The Impact of China’s Zero Markup Drug Policy on Hospitalization Expenses for Inpatients in Tertiary Public Hospitals: Evidence Based on Quantile Difference-in-Difference Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Measures
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics—Inpatient Characteristics
3.2. Descriptive Statistics—Outcome Measures
3.3. Results Based on QDID and DID Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yip, W.; Mahal, A. The health care systems of china and india: Performance and future challenges. Health Aff. 2018, 27, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Liu, C.; Liu, J.; Zhang, X.; Zuo, K. Effects of County Public Hospital Reform on Procurement Costs and Volume of Antibiotics: A Quasi-Natural Experiment in Hubei Province, China. Pharmacoeconomics 2018, 36, 995–1004. [Google Scholar] [CrossRef] [Green Version]
- Yip, W.; Hsiao, W.C. The Chinese health system at a crossroads. Health Aff. 2008, 27, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Yip, W.C.-M.; Hsiao, W.; Meng, Q.; Chen, W. Xiaoming SunRealignment of incentives for health-care providers in China. Lancet 2010, 375, 1120–1130. [Google Scholar] [CrossRef]
- Yip. W.; Eggleston, K. Addressing government and market failures with payment incentives: Hospital reimbursement reform in Hainan, China. Soc. Sci. Med. 2004, 58, 267–277. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Wang, F.; Wang, B.; Liu, L.; Hou, W.; Fan, H.; Tong, Y.; Zhang, J.; Lu, Z. Overprescribing in China, driven by financial incentives, results in very high use of antibiotics, injections, and corticosteroids. Health Aff. 2012, 31, 1075–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Santoro, M.A.; Meng, Q.; Liu, C.; Eggleston, K. Pharmaceutical policy in China. Health Aff. 2017, 27, 1042–1050. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Bogg, L.; Rehnberg, C.; Diwan, V. Drug policy in China: Pharmaceutical distribution in rural areas. Soc. Sci. Med. 1999, 48, 777–786. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Z.; Ru, Y.; Zhang, M. Small-scale or full-scale? The zero mark-up drug policy in China. Journal of Interdisciplinary Mathematics. Taylor Fr. 2017, 20, 1167–1178. [Google Scholar]
- Li, Y.; Ying, C.; Sufang, G.; Brant, P.; Bin, L.; Hipgrave, D. Evaluation, in three provinces, of the introduction and impact of China’s National Essential Medicines Scheme. Bull. World Health Organ. 2013, 91, 184–194. [Google Scholar] [CrossRef]
- Yi, H.; Miller, G.; Zhang, L.; Li, S.; Rozelle, S. Intended and unintended consequences of China’s Zero Markup Drug Policy. Health Affairs. Health Aff. 2015, 34, 1391–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Dou, G.; Huang, Q.; Zhang, X.; Ye, Y.; Qian, M.; Ying, X. Does the leading pharmaceutical reform in China really solve the issue of overly expensive healthcare services? Evidence from an empirical study. PLoS ONE. 2018, 13, e0190320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Su, Y.; Campbell, B.; Zhou, Z.; Gao, J.; Yu, Q.; Chen, J.; Pan, Y. The financial impact of the “zero-markup policy for essential drugs” on patients in county hospitals in western rural China. PLoS ONE 2015, 10, e0121630. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-F. Analysis on the Effect of the National Essential Medicine System in Rural Township Health Clinics: Based on the Survey Data from Rugao City in Jiangsu Province. In Proceedings of the 19th International Conference on Industrial Engineering and Engineering Management; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1373–1379. [Google Scholar]
- Zhang, X.; Wu, Q.; Liu, G.; Li, Y.; Gao, L.; Guo, B.; Fu, W.; Hao, Y.; Cui1, Y.; Huang, W.; et al. The effect of the National Essential Medicines Policy on health expenditures and service delivery in Chinese township health centres: Evidence from a longitudinal study. BMJ Open 2014, 4, e006471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, S.; Barros, P.P. Double health insurance coverage and health care utilisation: Evidence from quantile regression. Health Econ. 2010, 19, 1075–1092. [Google Scholar] [CrossRef] [PubMed]
- Olsen, M.A.; Tian, F.; Wallace, A.E.; Nickel, K.B.; Warren, D.K.; Fraser, V.J.; Selvam, N.; Hamilton, B.H. Use of Quantile Regression to Determine the Impact on Total Health Care Costs of Surgical Site Infections Following Common Ambulatory Procedures. Ann Surg. 2017, 265, 331–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, T.; Parkinson, L.; Cunich, M.; Byles, J. Factors associated with higher healthcare costs in individuals living with arthritis: Evidence from the quantile regression approach. Expert Rev. Pharm. Outcomes Res. 2015, 15, 833–841. [Google Scholar] [CrossRef]
- Gebregziabher, M.; Lynch, C.P.; Mueller, M.; Gilbert, G.E.; Echols, C.; Zhao, Y.; Egede, L.E. Using quantile regression to investigate racial disparities in medication non-adherence. BMC Med. Res. Methodol. 2011, 11, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, X.; Zhang, Y. Analysis on the Structure of Shanxi Province’s Total Health Expenditure. Money China 2018, 35, 40–41. (In Chinese) [Google Scholar]
- Lin, X.; Cai, M.; Tao, H.; Liu, E.; Cheng, Z.; Xu, C.; Wang, M.; Xia, S. Tianyu JiangInsurance status, inhospital mortality and length of stay in hospitalised patients in Shanxi, China: A cross-sectional study. BMJ Open 2017, 7, e015884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, M.; Liu, E.; Tao, H.; Qian, Z.; Lin, X.; Cheng, Z. Does Level of Hospital Matter? A Study of Mortality of Acute Myocardial Infarction Patients in Shanxi, China. Am. J. Med Qual. 2018, 33, 185–192. [Google Scholar] [CrossRef]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.-C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Borah, B.J.; Burns, M.E.; Shah, N.D. Assessing the impact of high deductible health plans on health-care utilization and cost: A changes-in-changes approach. Health Econ. 2011, 20, 1025–1042. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Shen, Q.; Cai, W.; Zhu, W.; Li, Z.; Wu, L.; Fang, Y. Impact of the zero-markup drug policy on hospitalisation expenditure in western rural China: An interrupted time series analysis. Trop. Med. Int. Health 2017, 22, 180–186. [Google Scholar] [CrossRef]
- Zhou, Z.; Su, Y.; Campbell, B.; Zhou, Z.; Zhou, Z.; Gao, J.; Yu, Q.; Chen, J.; Pan, Y. The impact of China’s Zero-Markup Drug Policy on county hospital revenue and government subsidy levels. J. Asian Public Policy 2015, 8, 102–116. [Google Scholar] [CrossRef]
- Onder, G.; Cesari, M.; Maggio, M.; Palmer, K. Defining a care pathway for patients with multimorbidity or frailty. Eur. J. Intern. Med. 2017, 38, 1–2. [Google Scholar] [CrossRef]
- Seghieri, C.; Berta, P.; Nuti, S. Geographic variation in inpatient costs for Acute Myocardial Infarction care: Insights from Italy. Health Policy 2019, 123, 449–456. [Google Scholar] [CrossRef]
- Aggarwal, G.; Patlolla, S.H.; Aggarwal, S.; Cheungpasitporn, W.; Doshi, R.; Sundaragiri, P.R.; Rabinstein, A.A.; Jaffe, A.S.; Barsness, G.W.; Cohen, M.; et al. Temporal trends, predictors, and outcomes of acute ischemic stroke in acute myocardial infarction in the United States. J. Am. Heart Assoc. 2021, 10, e017693. [Google Scholar] [CrossRef]
- Shiri, T.; Khan, K.; Keaney, K.; Mukherjee, G.; McCarthy, N.D.; Petrou, S. Pneumococcal disease: A systematic review of health utilities, resource use, costs, and economic evaluations of interventions. Value Health 2019, 22, 1329–1344. [Google Scholar] [CrossRef]
- Liu, S.; Xu, H.; Cui, X.; Qian, Y. How The Implementation Of Drug Zero Markup Policy Will Affect Health Care Expenditure In Hospitals: Observation And Prediction Based On Zhejiang Model. Value Health. 2014, 17, A790. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Bian, Y.; Petzold, M.; Li, L.; Yin, A. Effects of the National Essential Medicine System in reducing drug prices: An empirical study in four Chinese provinces. J Pharm Policy Pract. 2014, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Zhu, D.; Man, X.; Wang, W.; Zhu, K.; Nicholas, S.; He, P. The biggest reform to China's health system”: Did the zero-markup drug policy achieve its goal at traditional Chinese medicines county hospitals? Health Policy Plan. 2019, 34, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Li, L.; Yip, W. Health Care Policy in East Asia: A World Scientific Reference: Volume 1: Health Care System Reform and Policy Research in China. In Intended and Unintended Impacts of Price Changes for Drugs and Medical Services: Evidence from China; World Scientific: Singapore, 2020; pp. 305–334. [Google Scholar]
- Yang, L.; Liu, C.; Ferrier, J.A.; Zhou, W.; Zhang, X. The impact of the National Essential Medicines Policy on prescribing behaviours in primary care facilities in Hubei province of China. Health Policy Plans 2013, 28, 750–760. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Tian, H.; Guo, Y.; Ma, T.; Sun, Y.; Zhang, S.; Yang, T.; Tian, X. A retrospective and prospective assessment of the zero-markup drug reform in China from the perspective of policy diffusion. Int. J. Health Plan. Manag. 2018, 33, e918–e929. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, H.; Zhang, L.; He, J.; Fu, B.; Jin, C. The impacts and unintended consequences of the nationwide pricing reform for drugs and medical services in the urban public hospitals in China. BMC Health Serv. Res. 2020, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
Pre-Intervention Period | Post-Intervention Period | |||||
---|---|---|---|---|---|---|
Control Group | Treated Group | Total | Control Group | Treated Group | Total | |
Gender | ||||||
Male, n (%) | 3472(68.77) | 2138(66.13) | 5610(67.74) | 3523(70.63) | 1909(65.15) | 5432(68.60) |
Female, n (%) | 1577 (31.23) | 1095(33.87) | 2672(32.26) | 1465(29.37) | 1021(34.85) | 2486(31.40) |
Age | ||||||
≤40, n (%) | 405(8.02) | 209(6.46) | 614(7.41) | 407(8.16) | 237(8.09) | 644(8.13) |
41–60, n (%) | 1918(37.99) | 933(28.86) | 2851(34.42) | 1888(37.85) | 869(29.66) | 2757(34.82) |
>60, n (%) | 2726(53.99) | 2091(64.68) | 4817(58.16) | 2693(53.99) | 1824(62.25) | 4517(57.05) |
Disease Type | ||||||
AMI, n (%) | 1700(33.67) | 1673(51.75) | 3373(40.73) | 1615(32.38) | 1530(52.22) | 3145(39.72) |
Pneumonia, n (%) | 2249(44.54) | 1560(48.25) | 3809(45.99) | 3373(67.62) | 1400(47.78) | 4773(60.28) |
Admission Source | ||||||
Outpatient, n (%) | 1940(38.42) | 1367(42.28) | 3307(39.93) | 2183(43.77) | 1273(43.45) | 3456(43.65) |
Emergency, n (%) | 3065(60.71) | 1664(51.47) | 4729(57.10) | 2722(54.57) | 1500(51.19) | 4222(53.32) |
Transfer, n (%) | 29(0.57) | 50(1.55) | 79(0.95) | 65(1.30) | 108(3.69) | 173(2.18) |
Other, n (%) | 15(0.30) | 152(4.70) | 167(2.02) | 18(0.36) | 49(1.67) | 67(0.85) |
Admission Status | ||||||
Regular, n (%) | 3115 (61.70) | 2596(80.30) | 5711(68.96) | 2968(59.50) | 2343(79.97) | 5311(67.08) |
Urgent, n (%) | 997(19.75) | 430(13.30) | 1427(17.23) | 45(0.90) | 396(13.52) | 441(5.57) |
Critical, n (%) | 937(18.56) | 207(6.40) | 1144(13.81) | 975(19.55) | 191(6.52) | 1166(14.73) |
Charlson Comorbidity Index | ||||||
0, n (%) | 2196(43.49) | 2143(66.29) | 4339(52.39) | 2143(42.96) | 1032(35.22) | 3175(40.10) |
1–2, n (%) | 1208(23.93) | 1332(41.20) | 2540(30.67) | 1332(26.70) | 678(23.14) | 2010(25.39) |
3–4, n (%) | 1089(21.57) | 965(29.85) | 2054(24.80) | 965(19.35) | 585(19.97) | 1550(19.58) |
≥5, n (%) | 556(11.01) | 548(16.95) | 1104(13.33) | 548(10.99) | 635(21.67) | 1183(14.94) |
Type of Insurance Coverage | ||||||
UEBMI, n (%) | 1928(38.19) | 1631(50.45) | 3559(42.97) | 1658(33.24) | 1440(49.15) | 3098(39.13) |
URBMI, n (%) | 325(6.44) | 360(11.14) | 685(8.27) | 259(5.19) | 335(11.43) | 594(7.50) |
NCMS, n (%) | 1818(36.01) | 871(26.94) | 2689(32.47) | 1928(38.65) | 852(29.08) | 2780(35.11) |
Self-payment, n (%) | 927(18.36) | 263(8.13) | 1190(14.37) | 1076(21.57) | 228(7.78) | 1304(16.47) |
Other, n (%)s | 51(1.01) | 108(3.34) | 159(1.92) | 67(1.34) | 75(2.56) | 142(1.79) |
Length of Stay (days), Mean ± SD | ||||||
LOS | 11.77(6.83) | 12.42(7.55) | 12.17(7.29) | 11.20(6.51) | 12.20(7.53) | 12.30(7.54) |
Total, n(%) | 5049(60.96) | 3233(39.04) | 8282 | 4988(63.00) | 2930(37.00) | 7918 |
Variable | Mean | SD | Q10 | Q25 | Q50 | Q75 | Q90 | |
---|---|---|---|---|---|---|---|---|
Total hospitalization expenses (USD) | 3988.25 | 3829.27 | 835.77 | 1357.33 | 2648.16 | 6110.53 | 9253.79 | |
Control group | Pre- intervention period | 3914.84 | 4173.89 | 811.48 | 1316.8 | 2631.87 | 5531.49 | 7225.64 |
Post- intervention period | 3897.23 | 4901.43 | 811.13 | 1324.79 | 2641.57 | 5590.81 | 6885.59 | |
Treated group | Pre- intervention period | 4016.77 | 3454.34 | 816.24 | 1350.65 | 2603.27 | 5605.8 | 10414.64 |
Post- intervention period | 4124.14 | 3787.42 | 862.77 | 1400.43 | 2732.07 | 5625.46 | 10492.77 | |
Drug expenses (USD) | 1214.79 | 1452.39 | 256.46 | 478.12 | 836.09 | 1472.47 | 2602.21 | |
Control group | Pre- intervention period | 1180.47 | 1527.3 | 289.44 | 494.91 | 872.72 | 1505.8 | 1797.13 |
Post- intervention period | 1091.45 | 1335.68 | 265.17 | 456.84 | 787.81 | 1355.92 | 1569.33 | |
Treated group | Pre- intervention period | 1305.78 | 1530.12 | 295.06 | 523.76 | 870.76 | 1507.04 | 3327.88 |
Post- intervention period | 1151.49 | 1416.49 | 243.6 | 437.7 | 735.16 | 1243.98 | 2897.46 | |
Diagnosis expenses (USD) | 715.76 | 583.69 | 233.35 | 384.06 | 633.41 | 877.21 | 1358.78 | |
Control group | Pre- intervention period | 724.79 | 580.71 | 246.56 | 381.16 | 579.71 | 852.57 | 949.67 |
Post- intervention period | 700.05 | 538.79 | 145.12 | 367.58 | 586.23 | 856.67 | 926.54 | |
Treated group | Pre- intervention period | 714.45 | 575.97 | 268.41 | 406.49 | 608.26 | 894.38 | 1529.17 |
Post- intervention period | 723.73 | 639.32 | 271.1 | 413.19 | 607.97 | 872.9 | 1559.83 | |
Treatment expenses (USD) | 660.92 | 834.24 | 42.61 | 124.78 | 385.65 | 993.26 | 1546.35 | |
Control group | Pre- intervention period | 618.9 | 792.47 | 38.71 | 105.36 | 338.48 | 790.58 | 1635.78 |
Post- intervention period | 682.97 | 850.86 | 45.23 | 109.2 | 365.14 | 1018.19 | 1728.51 | |
Treated group | Pre- intervention period | 614.61 | 754.66 | 39.26 | 111.92 | 349.35 | 945.4 | 1340.65 |
Post- intervention period | 727.18 | 901.47 | 64.91 | 165.58 | 432.83 | 1060 | 1549.22 | |
Material expenses (USD) | 1308.81 | 2167.42 | 26.61 | 54.72 | 175.68 | 2416.68 | 4336.38 | |
Control group | Pre- intervention period | 1310.73 | 2120.50 | 24.54 | 51.46 | 71.25 | 1406.42 | 4057.98 |
Post- intervention period | 1353.66 | 2121.41 | 27.31 | 55.39 | 79.06 | 1681.37 | 4047.41 | |
Treated group | Pre- intervention period | 1336.1 | 2239.05 | 23.85 | 62.68 | 254.24 | 1939.97 | 4684.52 |
Post- intervention period | 1234.73 | 2123.52 | 26.6 | 65.45 | 244.33 | 1582.41 | 4318.92 | |
Service expenses (USD) | 70.47 | 82.54 | 9.25 | 34.31 | 44.56 | 119.22 | 153.51 | |
Control group | Pre- intervention period | 79.95 | 91.33 | 8.25 | 37.12 | 51.35 | 125.60 | 161.33 |
Post- intervention period | 69.1 | 78.92 | 5.35 | 35.72 | 49.88 | 89.53 | 137.25 | |
Treated group | Pre- intervention period | 45.83 | 52.21 | 3.54 | 29.91 | 46.57 | 67.98 | 109.56 |
Post- intervention period | 87.01 | 95.37 | 7.89 | 25.34 | 71.22 | 120.50 | 173.25 |
Outcome a | QDID | DID | ||||
---|---|---|---|---|---|---|
Q10 | Q25 | Q50 | Q75 | Q90 | ||
D-I-D | D-I-D | D-I-D | D-I-D | D-I-D | ||
Total hospitalization expenses | 988.32 *** | 1805.68 *** | 1141.81 *** | 602.82 *** | 225.83 ** | 2308.83 *** |
SE | (187.31) | (251.12) | (324.01) | (427.60) | (755.59) | (476.41) |
Drug expenses | −20.39 | −172.93 * | −507.84 *** | −844.77 *** | −1400.00 *** | −661.84 *** |
SE | (77.73) | (74.18) | (90.91) | (149.70) | (290.97) | (202.80) |
Diagnostics expenses | 338.30 *** | 247.09 *** | −112.62 * | −96.34 | −34.36 | 206.74 *** |
SE | (60.26) | (54.21) | (50.46) | (66.23) | (118.39) | (78.78) |
Treatment expenses | 334.10 *** | 453.01 *** | 465.29 *** | 267.446 ** | 609.846 *** | 515.74 *** |
SE | (34.42) | (47.95) | (52.90) | (85.57) | (162.53) | (99.24) |
Material expenses | 53.82 *** | 43.52 * | 54.831 | 27.69 | 82.17 | 54.14 |
SE | (13.2) | (19.13) | (42.99) | (53.85) | (114.39) | (293.76) |
Service expenses | 119.16 *** | 153.36 *** | 61.41 *** | 78.04 *** | 74.61 ** | 75.06 ** |
SE | (36.55) | (30.14) | (9.27) | (17.86) | (31.07) | (24.98) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Z.; Jia, J.; Cui, L.; Zhou, S.; Wang, X. The Impact of China’s Zero Markup Drug Policy on Hospitalization Expenses for Inpatients in Tertiary Public Hospitals: Evidence Based on Quantile Difference-in-Difference Models. Healthcare 2021, 9, 908. https://doi.org/10.3390/healthcare9070908
Ni Z, Jia J, Cui L, Zhou S, Wang X. The Impact of China’s Zero Markup Drug Policy on Hospitalization Expenses for Inpatients in Tertiary Public Hospitals: Evidence Based on Quantile Difference-in-Difference Models. Healthcare. 2021; 9(7):908. https://doi.org/10.3390/healthcare9070908
Chicago/Turabian StyleNi, Ziling, Jie Jia, Lu Cui, Siyu Zhou, and Xiaohe Wang. 2021. "The Impact of China’s Zero Markup Drug Policy on Hospitalization Expenses for Inpatients in Tertiary Public Hospitals: Evidence Based on Quantile Difference-in-Difference Models" Healthcare 9, no. 7: 908. https://doi.org/10.3390/healthcare9070908
APA StyleNi, Z., Jia, J., Cui, L., Zhou, S., & Wang, X. (2021). The Impact of China’s Zero Markup Drug Policy on Hospitalization Expenses for Inpatients in Tertiary Public Hospitals: Evidence Based on Quantile Difference-in-Difference Models. Healthcare, 9(7), 908. https://doi.org/10.3390/healthcare9070908