The Role of the Synthesis Routes on the CO-Sensing Mechanism of NiO-Based Gas Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powders Synthesis and Sensors Fabrication
2.2. Materials Characterization
2.2.1. Morpho-Structural Investigations
2.2.2. Gas-Sensing Investigations
3. Results
3.1. Structural and Morphological Results
3.2. Gas Sensing—Electrical and Phenomenological Results
3.3. Gas Sensing Mechanism Involved in CO Detection
- 1.
- In the case of NiO1 400 ΔΦ, qΔVs and Δχ decrease with increasing CO concentration. Thus, it is plausible to assume that the reaction mechanism of CO interaction with the sensitive surface can be described by a twofold scenario: the decrease in the surface band bending is in line with the interaction between CO and pre-adsorbed oxygen species (Figure 7a), whereas the interaction with the surface hydroxyl groups is reflected by the decrease in the electronic affinity (Figure 9b). The monotonous decrease in all three contributions indicates that the saturation in the reaction partners was not attained [35].
- 2.
- In the case of NiO2 400, one can see that while ΔΦ, qΔVs decrease slightly through the whole range of CO concentration, the electronic affinity is constant within the measurement error. Such behaviour can be explained by associating the CO interaction only with the pre-adsorbed oxygen species and not with the surface OH groups (Figure 9a).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brattain, W.H.; Bardeen, J. Surface Properties of Germanium. Bell Syst. Tech. J. 1953, 32, 1–41. [Google Scholar] [CrossRef]
- Taguchi, N. Gas Alarm Devices. Patent JPB_1970038200, 1962. [Google Scholar]
- Dhall, S.; Mehta, B.R.; Tyagi, A.K.; Sood, K. A review on environmental gas sensors: Materials and technologies. Sens. Int. 2021, 2, 100116. [Google Scholar] [CrossRef]
- Staerz, A.; Weimar, U.; Barsan, N. Current state of knowledge on the metal oxide based gas sensing mechanism. Sens. Actuators B Chem. 2022, 358, 131531. [Google Scholar] [CrossRef]
- Staerz, A.; Bahri, M.; Geyik, U.; Brinkmann, H.; Weimar, U.; Ersen, O.; Barsan, N. Direct Microscopic Proof of the Fermi Level Pinning Gas-Sensing Mechanism: The case of Platinum-Loaded WO3. J. Phys. Chem. Lett. 2020, 11, 166–171. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, H.C. Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film. J. Appl. Phys. 2012, 112, 034504. [Google Scholar] [CrossRef]
- Gao, X.; Lin, W.; Ge, Z.; Ge, H.; Kawi, S. Modification Strategies of Ni-Based Catalysts with Metal Oxides for Dry Reforming of Methane. Methane 2022, 1, 139–157. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.; Tong, Y.; Sun, Y.; Fang, X.; Xu, J.; Wang, X. Tuning Ni3+ quantity of NiO via doping of cations with varied valence states: The key role of Ni3+ on reactivity. Appl. Surf. Sci. 2021, 550, 149316. [Google Scholar] [CrossRef]
- Raza, M.H.; Movlaee, K.; Leonardi, S.G.; Barsan, N.; Meri, G.; Pinna, N. Gas sensing of NiO-SCCNT Core-Shell Heterostructures: Optimization by Radial Modulation of the Hole-Accumulation. Layer. Adv. Funct. Mat. 2020, 30, 1906874. [Google Scholar] [CrossRef] [Green Version]
- Barsan, N.; Simion, C.; Heine, T.; Pokhrel, S.; Weimar, U. Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors. J. Electroceramics 2010, 20, 11–19. [Google Scholar] [CrossRef]
- Stanoiu, A.; Ghica, C.; Mihalcea, C.G.; Ghica, D.; Somacescu, S.; Florea, O.G.; Simion, C.E. Effects of Calcination Temperature on CO-Sensing Mechanism for NiO-Based Gas Sensors. Chemosensors 2022, 10, 191. [Google Scholar] [CrossRef]
- Ayyala, S.K.; Covington, J.A. Nickel-Oxide Based Thick-Film Gas Sensors for Volatile Organic Compound Detection. Chemosensors 2021, 9, 247. [Google Scholar] [CrossRef]
- Prajesh, R.; Goyal, V.; Nahid, M.; Saini, V.; Singh, A.K.; Sharma, A.K.; Bhargava, J.; Agarwal, A. Nickel oxide (NiO) thin film optimization by reactive sputtering for highly sensitive formaldehyde sensing. Sens. Actuators B Chem. 2020, 318, 128166. [Google Scholar] [CrossRef]
- Mokoena, T.P.; Hillie, K.T.; Swart, H.C.; Leshabane, N.; Tshilongo, J.; Motaung, D.E. Fabrication of a propanol gas sensor using p-type nickel oxide nanostructures: The effect of ramping rate towards luminescence and gas sensing characteristics. Mater. Chem. Phys. 2020, 253, 123316. [Google Scholar] [CrossRef]
- Qian, G.; Peng, Q.; Zou, D.; Wang, S.; Yan, B. Hydrothermal Synthesis of Flake-Flower NiO and Its Gas Sensing Performance to CO. Front. Mater. 2020, 7, 216. [Google Scholar] [CrossRef]
- Simion, C.E.; Ghica, C.; Mihalcea, C.G.; Ghica, D.; Mercioniu, I.; Somacescu, S.; Florea, O.G.; Stanoiu, A. Insights about CO Gas-Sensing Mechanism with NiO-Based Gas Sensors—The Influence of Humidity. Chemosensors 2021, 9, 244. [Google Scholar] [CrossRef]
- Ghica, C.; Mihalcea, C.G.; Simion, C.E.; Vlaicu, I.D.; Chica, D.; Dinu, I.V.; Florea, O.G.; Stanoiu, A. Influence of relative humidity on CO2 interaction mechanism for Gd-doped SnO2 with respect to pure SnO2 and Gd2O3. Sens. Actuators B Chem. 2022, 368, 132130. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Roles of Shape and Size of Component Crystals in Semiconductor Gas Sensors: I. Response to Oxygen. J. Electrochem. Soc. 2008, 155, J85. [Google Scholar] [CrossRef]
- Poulain, R.; Lumbeeck, G.; Hunka, J.; Proost, J.; Savolainen, H.; Idrissi, H.; Schryvers, D.; Gauquelin, N.; Klein, A. Electronic and Chemical Properties of Nickel Oxide Thin Films and the Intrinsic Defects Compensation Mechanism. ACS Appl. Electron. Mater. 2022, 4, 2718–2728. [Google Scholar] [CrossRef]
- Priya, M.J.; Subha, P.P.; Jayaraj, M.K. Chapter 1–Facet-dependent gas sensing properties of metal oxide nanostructures. In Nanomaterials for Sensing and Optoelectronic Applications–Micro and Nano Technologies; Jayaraj, M.K., Subha, P.P., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–25. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Golovanov, V.; Brinzari, V.; Cornet, A.; Morante, J.; Ivanov, M. Distinguishing feature of metal oxide films’ structural engineering for gas sensor applications. J. Phys. Conf. Ser. 2005, 15, 256–261. [Google Scholar] [CrossRef]
- Springhorn, C.; Schmalzried, H. The electronic conduction mechanism of NiO-crystals. Ber. Der Bunsenges. Für Phys. Chem. 1994, 98, 746–748. [Google Scholar] [CrossRef]
- Karsthof, R.; Grundmann, M. Polaronic interacceptor hopping transport in intrinsically doped nickel oxide. Phys. Rev. B 2019, 99, 235201. [Google Scholar] [CrossRef] [Green Version]
- Hahn, S.H.; Bârsan, N.; Weimar, U.; Ejakov, S.G.; Visser, J.H.; Soltis, R.E. CO sensing with SnO2 thick film sensors: Role of oxygen and water vapour. Thin Solid Films 2003, 436, 17–24. [Google Scholar] [CrossRef]
- Wicker, S.; Guiltat, M.; Weimar, U.; Hemeryck, A.; Barsan, N. Ambient Humidity Influence on CO Detection with SnO2 Gas Sensing Materials—A Combined DRIFTS/DFT Investigation. J. Phys. Chem. C 2017, 121, 25064–25073. [Google Scholar] [CrossRef] [Green Version]
- Clifford, P.K.; Tuma, D.T. Characteristics of semiconductor gas sensors I. Steady state gas response. Sens. Actuators B Chem. 1982, 3, 233–254. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Theory of power laws for semiconductor gas sensors. Sens. Actuators B Chem. 2008, 128, 566–573. [Google Scholar] [CrossRef]
- Sasi, B.; Gopchandran, K.G. Nanostructured mesoporous nickel oxide thin films. Nanotechnology 2007, 18, 115613. [Google Scholar] [CrossRef]
- Sawatzky, G.A.; Allen, J.W. Magnitude and Origin of the Band-Gap in NiO. Phys. Rev. Lett. 1984, 53, 2339–2342. [Google Scholar] [CrossRef]
- Cho, D.-Y.; Song, S.J.; Kim, U.K.; Kim, K.M.; Lee, H.-K.; Hwang, C.S. Spectroscopic investigation of the hole states in Ni-deficient NiO films. J. Mater. Chem. C 2013, 1, 4334–4338. [Google Scholar] [CrossRef]
- Sharma, A.; Rout, C.S. Advances in understanding the gas sensing mechanisms by in situ and operando spectroscopy. J. Mat. Chem. A 2021, 9, 18175–18207. [Google Scholar] [CrossRef]
- Oprea, A.; Bârsan, N.; Weimar, U. Work function changes in gas sensitive materials: Fundamentals and applications. Sens. Actuators B Chem. 2009, 142, 470–493. [Google Scholar] [CrossRef]
- Khan, A. Fermi level, work function and vacuum level. Mater. Horiz. 2016, 3, 7–10. [Google Scholar] [CrossRef]
- Koziej, D.; Bârsan, N.; Weimar, U.; Szuber, J.; Shimanoe, K.; Yamazoe, N. Water-oxygen interplay on tin dioxide surface: Implicantion on gas sensing. Chem. Phys. Lett. 2005, 410, 321–323. [Google Scholar] [CrossRef]
- Li, S.; Zhang, M.; Wang, H. Simulation of gas sensing mechanism of porous metal oxide semiconductor sensor based on finite element analysis. Sci. Rep. 2021, 11, 17158. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanoiu, A.; Ghica, C.; Mihalcea, C.G.; Ghica, D.; Simion, C.E. The Role of the Synthesis Routes on the CO-Sensing Mechanism of NiO-Based Gas Sensors. Chemosensors 2022, 10, 466. https://doi.org/10.3390/chemosensors10110466
Stanoiu A, Ghica C, Mihalcea CG, Ghica D, Simion CE. The Role of the Synthesis Routes on the CO-Sensing Mechanism of NiO-Based Gas Sensors. Chemosensors. 2022; 10(11):466. https://doi.org/10.3390/chemosensors10110466
Chicago/Turabian StyleStanoiu, Adelina, Corneliu Ghica, Catalina Gabriela Mihalcea, Daniela Ghica, and Cristian Eugen Simion. 2022. "The Role of the Synthesis Routes on the CO-Sensing Mechanism of NiO-Based Gas Sensors" Chemosensors 10, no. 11: 466. https://doi.org/10.3390/chemosensors10110466
APA StyleStanoiu, A., Ghica, C., Mihalcea, C. G., Ghica, D., & Simion, C. E. (2022). The Role of the Synthesis Routes on the CO-Sensing Mechanism of NiO-Based Gas Sensors. Chemosensors, 10(11), 466. https://doi.org/10.3390/chemosensors10110466