Electrochemical Sensing of Idarubicin—DNA Interaction Using Electropolymerized Azure B and Methylene Blue Mediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. Azure B Electropolymerization and DNA Sensor Preparation
2.4. Idarubicin Measurements, Real Sample Analysis
3. Results and Discussion
3.1. Comparison of Electrochemical Characteristics of PAB-1 and PAB-2 Layers
3.2. EQCM Measurements
3.3. Atomic Force Microscopy Measurements of PAB-1 and PAB-2 Layers
3.4. Idarubicin Determination by Voltammetry
3.5. Real Sample Voltammetric Analysis
3.6. Idarubicin Impedimetric Measurements
3.7. Real Sample Impedimetric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Xu, S.N.; Tan, Y.; Chen, J.P. The effects of idarubicin versus other anthracyclines for induction therapy of patients with newly diagnosed leukaemia. Cochrane Database Syst. Rev. 2015, 6, CD010432. [Google Scholar] [CrossRef] [Green Version]
- Ganzina, F.; Pacciarini, M.A.; Di Pietro, N. Idarubicin (4-demethoxydaunorubicin). A preliminary overview of preclinical and clinical studies. Investig. New Drugs 1986, 4, 85–105. [Google Scholar] [CrossRef]
- Rayner, D.M.; Cutts, S.M. Anthracyclines. Side Eff. Drugs Annu. 2014, 36, 638–694. [Google Scholar]
- Lotfi, K.; Zackrisson, A.-L. Comparison of idarubicin and daunorubicin regarding intracellular uptake, induction of apoptosis, and resistance. Cancer Lett. 2002, 178, 141–149. [Google Scholar] [CrossRef]
- Beretta, G.L.; Zunino, F. Molecular mechanisms of anthracycline activity. Top. Curr. Chem. 2008, 283, 1–19. [Google Scholar] [CrossRef]
- Wei, X.; Huang, X.; Fang, Y.; Zhang, Q. Determination of idarubicin using CdTe quantum dots as fluorescence probes. J. Nanosci. Nanotechnol. 2016, 16, 6992–6997. [Google Scholar] [CrossRef]
- Badea, I.; Lazar, L.; Moja, D.; Nicolescu, D.; Tudose, A. A HPLC method for the simultaneous determination of seven anthracyclines. J. Pharm. Biomed. Anal. 2005, 39, 305–309. [Google Scholar] [CrossRef]
- Dehdashtian, S.; Behbahanian, N.; Taherzadeh, K.M.; Hashemi, B. Development of electrochemical sensor based on multiwall carbon nanotube for determination of anticancer drug idarubicin in biological samples. Adv. Nanochem. 2019, 1, 22–28. [Google Scholar] [CrossRef]
- Dehdashtian, S.; Hashemi, B.; Chegeni, M.; Aeenmehr, A. The application of perlite/cobalt oxide/reduced graphene oxide (PC-rGO)/metal organic framework (MOF) composite as electrode modifier for direct sensing of anticancer drug idarubicin. IEEE Sensor. J. 2019, 19, 11739–11745. [Google Scholar] [CrossRef]
- Pashaei, Y.; Mehrabi, M.; Shekarchi, M. A review on various analytical methods for determination of anthracyclines and their metabolites as anti-cancer chemotherapy drugs in different matrices over the last four decades. TrAC Trends Anal. Chem. 2020, 130, 115991. [Google Scholar] [CrossRef]
- De la Cruz Morales, K.; Alarcón-Angeles, G.; Merkoçi, A. Nanomaterial-based sensors for the study of DNA interaction with drugs. Electroanalysis 2019, 31, 1845–1867. [Google Scholar] [CrossRef]
- Topkaya, S.N.; Cetin, A.E. Electrochemical aptasensors for biological and chemical analyte detection. Electroanalysis 2020, 33, 277–291. [Google Scholar] [CrossRef]
- Tadini-Buoninsegni, F.; Palchetti, I. Label-free bioelectrochemical methods for evaluation of anticancer drug effects at a molecular level. Sensors 2020, 20, 1812. [Google Scholar] [CrossRef] [Green Version]
- Ozcelikay, G.; Karadurmus, L.; Kaya, S.I.; Bakirhan, N.K.; Ozkan, S.A. A review: New trends in electrode systems for sensitive drug and biomolecule analysis. Crit. Rev. Anal. Chem. 2020, 50, 212–225. [Google Scholar] [CrossRef]
- Shoaie, S.; Daneshpour, M.; Azimzadeh, M.; Mahshid, S.; Khoshfetrat, S.M.; Jahanpeyma, F.; Gholaminejad, A.; Omidfar, K.; Foruzandeh, M. Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: A review on recent advances. Microchim. Acta 2019, 186, 465. [Google Scholar] [CrossRef]
- Kulikova, T.N.; Porfireva, A.V.; Shamagsumova, R.V.; Evtugyn, G.A. Voltammetric sensor with replaceable polyaniline-DNA layer for doxorubicin determination. Electroanalysis 2018, 30, 2284–2292. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Bahrani, S.; Yousefi, K.; Behbudi, G.; Babapoor, A.; Omidifar, N.; Lai, C.W.; Gholami, A.; Chiang, W.-H. Recent advancements in polythiophene-based materials and their biomedical, geno sensor and DNA detection. Int. J. Mol. Sci. 2021, 22, 6850. [Google Scholar] [CrossRef]
- Ghanbari, K.; Bathaie, S.Z.; Mousavi, M.F. Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor. Biosens. Bioelectron. 2008, 23, 1825–1831. [Google Scholar] [CrossRef]
- Porfireva, A.V.; Goida, A.I.; Rogov, A.M.; Evtugyn, G.A. Impedimetric DNA sensor based on poly(proflavine) for determination of anthracycline drugs. Electroanalysis 2020, 32, 827–834. [Google Scholar] [CrossRef]
- Porfireva, A.; Vorobev, V.; Babkina, S.; Evtugyn, G. Electrochemical sensor based on poly(Azure B)-DNA composite for doxorubicin determination. Sensors 2019, 19, 2085. [Google Scholar] [CrossRef] [Green Version]
- Porfireva, A.; Plastinina, K.; Evtugyn, V.; Kuzin, Y.; Evtugyn, G. Electrochemical DNA sensor based on poly(Azure A) obtained from the buffer saturated with chloroform. Sensors 2021, 21, 2949. [Google Scholar] [CrossRef]
- Laube, N.; Mohr, B.; Hesse, A. Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines. J. Cryst. Growth 2001, 233, 367–374. [Google Scholar] [CrossRef]
- Sha, Y.; Gao, Q.; Qi, B.; Yang, X. Electropolymerization of Azure B on a screen-printed carbon electrode and its application to the determination of NADH in a flow injection analysis system. Microchim. Acta 2004, 148, 335–341. [Google Scholar] [CrossRef]
- Karyakin, A.A.; Karyakina, E.E.; Schmidt, H.-L. Electropolymerized azines: A new group of electroactive polymers. Electroanalysis 1999, 11, 149–155. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985, 57, 1770–1771. [Google Scholar] [CrossRef]
- Ozluer, C.; Kara, H.E.S. In vitro DNA binding studies of anticancer drug idarubicin using spectroscopic techniques. J. Photochem. Photobiol. B Biol. 2014, 138, 36–42. [Google Scholar] [CrossRef]
- Tuite, E.; Nordén, B. Sequence-specific interactions of methylene blue with polynucleotides and DNA: A spectroscopic study. J. Am. Chem. Soc. 1994, 116, 7548–7556. [Google Scholar] [CrossRef]
- Simerville, J.A.; Maxted, W.C.; Pahira, J.J. Urinalysis: A comprehensive review. Am. Fam. Physician 2005, 71, 1153–1162. [Google Scholar]
Media | (I(ida) − I(control))/I(DNA)), % | Recovery, % |
---|---|---|
Ringer-Locke’s solution | 22.0 ± 2.3 | 110 ± 12 |
BSA solution | 21.0 ± 1.3 | 103 ± 7 |
Artificial urine | 21.0 ± 2.1 | 104 ± 10 |
Human urine, dilution 1:1 | 22.0 ± 1.5 | 110 ± 8 |
Media | R2, kΩ | Recovery, % |
---|---|---|
Ringer-Locke’s solution | 73.2 ± 11.1 | 69 ± 11 |
BSA solution | 97.2 ± 20.6 | 92 ± 19 |
Artificial urine | 97.1 ± 16.8 | 92 ± 16 |
Human urine, dilution 1:1 | 102.9 ± 11.3 | 97 ± 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goida, A.; Kuzin, Y.; Evtugyn, V.; Porfireva, A.; Evtugyn, G.; Hianik, T. Electrochemical Sensing of Idarubicin—DNA Interaction Using Electropolymerized Azure B and Methylene Blue Mediation. Chemosensors 2022, 10, 33. https://doi.org/10.3390/chemosensors10010033
Goida A, Kuzin Y, Evtugyn V, Porfireva A, Evtugyn G, Hianik T. Electrochemical Sensing of Idarubicin—DNA Interaction Using Electropolymerized Azure B and Methylene Blue Mediation. Chemosensors. 2022; 10(1):33. https://doi.org/10.3390/chemosensors10010033
Chicago/Turabian StyleGoida, Anastasia, Yurii Kuzin, Vladimir Evtugyn, Anna Porfireva, Gennady Evtugyn, and Tibor Hianik. 2022. "Electrochemical Sensing of Idarubicin—DNA Interaction Using Electropolymerized Azure B and Methylene Blue Mediation" Chemosensors 10, no. 1: 33. https://doi.org/10.3390/chemosensors10010033
APA StyleGoida, A., Kuzin, Y., Evtugyn, V., Porfireva, A., Evtugyn, G., & Hianik, T. (2022). Electrochemical Sensing of Idarubicin—DNA Interaction Using Electropolymerized Azure B and Methylene Blue Mediation. Chemosensors, 10(1), 33. https://doi.org/10.3390/chemosensors10010033