Calprotectin and SARS-CoV-2: A Brief-Report of the Current Literature
Abstract
:1. Introduction
2. What Is Calprotectin?
3. Serum Calprotectin and COVID-19
4. Fecal Calprotectin and COVID-19
Fecal Calprotectin and Mesenteric Ischemia in COVID-19 Patients
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Sim, B.L.H.; Chidambaram, S.K.; Wong, X.C.; Pathmanathan, M.D.; Peariasamy, K.M.; Hor, C.P.; Chua, H.J.; Goh, P.P. Clinical characteristics and risk factors for severe COVID-19 infections in Malaysia: A nationwide observational study. Lancet Reg. Health-West. Pac. 2020, 4, 100055. [Google Scholar] [CrossRef]
- Altschul, D.J.; Unda, S.R.; Benton, J.; de la Garza Ramos, R.; Cezayirli, P.; Mehler, M.; Eskandar, E.N. A novel severity score to predict inpatient mortality in COVID-19 patients. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sambataro, G.; Giuffrè, M.; Sambataro, D.; Palermo, A.; Vignigni, G.; Cesareo, R.; Crimi, N.; Torrisi, S.E.; Vancheri, C.; Malatino, L.; et al. The Model for Early COvid-19 Recognition (MECOR) Score: A Proof-of-Concept for a Simple and Low-Cost Tool to Recognize a Possible Viral Etiology in Community-Acquired Pneumonia Patients during COVID-19 Outbreak. Diagnostics 2020, 10, 619. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Liu, T.; Wei, Y.; Li, J.; Shao, L.; Liu, M.; Zhang, Y.; Zhao, Z.; Xu, H.; Peng, Z.; et al. Scoring systems for predicting mortality for severe patients with COVID-19. EClinicalMedicine 2020, 24, 100426. [Google Scholar] [CrossRef] [PubMed]
- Tomar, B.; Anders, H.J.; Desai, J.; Mulay, S.R. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19. Cells 2020, 9, 1383. [Google Scholar] [CrossRef] [PubMed]
- Fagerhol, M.K.; Dale, I.; Anderson, T. Release and Quantitation of a Leucocyte Derived Protein (L1). Scand. J. Haematol. 1980, 24, 393–398. [Google Scholar] [CrossRef]
- Brophy, M.B.; Nolan, E.M. Manganese and microbial pathogenesis: Sequestration by the mammalian immune system and utilization by microorganisms. ACS Chem. Biol. 2015, 10, 641–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedaghat, F.; Notopoulos, A. S100 protein family and its application in clinical practice. Hippokratia 2008, 12, 198–204. [Google Scholar]
- Champaiboon, C.; Sappington, K.J.; Guenther, B.D.; Ross, K.F.; Herzberg, M.C. Calprotectin S100A9 calcium-binding loops I and II are essential for keratinocyte resistance to bacterial invasion. J. Biol. Chem. 2009, 284, 7078–7090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strupat, K.; Rogniaux, H.; Van Dorsselaer, A.; Roth, J.; Vogl, T. Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 are confirmed by electrospray ionization-mass analysis. J. Am. Soc. Mass Spectrom. 2000, 11, 780–788. [Google Scholar] [CrossRef]
- Stříž, I.; Trebichavský, I. Calprotectin-A pleiotropic molecule in acute and chronic inflammation. Physiol. Res. 2004, 53, 245–253. [Google Scholar]
- Røseth, A.G.; Fagerhol, M.K.; Aadland, E.; Schjønsby, H. Assessment of the neutrophil dominating protein calprotectin in feces: A methodologic study. Scand. J. Gastroenterol. 1992, 27, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Berntzen, H.B.; Ölmez, Ü.; Fagerhol, M.K.; Munthe, E. The leukocyte protein l1 in plasma and synovial fluid from patients with rheumatoid arthritis and osteoarthritis. Scand. J. Rheumatol. 1991, 20, 74–82. [Google Scholar] [CrossRef]
- Wang, S.; Song, R.; Wang, Z.; Jing, Z.; Wang, S.; Ma, J. S100A8/A9 in inflammation. Front. Immunol. 2018, 9, 1298. [Google Scholar] [CrossRef]
- Kopi, T.A.; Shahrokh, S.; Mirzaei, A.; Aghdaei, H.A.; Kadijani, A.A. The role of serum calprotectin as a novel biomarker in inflammatory bowel diseases: A review study. Gastroenterol. Hepatol. Bed Bench 2019, 12, 183–189. [Google Scholar]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
- Yuen, J.; Pluthero, F.G.; Douda, D.N.; Riedl, M.; Cherry, A.; Ulanova, M.; Kahr, W.H.A.; Palaniyar, N.; Licht, C. NETosing neutrophils activate complement both on their own NETs and bacteria via alternative and non-alternative pathways. Front. Immunol. 2016, 7, 137. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, M.; Anders, H.J.; Bilyy, R.; Bowlin, G.L.; Daniel, C.; De Lorenzo, R.; Egeblad, M.; Henneck, T.; Hidalgo, A.; Hoffmann, M.; et al. Patients with COVID-19: In the dark-NETs of neutrophils. Cell Death Differ. 2021, 1–15. [Google Scholar] [CrossRef]
- Maxwell, A.J.; Ding, J.; You, Y.; Dong, Z.; Chehade, H.; Alvero, A.; Mor, Y.; Draghici, S.; Mor, G. Identification of key signaling pathways induced by SARS-CoV2 that underlie thrombosis and vascular injury in COVID-19 patients. J. Leukoc. Biol. 2021, 109, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Silvin, A.; Chapuis, N.; Dunsmore, G.; Goubet, A.G.; Dubuisson, A.; Derosa, L.; Almire, C.; Hénon, C.; Kosmider, O.; Droin, N.; et al. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19. Cell 2020, 182, 1401–1418. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zuo, Y.; Yalavarthi, S.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Woodward, W.; Lezak, S.P.; Lugogo, N.L.; et al. Neutrophil calprotectin identifies severe pulmonary disease in COVID-19. J. Leukoc. Biol. 2021, 109, 67–72. [Google Scholar] [CrossRef]
- Cherubini, F.; Cristiano, A.; Valentini, A.; Bernardini, S.; Nuccetelli, M. Circulating calprotectin as a supporting inflammatory marker in discriminating SARS-CoV-2 infection: An observational study. Inflamm. Res. 2021, 70, 687–694. [Google Scholar] [CrossRef]
- Bauer, W.; Diehl-Wiesenecker, E.; Ulke, J.; Galtung, N.; Havelka, A.; Hegel, J.K.; Tauber, R.; Somasundaram, R.; Kappert, K. Outcome prediction by serum calprotectin in patients with COVID-19 in the emergency department. J. Infect. 2020. [Google Scholar] [CrossRef]
- Chen, L.; Long, X.; Xu, Q.; Tan, J.; Wang, G.; Cao, Y.; Wei, J.; Luo, H.; Zhu, H.; Huang, L.; et al. Elevated serum levels of S100A8/A9 and HMGB1 at hospital admission are correlated with inferior clinical outcomes in COVID-19 patients. Cell. Mol. Immunol. 2020, 17, 992–994. [Google Scholar] [CrossRef]
- de Guadiana Romualdo, L.G.; Mulero, M.D.R.; Olivo, M.H.; Rojas, C.R.; Arenas, V.R.; Morales, M.G.; Abellán, A.B.; Conesa-Zamora, P.; García-García, J.; Hernández, A.C.; et al. Circulating levels of GDF-15 and calprotectin for prediction of in-hospital mortality in COVID-19 patients: A case series. J. Infect. 2021, 82, e40–e42. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kang, Z.; Gong, H.; Xu, D.; Wang, J.; Li, Z.; Li, Z.; Cui, X.; Xiao, J.; Zhan, J.; et al. Digestive system is a potential route of COVID-19: An analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut 2020, 69, 1010–1018. [Google Scholar] [CrossRef]
- Effenberger, M.; Grabherr, F.; Mayr, L.; Schwaerzler, J.; Nairz, M.; Seifert, M.; Hilbe, R.; Seiwald, S.; Scholl-Buergi, S.; Fritsche, G.; et al. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut 2020, 69, 1543–1544. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Feng, Z.; Rao, S.; Xiao, C.; Xue, X.; Lin, Z.; Zhang, Q.; Qi, W. Diarrhoea may be underestimated: A missing link in 2019 novel coronavirus. Gut 2020, 69, 1141–1143. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 2020, 158, 1831–1833.e3. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, X.; Zhang, Z.; Huang, S.; Zhang, Z.; Fang, Z.; Gu, Z.; Gao, L.; Shi, H.; Mai, L.; et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020, 69, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, D.; Yang, P.; Poon, L.L.M.; Wang, Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 2020, 20, 411–412. [Google Scholar] [CrossRef]
- Gupta, S.; Parker, J.; Smits, S.; Underwood, J.; Dolwani, S. Persistent viral shedding of SARS-CoV-2 in faeces–a rapid review. Color. Dis. 2020, 22, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.S.; Hung, I.F.N.; Chan, P.P.Y.; Lung, K.C.; Tso, E.; Liu, R.; Ng, Y.Y.; Chu, M.Y.; Chung, T.W.H.; Tam, A.R.; et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology 2020, 159, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, M.; Di Bella, S.; Sambataro, G.; Zerbato, V.; Cavallaro, M.; Occhipinti, A.A.; Palermo, A.; Crescenzi, A.; Monica, F.; Luzzati, R.; et al. COVID-19-Induced thrombosis in patients without gastrointestinal symptoms and elevated fecal calprotectin: Hypothesis regarding mechanism of intestinal damage associated with COVID-19. Trop. Med. Infect. Dis. 2020, 5, 147. [Google Scholar] [CrossRef] [PubMed]
- Britton, G.J.; Chen-Liaw, A.; Cossarini, F.; Livanos, A.E.; Spindler, M.P.; Plitt, T.; Eggers, J.; Mogno, I.; Gonzalez-Reiche, A.; Siu, S.; et al. SARS-CoV-2-specific IgA and limited inflammatory cytokines are present in the stool of select patients with acute COVID-19. medRxiv 2020. [CrossRef]
- Hsieh, J.; Brandt, L. Fecal Calprotectin in Ischemic Colitis (IC). Am. J. Gastroenterol. 2009, 104, S164. [Google Scholar] [CrossRef]
- Zerbato, V.; Di Bella, S.; Giuffrè, M.; Jaracz, A.W.; Gobbo, Y.; Luppino, D.; Macor, P.; Segat, L.; Koncan, R.; D’Agaro, P.; et al. High fecal calprotectin levels are associated with SARS-CoV-2 intestinal shedding in COVID-19 patients: A proof-of-concept study. World J. Gastroenterol. 2021, 27, 3130–3137. [Google Scholar] [CrossRef]
- Ojetti, V.; Saviano, A.; Covino, M.; Acampora, N.; Troiani, E.; Franceschi, F. COVID-19 and intestinal inflammation: Role of fecal calprotectin. Dig. Liver Dis. 2020, 52, 1231–1233. [Google Scholar] [CrossRef]
- Schoepfer, A.M.; Trummler, M.; Seeholzer, P.; Criblez, D.H.; Seibold, F. Accuracy of four fecal assays in the diagnosis of colitis. Dis. Colon Rectum 2007, 50, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Kaur, P. COVID-19 and acute mesenteric ischemia: A review of literature. Hematol. Transfus. Cell Ther. 2020, 43, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, M.; Bozzato, A.M.; Di Bella, S.; Occhipinti, A.A.; Martingano, P.; Cavallaro, M.F.M.; Luzzati, R.; Monica, F.; Cova, M.A.; Crocè, L.S. Spontaneous rectal perforation in a patient with SARS–CoV-2 infection. J. Pers. Med. 2020, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Gartland, R.M.; Velmahos, G.C. Bowel Necrosis in the Setting of COVID-19. J. Gastrointest. Surg. 2020, 24, 2888–2889. [Google Scholar] [CrossRef]
Authors, Country | Design | Sample Size | Primary Results/Conclusions |
---|---|---|---|
Chen et al. [27] (July, 2020) Wuhan (China) | Retrospective | Total, n = 121 | Mean Calprotectin Concentrations: ICU, 9220 ng/mL vs. non-ICU, 7800 ng/mL (p = 0.0001). |
ICU, n = 40 | Serum calprotectin can discriminate with an AUROC of 0.86 and a cut-off of 6195 ng/mL (sensitivity 85%, specificity 82.7%) ICU admission. Also, patients with serum calprotectin > 6195 ng/mL had a 13-fold risk of death at 60 days from hospital admission. | ||
Non-ICU, n = 81 | |||
Shi et al. [24] (July, 2020) Michigan (USA) | Cohort | Total, n = 172 | Mean Calprotectin Concentrations: patients who needed ventilation, 8039 ng/mL vs. those who did not, 3365 ng/mL (p < 0.0001). |
Room air group, n = 41 | Calprotectin levels were significantly higher in those individuals who required mechanical ventilation at any point during their hospitalization. Serum calprotectin could discriminate between patients that required mechanical ventilation and those who did not, with an AUROC of 0.794. | ||
Non-invasive oxygen, n = 71 | |||
Invasive ventilation, n = 60 | |||
De Guadiana-Romualdo et al. [28] (August, 2020) Cartagena (Spain) | Case Series | Total, n = 66 | Mean Calprotectin Concentrations: survivors, 3540 ng/mL vs. non-survivors, 7900 ng/mL (p < 0.001). |
Survivors, n = 8 | Serum calprotectin positively correlated with other inflammation markers and was significantly higher in non-survivors, thus highlighting a possible prognostic role in COVID-19 patients. | ||
Non-Survivors, n = 58 | |||
Silvin et al. [23] (August, 2020) Villejuif (France) | Cohort | Total, n = 158 | Mean Calprotectin Concentrations: severe, 4983 ng/mL vs. non-severe 985 ng/mL (p < 0.0001). |
Severe, n = 50 | Patients with more severe COVID-19 exhibited exponentially higher serum calprotectin if compared to patients with more moderate disease or controls. Serum calprotectin can discriminate between severe and non-severe disease with an AUROC of 0.959. | ||
Non-Severe, n = 39 | |||
Controls, n = 86 | |||
Bauer et al. [26] (November, 2020) Berlin, Germany | Cohort | Total, n = 19 | Mean Calprotectin Concentrations: ICU, 3770 ng/mL vs. non-ICU, 2080 ng/mL (p = 0.15). |
ICU, n = 8 | Serum calprotectin had the best discriminative ability to predict ICU admission (AUROC 0.70, 95% C.I. 0.42–0.99) and multi-organ failure within 72 h (AUROC 0.87, 95% C.I. 0.63–1) if compared to other commonly employed biomarkers. | ||
Non-ICU, n = 11 | |||
Cherubini et al. [25] (May, 2021) Rome (Italy) | Cohort | Total, n = 195 | Mean Calprotectin Concentrations: hospitalized patients with positive RT-PCR, 352.3 ng/mL vs. patients with symptoms but negative nasopharyngeal RT-PCR, 177.2 ng/mL vs. individuals without symptoms and negative nasopharyngeal RT-PCR (45.3 ng/mL). |
Hospitalized Patients with positive RT-PCR, n = 65 | Calprotectin can discriminate between symptomatic patients (COVID-positive vs. COVID-negative) with an AUROC of 0.72 and reported the cut-off 131.3 ng/mL, being the most performant with a specificity of 70.77% and a sensitivity of 69.49% | ||
Hospitalized Patients with negative RT-PCR, n = 59 | |||
Healthy individuals screened with negative RT-PCR, n = 71 |
Authors, Country | Design | Sample Size | Primary Results/Conclusions |
---|---|---|---|
Effenberger et al. [31] (August, 2020) Innstruk (Austria) | Cohort | Total, n = 40 | Mean Calprotectin Concentrations: patients with diarrhea 80.2 mg/kg vs. patients without diarrhea 17.3 mg/kg. |
Patients with diarrhea, n = 22 | Patients with acute diarrhea showed higher FC level if compared to patients without diarrhea. FC concentration correlates with IL-6 but not to other markers of inflammation such as CRP. Viral RNA was not detected in stools from patients with ongoing diarrhea, and no relation was found between SARS-CoV-2 RNA and FC. | ||
Patients without diarrhea, n = 18 | |||
Giuffrè et al. [37] (August, 2020) Trieste, Italy | Cohort | Total, n = 25 | Approximately, 84% of patients showed increased FC despite being asymptomatic for gastrointestinal symptoms. Two patients with particularly high FC developed spontaneous intestinal perforation. |
Britton et al. [38] (September, 2020) New York (USA) | Retrospective | Total, n = 43 | SARS-CoV-2 RNA was seen in stools of 41% of patients, being slightly more prevalent in patients with diarrhea.FC did not correlate withgastrointestinal symptoms or viral level detected. |
Ojetti et al. [39] (November, 2020) Rome (Italy) | Cohort | Total, n = 65 | Mean Calprotectin Concentrations: patients with radiological interstitial pneumonia had higher FC if compared to patients without anomalies (71.3 vs. 11.9 µg/g, p < 0.001). |
Patients with normal FC were younger (33 vs. 56 years old, p = 0.0024) and mostly men (87% vs. 52.6%). Also, patients with elevated FC were more likely to have gastrointestinal symptoms (47.4% vs 15.2%, p = 0.006). | |||
Zerbato et al. [38] (June, 2021) Trieste, Italy | Cohort | Total, n = 51 | The authors did not detect any differences in FC concentrations between patients with and without diarrhea. However, the patients with SARS-CoV-2 RNA detection in fecal samples had higher FC (74 vs. 39 mg/kg, p < 0.001), lower neutrophil counts (5550 vs. 4390 cell/µL, p < 0.035), higher D-Dimer (723 vs. 580 ng/mLFEU). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuffrè, M.; Vetrugno, L.; Di Bella, S.; Moretti, R.; Berretti, D.; Crocè, L.S. Calprotectin and SARS-CoV-2: A Brief-Report of the Current Literature. Healthcare 2021, 9, 956. https://doi.org/10.3390/healthcare9080956
Giuffrè M, Vetrugno L, Di Bella S, Moretti R, Berretti D, Crocè LS. Calprotectin and SARS-CoV-2: A Brief-Report of the Current Literature. Healthcare. 2021; 9(8):956. https://doi.org/10.3390/healthcare9080956
Chicago/Turabian StyleGiuffrè, Mauro, Luigi Vetrugno, Stefano Di Bella, Rita Moretti, Debora Berretti, and Lory Saveria Crocè. 2021. "Calprotectin and SARS-CoV-2: A Brief-Report of the Current Literature" Healthcare 9, no. 8: 956. https://doi.org/10.3390/healthcare9080956
APA StyleGiuffrè, M., Vetrugno, L., Di Bella, S., Moretti, R., Berretti, D., & Crocè, L. S. (2021). Calprotectin and SARS-CoV-2: A Brief-Report of the Current Literature. Healthcare, 9(8), 956. https://doi.org/10.3390/healthcare9080956