Spectroscopic–Electrical Combined Analysis to Assess the Conduction Mechanisms and the Performances of Metal Oxide Gas Sensors †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Material Characterizations
3.2. Combined Electical with Spectroscopic Characterizations for Pure Oxides
3.3. Combined Electical with Spectroscopic Characterizations for Mixed Oxides
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seiyama, T.; Fujiishi, K.; Nagatani, M.; Kato, A. A New Detector for Gaseous Components Using Zinc Oxide Thin Films. J. Soc. Chem. Ind. Japan 1963, 66, 652–655. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, N. UK Patent 1280809. 1970. [Google Scholar]
- Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 2015, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Fioravanti, A.; Bonanno, A.; Gherardi, S.; Carotta, M.C.; Skouloudis, A.N. A portable air-quality station based on thick film gas sensors for real time detection of traces of atmospheric pollutants. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Mykonos, Greece, 27–30 September 2016; Volume 108. [Google Scholar]
- Djedidi, O.; Djeziri, M.A.; Morati, N.; Seguin, J.L.; Bendahan, M.; Contaret, T. Accurate detection and discrimination of pollutant gases using a temperature modulated MOX sensor combined with feature extraction and support vector classification. Sens. Actuators B Chem. 2021, 339, 129817. [Google Scholar] [CrossRef]
- Firtat, B.; Moldovan, C.; Brasoveanu, C.; Muscalu, G.; Gartner, M.; Zaharescu, M.; Chesler, P.; Hornoiu, C.; Mihaiu, S.; Vladut, C.; et al. Miniaturised MOX based sensors for pollutant and explosive gases detection. Sens. Actuators B Chem. 2017, 249, 647–655. [Google Scholar] [CrossRef]
- Galstyan, V.; Ponzoni, A.; Kholmanov, I.; Natile, M.M.; Comini, E.; Sberveglieri, G. Highly sensitive and selective detection of dimethylamine through Nb-doping of TiO2 nanotubes for potential use in seafood quality control. Sens. Actuators B Chem. 2020, 303, 127217. [Google Scholar] [CrossRef]
- Love, C.; Nazemi, H.; El-Masri, E.; Ambrose, K.; Freund, M.S.; Emadi, A. A Review on Advanced Sensing Materials for Agricultural Gas Sensors. Sensors 2021, 21, 3423. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, A.; Marani, P.; Massarotti, G.P.; Lettieri, S.; Morandi, S.; Carotta, M.C. (Ti,Sn) solid solution-based gas sensors for new monitoring of hydraulic oil degradation. Materials 2021, 14, 605. [Google Scholar] [CrossRef]
- Dong, H.; Qian, L.; Cui, Y.; Zheng, X.; Cheng, C.; Cao, Q.; Xu, F.; Wang, J.; Chen, X.; Wang, D. Online Accurate Detection of Breath Acetone Using Metal Oxide Semiconductor Gas Sensor and Diffusive Gas Separation. Front. Bioeng. Biotechnol. 2022, 10, 861950. [Google Scholar] [CrossRef]
- Lawson, B.; Aguir, K.; Fiorido, T.; Martini-Laithier, V.; Bouchakour, R.; Burtey, S.; Reynard-Carette, C.; Bendahan, M. Skin alcohol perspiration measurements using MOX sensors. Sens. Actuators B Chem. 2019, 280, 306–312. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Fioravanti, A.; Carotta, M.C. Year 2020: A snapshot of the last progress in flexible printed gas sensors. Appl. Sci. 2020, 10, 1741. [Google Scholar] [CrossRef] [Green Version]
- Yamazoe, N.; Shimanoe, K. Fundamentals of Semiconductor Gas Sensors, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780081025598. [Google Scholar]
- Fioravanti, A.; Bonanno, A.; Mazzocchi, M.; Carotta, M.C.; Sacerdoti, M. Enhanced Gas Sensing Properties of Different ZnO 3D Hierarchical Structures. Adv. Sci. Technol. 2016, 99, 48–53. [Google Scholar] [CrossRef]
- Degler, D.; Weimar, U.; Barsan, N. Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials. ACS Sens. 2019, 4, 2228–2249. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Debliquy, M.; Zhang, C. Room temperature gas sensors based on Ce doped TiO2 nanocrystals for highly sensitive NH3 detection. Chem. Eng. J. 2022, 444, 136449. [Google Scholar] [CrossRef]
- Galstyan, V. “Quantum dots: Perspectives in next-generation chemical gas sensors”—A Review. Anal. Chim. Acta 2021, 1152, 238192. [Google Scholar] [CrossRef]
- Barhoum, A. Optical Spectroscopy for Characterization of Metal Oxide Nanofibers; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783319536545. [Google Scholar]
- Yang, C.; Wöll, C. IR spectroscopy applied to metal oxide surfaces: Adsorbate vibrations and beyond. Adv. Phys. X 2017, 2, 373–408. [Google Scholar] [CrossRef]
- Nikam, A.V.; Prasad, B.L.V.; Kulkarni, A.A. Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm 2018, 20, 5091–5107. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Norton, M.G. X-Ray Diffraction: A Practical Approach; Springer: New York, NY, USA, 1998; ISBN 9781489901507. [Google Scholar]
- Carotta, M.C.; Fioravanti, A.; Gherardi, S.; Malagù, C.; Sacerdoti, M.; Ghiotti, G.; Morandi, S. (Ti,Sn) solid solutions as functional materials for gas sensing. Sens. Actuators B Chem. 2014, 194, 195–205. [Google Scholar] [CrossRef]
- Morandi, S.; Amodio, A.; Fioravanti, A.; Giacomino, A.; Mazzocchi, M.; Sacerdoti, M.; Carotta, M.C.; Skouloudis, A.N. Operational functionalities of air-quality W–Sn metal-oxide sensors correlating semiconductor defect levels and surface potential barriers. Sci. Total Environ. 2020, 706, 135731. [Google Scholar] [CrossRef]
- Clifford, P.K.; Tuma, D.T. Characteristics of semiconductor gas sensors II. transient response to temperature change. Sens. Actuators 1982, 3, 255–281. [Google Scholar] [CrossRef]
- Fioravanti, A.; Morandi, S.; Pedrazzo, A.R.; Cecone, C.; Manzoli, M.; Zanetti, M.; Bracco, P.; Mazzocchi, M.; Lettieri, S.; Marani, P.; et al. Investigation of the key parameters for gas sensing through comparison of electrospun and sol-gel semiconducting oxides. Ceram. Int. 2022, 48, 20948–20960. [Google Scholar] [CrossRef]
- Madou, M.J.; Morrison, S.R. Chemical Sensing with Solid State Devices; Academic Press Inc.: Cambridge, MA, USA, 1989; ISBN 0124649653. [Google Scholar]
- Carotta, M.C.; Cervi, A.; Gherardi, S.; Guidi, V.; Malagu’, C.; Martinelli, G.; Vendemiati, B.; Sacerdoti, M.; Ghiotti, G.; Morandi, S.; et al. (Ti, Sn) O2 solid solutions for gas sensing: A systematic approach by different techniques for different calcination temperature and molar composition. Sens. Actuators B Chem. 2009, 139, 329–339. [Google Scholar] [CrossRef]
- Malagù, C.; Carotta, M.C.; Comini, E.; Faglia, G.; Giberti, A.; Guidi, V.; Maffeis, T.G.G.; Martinelli, G.; Sberveglieri, G.; Wilks, S.P. Photo-induced unpinning of fermi level in WO3. Sensors 2005, 5, 594–603. [Google Scholar] [CrossRef] [Green Version]
- Pacchioni, G. Oxygen Vacancy: The Invisible Agent on Oxide Surfaces. ChemPhysChem 2003, 4, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Malagù, C.; Carotta, M.C.; Galliera, S.; Guidi, V.; Maffeis, T.G.G.; Martinelli, G.; Owen, G.T.; Wilks, S.P. Evidence of bandbending flattening in 10 nm polycrystalline SnO2. Sens. Actuators B Chem. 2004, 103, 50–54. [Google Scholar] [CrossRef]
Sample | Cryst. Phase | Space Group | Cryst. Size (nm) | SSA (m2/g) |
---|---|---|---|---|
WO3 | Monoclinic pseudo-cubic | P 1 21/n 1 | 85.0 | 9.7 |
WS10 | Monoclinic pseudo-cubic | P 1 21/n 1 | 24.0 | 24.5 |
WS30 | Monoclinic pseudo-cubic | P 1 21/n 1 | 27.0 | 16.4 |
WS90 | Tetragonal | P 42/mnm | 6.0 | 72.0 |
SnO2 | Tetragonal | P 42/mnm | 12.0 | 27.9 |
TS90 | Tetragonal (Rutile) | P 42/mnm | 7.8 | 45.4 |
TS70 | Tetragonal (Rutile) | P 42/mnm | 4.4 | 87.8 |
TS50 | Tetragonal (Rutile) | P 42/mnm | 4.4 | 99.0 |
TiO2 | Tetragonal (Anatase) | I 41/amd | 8.0 | 121.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fioravanti, A.; Morandi, S.; Carotta, M.C. Spectroscopic–Electrical Combined Analysis to Assess the Conduction Mechanisms and the Performances of Metal Oxide Gas Sensors. Chemosensors 2022, 10, 447. https://doi.org/10.3390/chemosensors10110447
Fioravanti A, Morandi S, Carotta MC. Spectroscopic–Electrical Combined Analysis to Assess the Conduction Mechanisms and the Performances of Metal Oxide Gas Sensors. Chemosensors. 2022; 10(11):447. https://doi.org/10.3390/chemosensors10110447
Chicago/Turabian StyleFioravanti, Ambra, Sara Morandi, and Maria Cristina Carotta. 2022. "Spectroscopic–Electrical Combined Analysis to Assess the Conduction Mechanisms and the Performances of Metal Oxide Gas Sensors" Chemosensors 10, no. 11: 447. https://doi.org/10.3390/chemosensors10110447
APA StyleFioravanti, A., Morandi, S., & Carotta, M. C. (2022). Spectroscopic–Electrical Combined Analysis to Assess the Conduction Mechanisms and the Performances of Metal Oxide Gas Sensors. Chemosensors, 10(11), 447. https://doi.org/10.3390/chemosensors10110447