no | 2.46 (0.72–8.35) | 17.2 (6.21–48.0) | 31.2 (9.98–97.2) |
↓ lymphocytes | yes vs. no | 6.61 (2.27–19.2) | 18.8 (7.34–48.3) | 6.61 (2.27–19.2) |
↑ glucose | yes vs. no | 1.99 (0.79–4.96) | 6.39 (2.95–13.8) | 8.06 (3.22–20.1) |
↑ creatinine | yes vs. no | 0.24 (0.02–2.17) | 1.31 (0.44–3.91) | 4.44 (1.51–13.0) |
↑ triglycerides | yes vs. no | ND | 0.16 (0.00–2.98) | 0.38 (0.02–7.11) |
Fever | yes vs. no | 55.2 (7.26–419) | 156 (21.0–1161) | 198 (25.7–1533) |
Headache | yes vs. no | 9.31 (4.26–20.3) | 20.4 (9.63–43.3) | 37.2 (14.7–94.0) |
Myalgia | yes vs. no | 2.05 (1.05–3.99) | 4.46 (2.45–8.13) | 7.10 (3.43–14.6) |
Arthralgia | yes vs. no | 3.80 (1.81–7.96) | 7.99 (4.05–15.7) | 11.2 (5.16–24.6) |
Fatigue | yes vs. no | 2.40 (1.10–5.10) | 11.1 (5.60–21.8) | 6.30 (2.90–13.4) |
Cough | yes vs. no | 9.63 (4.20–20.3) | 20.4 (9.60–43.3) | 37.2 (14.7–94.0) |
Sore throat | yes vs. no | 1.50 (0.75–3.03) | 1.48 (0.79–2.77) | 2.62 (1.29–5.30) |
Dyspnea | yes vs. no | 2.34 (0.91–−6.00) | 77.4 (31.0–193) | 53.1 (19.6–143) |
Chest pain | yes vs. no | 1.91 (0.72–5.04) | 6.03 (2.66–13.6) | 4.55 (1.83–11.3) |
Anosmia/dysgeusia | yes vs. no | 18.3 (2.30–144) | 19.3 (2.40–150) | 9.25 (1.00–150) |
Diarrhea | yes vs. no | 2.20 (0.68–7.03) | 4.59 (1.67–12.5) | 3.52 (1.13–10.8) |
Variable | Category | Group a, Adjusted OR (95% CI) b | ||
---|---|---|---|---|
2 vs. 1 | 3 vs. 1 | 4 vs. 1 | ||
Sex | Female | 1.00 | 1.00 | 1.00 |
Male | 1.90 (0.87–4.15) p = 0.10 | 3.34 (1.13–9.89) p = 0.02 | 3.66 (1.12–11.9) p = 0.03 | |
Type 2 diabetes | yes vs. no | 1.56 (0.29–8.16) p = 0.38 | 12.8 (2.50–65.8) p = 0.002 | 16.1 (2.87–90.2) p = 0.002 |
Obesity | yes vs. no | 0.79 (0.31–2.05) p = 0.64 | 3.38 (1.04–10.9) p = 0.04 | 4.10 (1.16–14.4) p = 0.02 |
Fever | yes vs. no | 45.5 (4.55–454) p = 0.001 | 49.2 (4.61–525) p = 0.001 | 62.9 (5.60–707) p = 0.001 |
Myalgia/arthralgia | yes vs. no | 0.64 (0.24–1.73) p = 0.38 | 2.82 (0.82–9.68) p = 0.09 | 4.31 (1.14–16.2) p = 0.03 |
Cough | yes vs. no | 4.43 (1.72–11.3) p = 0.002 | 10.5 (3.00–36.8) p < 0.000 | 26.4 (6.40–109) p < 0.000 |
Dyspnea | yes vs. no | 1.04 (0.32–3.37) p = 0.94 | 27.07 (7.31–100) p < 0.000 | 21.3 (5.03–90.5) p < 0.000 |
Anosmia/dysgeusia | yes vs. no | 25.5 (2.51–259) p = 0.02 | 15.9 (1.30–195) p = 0.03 | 6.87 (0.48–96.8) p =0.15 |
↑ neutrophils | yes vs. no | 1.51 (0.33–6.83) p = 0.59 | 6.71 (1.46–30.6) p = 0.01 | 16.5 (3.26–84.1) p = 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monárrez-Espino, J.; Zubía-Nevárez, C.I.; Reyes-Silva, L.; Castillo-Palencia, J.P.; Castañeda-Delgado, J.E.; Herrera van-Oostdam, A.S.; López-Hernández, Y. Clinical Factors Associated with COVID-19 Severity in Mexican Patients: Cross-Sectional Analysis from a Multicentric Hospital Study. Healthcare 2021, 9, 895. https://doi.org/10.3390/healthcare9070895
Monárrez-Espino J, Zubía-Nevárez CI, Reyes-Silva L, Castillo-Palencia JP, Castañeda-Delgado JE, Herrera van-Oostdam AS, López-Hernández Y. Clinical Factors Associated with COVID-19 Severity in Mexican Patients: Cross-Sectional Analysis from a Multicentric Hospital Study. Healthcare. 2021; 9(7):895. https://doi.org/10.3390/healthcare9070895
Chicago/Turabian StyleMonárrez-Espino, Joel, Carolina Ivette Zubía-Nevárez, Lorena Reyes-Silva, Juan Pablo Castillo-Palencia, Julio Enrique Castañeda-Delgado, Ana Sofía Herrera van-Oostdam, and Yamilé López-Hernández. 2021. "Clinical Factors Associated with COVID-19 Severity in Mexican Patients: Cross-Sectional Analysis from a Multicentric Hospital Study" Healthcare 9, no. 7: 895. https://doi.org/10.3390/healthcare9070895
APA StyleMonárrez-Espino, J., Zubía-Nevárez, C. I., Reyes-Silva, L., Castillo-Palencia, J. P., Castañeda-Delgado, J. E., Herrera van-Oostdam, A. S., & López-Hernández, Y. (2021). Clinical Factors Associated with COVID-19 Severity in Mexican Patients: Cross-Sectional Analysis from a Multicentric Hospital Study. Healthcare, 9(7), 895. https://doi.org/10.3390/healthcare9070895