A Novel Synthesis of a Magnetic Porous Imprinted Polymer by Polyol Method Coupled with Electrochemical Biomimetic Sensor for the Detection of Folate in Food Samples
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Theoretical Simulation
2.3. Synthesis of Molecularly Imprinted Polymers
2.4. Electrochemical Measurements
2.5. Preparation of the CPE Modified with MMIP
2.6. HPLC-UV Analysis
3. Results
3.1. Textural Properties of Polymers
3.2. Morphological Characterization
3.3. Transmission Electron Microscopy (TEM) Analysis
3.4. Thermogravimetry (TGA) Analysis
3.5. Vibrating Sample Magnetometry (VSM)
3.6. Construction of Analytical Curve for HPLC
3.7. Using Square Wave Voltammetry (SWV) for the Analysis of the Electrochemical Profile of the Electrodes
3.8. Repeatability of MMIPs/CPE
3.9. Interference Study
3.10. Application of the Proposed Sensor in Real Food Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanson, A.D.; Gregory, J.F. Folate Biosynthesis, Turnover, and Transport in Plants. Annu. Rev. Plant Biol. 2011, 62, 105–125. [Google Scholar] [CrossRef]
- Kopp, M.; Dürr, K.; Steigleder, M.; Clavel, T.; Rychlik, M. Measurements of Intra- and Extra-Cellular 5-Methyltetrahydrofolate Indicate that Bifidobacterium Adolescentis DSM 20083T and Bifidobacterium Pseudocatenulatum DSM 20438T Do Not Actively Excrete 5-Methyltetrahydrofolate In vitro. Front. Microbiol. 2017, 8, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjortmo, S.; Patring, J.; Jastrebova, J.; Andlid, T. Inherent biodiversity of folate content and composition in yeasts. Trends Food Sci. Technol. 2005, 16, 311–316. [Google Scholar] [CrossRef]
- Jacob, F.F.; Striegel, L.; Rychlik, M.; Hutzler, M.; Methner, F.-J. Yeast extract production using spent yeast from beer manufacture: Influence of industrially applicable disruption methods on selected substance groups with biotechnological relevance. Eur. Food Res. Technol. 2019, 245, 1169–1182. [Google Scholar] [CrossRef]
- Gorelova, V.; Bastien, O.; De Clerck, O.; Lespinats, S.; Rébeillé, F.; Van Der Straeten, D. Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Sci. Rep. 2019, 9, 5731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Put, N.M.J.; Blom, H.J. Neural tube defects and a disturbed folate dependent homocysteine metabolism. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 92, 57–61. [Google Scholar] [CrossRef]
- Bailey, L.B.; Stover, P.J.; McNulty, H.; Fenech, M.F.; Gregory, J.F., III; Mills, J.L.; Pfeiffer, C.M.; Fazili, Z.; Zhang, M.; Ueland, P.M.; et al. Biomarkers of Nutrition for Development—Folate Review. J. Nutr. 2015, 145, 1636S–1680S. [Google Scholar] [CrossRef] [Green Version]
- Snowdon, D.A.; Tully, C.L.; Smith, C.D.; Riley, K.P.; Markesbery, W.R. Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: Findings from the Nun Study. Am. J. Clin. Nutr. 2000, 71, 993–998. [Google Scholar] [CrossRef] [Green Version]
- Dugdale, A.E. Predicting iron and folate deficiency anaemias from standard blood testing: The mechanism and implications for clinical medicine and public health in developing countries. Theor. Biol. Med. Model. 2006, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Nile, S.H.; Keum, Y.-S. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Res. Int. 2016, 89, 1–13. [Google Scholar] [CrossRef]
- Menezo, Y.; Elder, K.; Clement, A.; Clement, P. Folic Acid, Folinic Acid, 5 Methyl TetraHydroFolate Supplementation for Mutations That Affect Epigenesis through the Folate and One-Carbon Cycles. Biomolecules 2022, 12, 197. [Google Scholar] [CrossRef] [PubMed]
- Irvine, N.; England-Mason, G.; Field, C.J.; Dewey, D.; Aghajafari, F. Prenatal Folate and Choline Levels and Brain and Cognitive Development in Children: A Critical Narrative Review. Nutrients 2022, 14, 364. [Google Scholar] [CrossRef]
- de Paiva, E.P.; Costa, M.M.A.; de Azevedo, C.A. Folate—Analytical properties, bioavailability and stability in foods. Sci. Chromatogr. 2015, 7, 199–222. [Google Scholar] [CrossRef]
- McNulty, H.; Pentieva, K. Folate bioavailability. Proc. Nutr. Soc. 2004, 63, 529–536. [Google Scholar] [CrossRef]
- Arcot, J.; Shrestha, A. Folate: Methods of analysis. Trends Food Sci. Technol. 2005, 16, 253–266. [Google Scholar] [CrossRef]
- Ringling, C.; Rychlik, M. Origins of the difference between food folate analysis results obtained by LC–MS/MS and microbiological assays. Anal. Bioanal. Chem. 2017, 409, 1815–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishnumohan, S.; Arcot, J.; Pickford, R. Naturally-occurring folates in foods: Method development and analysis using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Food Chem. 2011, 125, 736–742. [Google Scholar] [CrossRef]
- Ložnjak, P.; Striegel, L.; Díaz De la Garza, R.I.; Rychlik, M.; Jakobsen, J. Quantification of folate in food using deconjugase of plant origin combined with LC-MS/MS: A method comparison of a large and diverse sample set. Food Chem. 2020, 305, 125450. [Google Scholar] [CrossRef]
- Yin, S.; Yang, Y.; Li, Y.; Sun, C. Analysis of natural and synthetic folates in pharmaceuticals and foods: A review. Anal. Methods 2018, 10, 9–21. [Google Scholar] [CrossRef]
- Uzuriaga-Sánchez, R.J.; Khan, S.; Wong, A.; Picasso, G.; Pividori, M.I.; Sotomayor, M.D.P.T. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples. Food Chem. 2016, 190, 460–467. [Google Scholar] [CrossRef]
- Tang, H.; Zhu, L.; Yu, C.; Shen, X. Selective photocatalysis mediated by magnetic molecularly imprinted polymers. Sep. Purif. Technol. 2012, 95, 165–171. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Xu, Y.; Du, X.; Sun, X.; Sun, L.; Wang, H.; Zhao, Q.; Yu, A.; Zhang, H.; et al. Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2010, 662, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, X.; Sun, L.; Xu, Y.; Zeng, Q.; Wang, H.; Xu, H.; Yu, A.; Zhang, H.; Ding, L. Fast and selective extraction of sulfonamides from honey based on magnetic molecularly imprinted polymer. J. Agric. Food Chem. 2009, 57, 10073–10080. [Google Scholar] [CrossRef]
- Santos, A.C.F.; de Araújo, O.R.; Moura, F.A.; Khan, S.; Tanaka, A.A.; Santana, A.E.G.; Pividori, M.I.; Taboada-Sotomayor, M.D.P.; Goulart, M.O. Development of magnetic nanoparticles modified with new molecularly imprinted polymer (MIPs) for selective analysis of glutathione. Sens. Actuators B Chem. 2021, 344, 130171. [Google Scholar] [CrossRef]
- Garcia, S.M.; Wong, A.; Khan, S.; Sotomayor, M.D. A simple, sensitive and efficient electrochemical platform based on carbon paste electrode modified with Fe3O4@MIP and graphene oxide for folic acid determination in different matrices. Talanta 2021, 229, 122258. [Google Scholar] [CrossRef] [PubMed]
- Pizan-Aquino, C.; Wong, A.; Avilés-Félix, L.; Khan, S.; Picasso, G.; Sotomayor, M.D.P.T. Evaluation of the performance of selective M-MIP to tetracycline using electrochemical and HPLC-UV method. Mater. Chem. Phys. 2020, 245, 122777. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.; Zeng, Q.; Wang, H.; Yu, A.; Zhang, H.; Ding, L. Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples. J. Chromatogr. A 2009, 1216, 3710–3719. [Google Scholar] [CrossRef]
- Sotomayor, M.D.P.T.; Kubota, L.T. Enzymeless biosensors: Uma nova área para o desenvolvimento de sensores amperométricos. Enzymeless biosensors: A novel area for the development of amperometric sensors. Quim. Nova 2002, 25, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.; Santos, A.M.; Silva, T.A.; Moraes, F.C.; Fatibello-Filho, O.; Sotomayor, M.D.P.T. Sensitive and Selective Voltammetric Determination of Ciprofloxacin Using Screen-printed Electrodes Modified with Carbon Black and Magnetic-molecularly Imprinted Polymer. Electroanalysis 2022, 34, 1–11. [Google Scholar] [CrossRef]
- Dou, W.-T.; Han, H.-H.; Sedgwick, A.C.; Zhu, G.-B.; Zang, Y.; Yang, X.-R.; Yoon, J.; James, T.D.; Li, J.; He, X.-P. Fluorescent probes for the detection of disease-associated biomarkers. Sci. Bull. 2022, 67, 853–878. [Google Scholar] [CrossRef]
- Ding, S.; Lyu, Z.; Li, S.; Ruan, X.; Fei, M.; Zhou, Y.; Niu, X.; Zhu, W.; Du, D.; Lin, Y. Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosens. Bioelectron. 2021, 191, 113434. [Google Scholar] [CrossRef] [PubMed]
- Vega-Chacón, J.; Picasso, G.; Avilés-Félix, L.; Jafelicci, M. Influence of synthesis experimental parameters on the formation of magnetite nanoparticles prepared by polyol method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 015014. [Google Scholar] [CrossRef]
- Villa, J.E.L.; Khan, S.; Neres, L.C.S.; Sotomayor, M.D.P.T. Preparation of a magnetic molecularly imprinted polymer for non-invasive determination of cortisol. J. Polym. Res. 2021, 28, 298. [Google Scholar] [CrossRef]
- Khan, S.; Wong, A.; Zanoni, M.V.B.; Sotomayor, M.D.P.T. Sotomayor. Electrochemical sensors based on biomimetic magnetic molecularly imprinted polymer for selective quantification of methyl green in environmental samples. Mater. Sci. Eng. C 2019, 103, 109825. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Sancho, N.; Bomati-Miguel, O.; Roca, A.G.; Martinez, G.; Arruebo, M.; Santamaria, J. Molecularly Imprinted Polymers for Gossypol via Sol–Gel, Bulk, and Surface Layer Imprinting—A Comparative Study. Polymers 2019, 11, 602. [Google Scholar]
- Miguel-Sancho, N.; Bomati-Miguel, O.; Roca, A.G.; Martinez, G.; Arruebo, M.; Santamaria, J. Synthesis of Magnetic Nanocrystals by Thermal Decomposition in Glycol Media: Effect of Process Variables and Mechanistic Study. Ind. Eng. Chem. Res. 2012, 51, 8348–8357. [Google Scholar] [CrossRef]
- Yang, T.; Shen, C.; Li, Z.; Zhang, H.; Xiao, C.; Chen, S.; Xu, Z.; Shi, D.; Li, J.; Gao, H. Highly Ordered Self-Assembly with Large Area of Fe3O4 Nanoparticles and the Magnetic Properties. J. Phys. Chem. B 2005, 109, 23233–23236. [Google Scholar] [CrossRef]
- Quinto, M.L.; Khan, S.; Picasso, G.; Sotomayor, M.D.P.T. Synthesis, characterization, and evaluation of a selective molecularly imprinted polymer for quantification of the textile dye acid violet 19 in real water samples. J. Hazard. Mater. 2019, 384, 121374. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Chu, J.; Dong, C.; Qi, J.; Yuan, Y. Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions. Environ. Pollut. 2010, 158, 2317–2323. [Google Scholar] [CrossRef]
- Kong, X.; Gao, R.; He, X.; Chen, L.; Zhang, Y. Synthesis and characterization of the core–shell magnetic molecularly imprinted polymers (Fe3O4@MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed. J. Chromatogr. A 2012, 1245, 8–16. [Google Scholar] [CrossRef]
- Zaitsev, V.S.; Filimonov, D.S.; Presnyakov, I.A.; Gambino, R.J.; Chu, B. Physical and Chemical Properties of Magnetite and Magnetite-Polymer Nanoparticles and Their Colloidal Dispersions. J. Colloid Interface Sci. 1999, 212, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Popplewell, J.; Sakhnini, L. The dependence of the physical and magnetic properties of magnetic fluids on particle size. J. Magn. Magn. Mater. 1995, 149, 72–78. [Google Scholar] [CrossRef]
- Kodama, R.H.; Berkowitz, A.E.; McNiff, E.J., Jr.; Foner, S. Surface Spin Disorder in NiFe2O4 Nanoparticles. Phys. Rev. Lett. 1996, 77, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Chekin, F.; Teodorescu, F.; Coffinier, Y.; Pan, G.H.; Barras, A.; Boukherroub, R.; Szunerits, S. MoS2/Reduced Graphene Oxide as Active Hybrid Material for the Electrochemical Detection of Folic Acid in Human Serum. Biosens. Bioelectron. 2016, 85, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Arvand, M.; Dehsaraei, M. A Simple and Efficient Electrochemical Sensor for Folic Acid Determination in Human Blood Plasma Based on Gold Nanoparticles–Modified Carbon Paste Electrode. Mater. Sci. Eng. C 2013, 33, 3474–3480. [Google Scholar] [CrossRef]
- Taherkhani, A.; Jamali, T.; Hadadzadeh, H.; Karimi-Maleh, H.; Beitollahi, H.; Taghavi, M.; Karimi, F. ZnO Nanoparticle-Modified Ionic Liquid-Carbon Paste Electrodefor Voltammetric Determination of Folic Acid in Food and Pharmaceutical Samples. Ionics 2014, 20, 421–429. [Google Scholar] [CrossRef]
- Khaleghi, F.; Irai, A.E.; Sadeghi, R.; Gupta, V.K.; Wen, Y.P. A Fast Strategy for Determination of Vitamin B9 in Food and Pharmaceutical Samples Using an Ionic Liquid-Modified Nanostructure Voltammetric Sensor. Sensors 2016, 16, 747. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, O.J.; Mascarenhas, R.J.; Satpati, A.K.; Detriche, S.; Mekhalif, Z.; Delhalle, J. High Electrocatalytic Oxidation of Folic Acid at Carbon Paste Electrode Bulk Modified with Iron Nanoparticle-Decorated Multiwalled Carbon Nanotubes and Its Application in Food and Pharmaceutical Analysis. Ionics 2017, 23, 201–212. [Google Scholar] [CrossRef]
Polymer | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Maximum Adsorption (cm3/g) |
---|---|---|---|
MMIPs | 165.76 | 0.37 | 57.25 |
MNIPs | 34.82 | 0.12 | 11.84 |
Food Samples | Added (mol L−1) | Found (mol L−1) * | Recovery (%) ** | HPLC Method |
---|---|---|---|---|
beet | 5.0 × 10−6 | (4.8 ± 0.2) × 10−6 | 96 | 99.5 |
flour | 5.0 × 10−6 | (5.3 ± 0.1) × 10−6 | 107 | 102.2 |
cauliflower | 5.0 × 10−6 | (5.0 ± 0.4) × 10−6 | 100 | 101.6 |
orange | 5.0 × 10−6 | (4.6 ± 0.1) × 10−6 | 92 | 98.8 |
broccoli | 5.0 × 10−6 | (5.4 ± 0.2) × 10−6 | 108 | 97.67 |
Samples | Proposed Method | Recovery (%) ** | HPLC Method | |
---|---|---|---|---|
Added (µmol L−1) | Found * (µmol L−1) | Recovery | ||
Orange | 2.0 × 10−7 | (1.98 ± 0.20) × 10−7 | 99.0 | 98.92 |
8.0 × 10−7 | (7.85 ± 0.30) × 10−7 | 98.1 | 101.23 | |
Broccoli | 2.0 × 10−7 | (2.04 ± 0.25) × 10−7 | 102.0 | 99.72 |
8.0 × 10−7 | (8.25 ± 0.20) × 10−7 | 103.1 | 100.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Wong, A.; Rychlik, M.; Sotomayor, M.d.P.T. A Novel Synthesis of a Magnetic Porous Imprinted Polymer by Polyol Method Coupled with Electrochemical Biomimetic Sensor for the Detection of Folate in Food Samples. Chemosensors 2022, 10, 473. https://doi.org/10.3390/chemosensors10110473
Khan S, Wong A, Rychlik M, Sotomayor MdPT. A Novel Synthesis of a Magnetic Porous Imprinted Polymer by Polyol Method Coupled with Electrochemical Biomimetic Sensor for the Detection of Folate in Food Samples. Chemosensors. 2022; 10(11):473. https://doi.org/10.3390/chemosensors10110473
Chicago/Turabian StyleKhan, Sabir, Ademar Wong, Michael Rychlik, and María del Pilar Taboada Sotomayor. 2022. "A Novel Synthesis of a Magnetic Porous Imprinted Polymer by Polyol Method Coupled with Electrochemical Biomimetic Sensor for the Detection of Folate in Food Samples" Chemosensors 10, no. 11: 473. https://doi.org/10.3390/chemosensors10110473
APA StyleKhan, S., Wong, A., Rychlik, M., & Sotomayor, M. d. P. T. (2022). A Novel Synthesis of a Magnetic Porous Imprinted Polymer by Polyol Method Coupled with Electrochemical Biomimetic Sensor for the Detection of Folate in Food Samples. Chemosensors, 10(11), 473. https://doi.org/10.3390/chemosensors10110473