Adamantane Three-Dimensional Porous Organic Framework as a Fluorescence Sensor for Rapid Determination of Tetracycline in Aquatic Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments
2.3. Synthesis of Adamantane Porous Organic Framework
2.4. Fluorescence Measurements
2.5. DFT Calculations
2.6. Sample Preparation
3. Results
3.1. Characterization of AdaPOF
3.2. Performance of AdaPOF–Based Fluorescence Sensor
3.3. Possible Mechanism
3.4. Optimization of Fluorescence Sensor
3.5. Analytic Characteristics of the AdaPOF–Based Fluorescence Sensor
3.6. Samples Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, R.X.; Wang, W.J.; El-Sayed, E.S.M.; Su, K.Z.; He, P.L.; Yuan, D.Q. Ratiometric fluorescence detection of tetracycline antibiotic based on a polynuclear lanthanide metal–organic framework. Sens. Actuators B Chem. 2021, 330, 129314. [Google Scholar] [CrossRef]
- Li, Y.Y.; Du, Q.Q.; Zhang, X.D.; Huang, Y.M. Ratiometric detection of tetracycline based on gold nanocluster enhanced Eu3+ fluorescence. Talanta 2020, 206, 120202. [Google Scholar] [CrossRef]
- Sreejith, S.; Shajahan, S.; Prathiush, P.R.; Anjana, V.M.; Viswanathan, A.; Chandran, V.; Ajith, G.S.; Jayachandran, R.; Mathew, J.; Radhakrishnan, K. Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Microb. Pathog. 2020, 149, 104562. [Google Scholar] [CrossRef]
- Chen, Z.J.; Guo, H.; Liu, H.Y.; Niu, C.G.; Huang, D.W.; Yang, Y.Y.; Liang, C.; Li, L.; Li, J.C. Construction of dual s-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst with enhanced visible-light photocatalytic degradation for tetracycline. Chem. Eng. J. 2022, 438, 135471. [Google Scholar] [CrossRef]
- Feng, M.X.; Wang, G.N.; Yang, K.; Lui, H.Z.; Wang, J.P. Molecularly imprinted polymer-high performance liquidchromatography for the determination of tetracycline drugs in animalderived foods. Food Control 2016, 69, 171–176. [Google Scholar] [CrossRef]
- Pang, Y.H.; Lv, Z.Y.; Sun, J.C.; Yang, C.; Shen, X.F. Collaborative compounding of metal–organic frameworks for dispersive. solid-phase extraction HPLC–MS/MS determination of tetracyclines in honey. Food Chem. 2021, 355, 129411. [Google Scholar] [CrossRef]
- Zhou, J.J.; Xu, Z.Q. Simultaneous separation of 12 different classes of antibiotics under the condition of complete protonation by capillary electrophoresis-coupled contactless conductivity detection. Anal. Methods 2022, 14, 174. [Google Scholar] [CrossRef]
- Jia, T.T.; Li, Y.S.; Niu, H.W. Recent progress in fluorescent probes for diabetes visualization and drug therapy. Chemosensors 2022, 10, 280. [Google Scholar] [CrossRef]
- Tran, V.T.; Ju, H. Fluorescence enhancement via dual coupling of dye molecules with silver nanostructures. Chemosensors 2021, 9, 217. [Google Scholar] [CrossRef]
- Liu, X.F.; Song, J.X.; Wang, C.; Yang, R.N.; Sun, P.F.; Huang, Y.Q.; Zhang, L.; Fan, Q.L. An amplified fluorescence biosensor for intracellular telomerase determination and in situ imaging based on thioflavin T and conjugated polymer nanoparticles. Sens. Actuators B Chem. 2022, 371, 132485. [Google Scholar] [CrossRef]
- Ma, Q.; Gao, Z.Q.; Dayal, H.; Li, S.F.Y. A label-free fluorescent sensor based on the formation of poly(thymine)-templated copper nanoparticles for the sensitive and selective detection of microRNA from cancer cells. Chemosensors 2020, 8, 52. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yin, H.Q.; Yin, X.B. MOF@COFs with strong multiemission for difffferentiation and ratiometric fluorescence detection. ACS Appl. Mater. Inter. 2020, 12, 20973–20981. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.M.; Yang, H.; Zhou, B.; Chen, Y.; Yang, M.; Wei, K.S.; Yan, F.Y.; Kang, C. Waste tobacco leaves derived carbon dots for tetracycline detection: Improving quantitative accuracy with the aid of chemometric model. Anal. Chim. Acta. 2022, 1191, 339269. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, Y.L.; Li, S.Y.; Xu, F.H.; Zhang, Q. Ratio fluorescence detection of tetracycline by a Eu3+/NH2-MIL-53(Al) composite. RSC Adv. 2021, 11, 2397. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Bie, J.X.; Zhang, X.M.; Yan, C.Y.; Li, H.J.; Zhang, M.H.; Su, R.F.; Zhang, X.G.; Sun, C.Y. A label-free aptasensor for the detection of tetracycline based on the luminescence of SYBR Green I. Spectrochim. Acta A 2018, 202, 382–388. [Google Scholar] [CrossRef]
- Xu, Y.L.; Wei, J.H.; Chen, X.W. Visible light-responsive sulfone-based covalent organic framework as metal-free nanoenzyme for visual colorimetric determination of uranium. Chemosensors 2022, 10, 248. [Google Scholar] [CrossRef]
- Hu, K.; Lv, Y.X.; Ye, F.G.; Chen, T.; Zhao, S.L. Boric-acid-functionalized covalent organic framework for specifific enrichment and direct detection of cis-diol-containing compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2019, 91, 6353–6362. [Google Scholar] [CrossRef]
- Zensen, T.; Roper, T.; Fuchs, T.; Sackers, N.; Bachmann, S.; Poppler, A.C.; Jupke, A.; Palkovits, R.; Delidovich, I. Porous organic frameworks for preferable adsorption of trans-1,2-diols over cis-1,2-diols. Appl. Mater. Today 2022, 28, 101523. [Google Scholar] [CrossRef]
- Yin, H.Q.; Yin, F.F.; Yin, X.B. Strong dual emission in covalent organic frameworks induced by ESIPT. Chem. Sci. 2019, 10, 11103. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Wu, Y.; Zhang, W.X.; Wang, S.S.; Yan, T.; He, S.J.; Yang, B.L.; Ma, H.P. A 3D ultramicroporous porous organic frameworks for SO2 and aromatic sulfides capture with high capacity and selectivity. Chem. Eng. J. 2022, 429, 132480. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Li, G.K.; Hu, Y.F. A Tb3+ functionalized triazine-porous organic framework as a ratiometric fluorescent sensor for determination of ciprofloxacin in aquatic products. New J. Chem. 2022. [Google Scholar] [CrossRef]
- Gui, B.; Lin, G.Q.; Ding, H.M.; Gao, C.; Mal, A.; Wang, C. Three-dimensional covalent organic frameworks: From topology design to applications. Acc. Chem. Res. 2020, 53, 2225–2234. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Yang, S.; Yang, K.W.; Han, X.; Tang, X.H.; Liu, Y.; Jiang, J.W.; Cui, Y. Confinement-driven enantioselectivity in 3D porous chiral covalent organic frameworks. Angew. Chem. Int. Edit. 2021, 60, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.L.; Gropp, C.; Ma, Y.H.; Zhu, C.H.; Yaghi, O.M. 3D covalent organic frameworks selectively crystallized through conformational design. J. Am. Chem. Soc. 2020, 142, 20335–20339. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.Q.; Tummanapelli, A.K.; Li, X.; Ying, S.M.; Hirao, H.; Zhao, D. Fluorescent porous organic frameworks containing molecular rotors for size-selective recognition. Chem. Mater. 2016, 28, 7889–7897. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09; Revision a. 02; Gaussian. Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Dong, J.Q.; Qiao, Z.W.; Pan, Y.T.; Peh, S.B.; Yuan, Y.D.; Wang, Y.X.; Zhai, L.Z.; Yuan, H.Y.; Cheng, Y.D.; Liang, H.; et al. Encapsulation and protection of ultrathin two-dimensional porous organic nanosheets within biocompatible metal-organic frameworks for live-cell imaging. Chem. Mater. 2019, 31, 4897–4912. [Google Scholar] [CrossRef]
- Dong, J.Q.; Li, X.; Zhang, K.; Yuan, Y.D.; Wang, Y.X.; Zhai, L.Z.; Liu, G.L.; Yung, D.Q.; Jiang, J.W.; Zhao, D. Confifinement of aggregation-induced emission molecular rotors in ultrathin two-dimensional porous organic nanosheets for enhanced molecular recognition. J. Am. Chem. Soc. 2018, 140, 4035–4046. [Google Scholar] [CrossRef]
- Geng, T.M.; Zhu, Z.M.; Zhang, W.Y.; Wang, Y. A nitrogen-rich fluorescent conjugated microporous polymer with triazine and triphenylamine units for high iodine capture and nitro aromatic compound detection. J. Mater. Chem. A 2017, 5, 7612. [Google Scholar] [CrossRef]
- Parshi, N.; Pan, D.; Jana, B.; Ganguly, J. Interesting static quenching of fluorescent hydrogel caused by immobilization of Cd2+ ions within interstitial morphology. Sens. Actuators B Chem. 2021, 331, 129419. [Google Scholar] [CrossRef]
- Jiao, Z.H.; Hou, S.L.; Kang, X.M.; Yang, X.P.; Zhao, B. Recyclable luminescence sensor for dinotefuran in water by stable. Cadmium-organic framework. Anal. Chem. 2021, 93, 6599–6603. [Google Scholar] [CrossRef]
- Li, J.X.; Yu, B.Q.; Fan, L.H.; Wang, L.; Zhao, Y.C.; Sun, C.Y.; Li, W.J.; Chang, Z.D. A novel multifunctional Tb-MOFfluorescent probe displaying excellent abilities for highly selective detection of Fe3+, Cr2O72- and acetylacetone. J. Solid. State Chem. 2022, 306, 122782. [Google Scholar] [CrossRef]
- Su, P.C.; Zhang, A.R.; Yu, L.; Ge, H.W.; Wang, N.; Huang, S.Y.; Ai, Y.J.; Wang, X.K.; Wang, S.H. Dual-functional UiO-type metal-organic frameworks for the sensitive sensing and effective removal of nitrofurans from water. Sens. Actuators B Chem. 2022, 350, 130865. [Google Scholar] [CrossRef]
- Pan, H.; Wang, S.F.; Dao, X.Y.; Ni, Y.H. Fluorescent Zn-PDC/Tb3+ Coordination Polymer Nanostructure: A Candidate for Highly Selective Detections of Cefifixime Antibiotic and Acetone in Aqueous System. Inorg. Chem. 2018, 57, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Mallick, A.; Garai, B.; Addicoat, M.A.; Petkov, P.S.; Heine, T.; Banerjee, R. Solid state organic amine detection in a photochromic porous metal organic framework. Chem. Sci. 2015, 6, 1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Liu, J.H.; Li, R.S.; Li, Y.F.; Huang, C.Z.; Zhen, S.J. Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride. Anal. Chim. Acta 2019, 1063, 144–151. [Google Scholar] [CrossRef]
- Uriarte, D.; Domini, C.; Garrido, M. New carbon dots based on glycerol and urea and its application in the determination of tetracycline in urine samples. Talanta 2019, 201, 143–148. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wu, X.H.; Mao, S.; Tao, W.Q.; Li, Z. Highly luminescent sensing for nitrofurans and tetracyclines in water based on zeolitic imidazolate framework-8 incorporated with dyes. Talanta 2019, 204, 344–352. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, Q.M.; Zhang, Z.X.; Wang, Z.L.; Gong, Z.J. An aggregation-induced emission copper nanoclusters fluorescence probe for the sensitive detection of tetracycline. Microchem. J. 2022, 180, 107570. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Guan, R.T.; Zhang, S.; Fan, X.Y.; Liu, W.J.; Zhang, K.Y.; Shao, X.D.; Li, X.; Yue, Q.L. A convenient fluorescence sensor of tetracycline based on B, N codoped carbon dots/polymer composite film. Food Chem. 2022, 372, 131287. [Google Scholar] [CrossRef]
Samples | The Proposed Method | HPLC Method b | Relative Error c (%) | t Test Value p d | |||||
---|---|---|---|---|---|---|---|---|---|
Original (mg/L) | Spiked (mg/L) | Found (mg/L) | Recovery (%) | RSD (%, n = 3) | Original (mg/L) | RSD (%, n = 3) | |||
Fish | 0.09 | 0.18 | 0.26 | 96.2 | 4.6 | 0.08 | 4.2 | −7.6 | 0.60 |
0.36 | 0.46 | 102.2 | 1.8 | ||||||
Shrimp | - a | 0.18 | 0.17 | 94.4 | 3.1 | - | - | - | - |
0.36 | 0.35 | 97.2 | 2.4 | ||||||
Crab | 0.16 | 0.18 | 0.33 | 97.1 | 1.2 | 0.15 | 3.8 | −6.7 | 0.43 |
0.36 | 0.54 | 103.8 | 4.9 |
Materials | Linear Range (μmol/L) | LOD (nmol/L) | Samples | Ref. |
---|---|---|---|---|
Carbon dots | 10.0–400.0 | 6000 | Tetracycline tablets | [36] |
Carbon dots | 0.5–25 | 165 | Urine | [37] |
RhB a @ZIF–8 | 0–46 | 110 | Source and tap water | [38] |
TA–CuNCs@CTAB b | 5–50; 50–130 | 65 | Water | [39] |
Carbon dots | 0–350 | 170 | Milk and milk powder | [40] |
AdaPOF | 0.1–9.0 | 43 | Fish, shrimp, crab | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Hu, Y.; Li, G.; Xia, L. Adamantane Three-Dimensional Porous Organic Framework as a Fluorescence Sensor for Rapid Determination of Tetracycline in Aquatic Products. Chemosensors 2022, 10, 457. https://doi.org/10.3390/chemosensors10110457
Lu Z, Hu Y, Li G, Xia L. Adamantane Three-Dimensional Porous Organic Framework as a Fluorescence Sensor for Rapid Determination of Tetracycline in Aquatic Products. Chemosensors. 2022; 10(11):457. https://doi.org/10.3390/chemosensors10110457
Chicago/Turabian StyleLu, Zhenyu, Yufei Hu, Gongke Li, and Ling Xia. 2022. "Adamantane Three-Dimensional Porous Organic Framework as a Fluorescence Sensor for Rapid Determination of Tetracycline in Aquatic Products" Chemosensors 10, no. 11: 457. https://doi.org/10.3390/chemosensors10110457
APA StyleLu, Z., Hu, Y., Li, G., & Xia, L. (2022). Adamantane Three-Dimensional Porous Organic Framework as a Fluorescence Sensor for Rapid Determination of Tetracycline in Aquatic Products. Chemosensors, 10(11), 457. https://doi.org/10.3390/chemosensors10110457