Machine Learning-Based Multi-Level Fusion Framework for a Hybrid Voltammetric and Impedimetric Metal Ions Electronic Tongue
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Sample Preparation
2.2. Voltammetric Measurements
2.3. Impedimetric Measurements
2.4. Pattern Fusion Framework
2.4.1. Features Extraction and Fusion
2.4.2. Dimensionality Reduction
2.4.3. Classification
2.4.4. Decision Fusion for Voltammetric and Impedimetric Measurements
3. Results and Discussion
3.1. Evaluation of Features
3.2. Feature Fusion
3.3. Dimensionality Reduction
3.4. Classification
3.5. Comparison of Algorithm Combinations
3.6. Quantitative Determination of Metallic Ions Based on Different Fusion Strategies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uchida, R. Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms. In Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture; Silva, J.A., Uchida, R., Eds.; College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: Honolulu, HI, USA, 2000; pp. 31–55. [Google Scholar]
- Tenkorang, F.; Lowenberg-DeBoer, J. Forecasting Long-Term Global Fertilizer Demand. Nutr. Cycl. Agroecosyst. 2009, 83, 233–247. [Google Scholar] [CrossRef]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in Agriculture—Status and Perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of Potassium and Magnesium in Photosynthesis, Photosynthate Translocation and Photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [Green Version]
- Kirkby, E.A.; Pilbeam, D.J. Calcium as a Plant Nutrient. Plant Cell Environ. 1984, 7, 397–405. [Google Scholar] [CrossRef]
- Poovaiah, B.W.; Reddy, A.S.N.; Leopold, A.C. Calcium Messenger System in Plants. Crit. Rev. Plant Sci. 1987, 6, 47–103. [Google Scholar] [CrossRef]
- Mikula, K.; Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Controlled Release Micronutrient Fertilizers for Precision Agriculture—A Review. Sci. Total Environ. 2020, 712, 136365. [Google Scholar] [CrossRef] [PubMed]
- Aoren, G.I. Ideal Nutrient Productivities and Nutrient Proportions in Plant Growth. Plant Cell Environ. 1988, 11, 613–620. [Google Scholar] [CrossRef]
- Ahn, T.I.; Son, J.E. Theoretical and Experimental Analysis of Nutrient Variations in Electrical Conductivity-Based Closed-Loop Soilless Culture Systems by Nutrient Replenishment Method. Agronomy 2019, 9, 649. [Google Scholar] [CrossRef] [Green Version]
- Zaini, A.; Kurniawan, A.; Herdhiyanto, A.D. Internet of Things for Monitoring and Controlling Nutrient Film Technique (NFT) Aquaponic. In Proceedings of the 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), Surabaya, Indonesia, 26–27 November 2018; pp. 167–171. [Google Scholar] [CrossRef]
- Savvas, D.; Manos, G. Automated Composition Control of Nutrient Solution in Closed Soilless Culture Systems. J. Agric. Eng. Res. 1999, 73, 29–33. [Google Scholar] [CrossRef]
- Akhter, F.; Siddiquei, H.R.; Alahi, M.E.E.; Mukhopadhyay, S.C. Recent Advancement of the Sensors for Monitoring the Water Quality Parameters in Smart Fisheries Farming. Computers 2021, 10, 26. [Google Scholar] [CrossRef]
- Lavanaya, M.; Parameswari, R. Soil Nutrients Monitoring For Greenhouse Yield Enhancement Using Ph Value with Iot and Wireless Sensor Network. In Proceedings of the 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT), Bangalore, India, 16–18 August 2018; pp. 547–552. [Google Scholar] [CrossRef]
- Pereira, C.M.; Neiverth, C.A.; Maeda, S.; Guiotoku, M.; Franciscon, L. Complexometric Titration with Potenciometric Indicator to Determination of Calcium and Magnesium in Soil Extracts. Rev. Bras. Ciênc. Solo 2011, 35, 1331–1336. [Google Scholar] [CrossRef]
- De Caland, L.B.; Silveira, E.L.C.; Tubino, M. Determination of Sodium, Potassium, Calcium and Magnesium Cations in Biodiesel by Ion Chromatography. Anal. Chim. Acta 2012, 718, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.; Lee, M. Developments in Ion Mobility Spectrometry–Mass Spectrometry. Anal. Bioanal. Chem. 2002, 372, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yu, J.; Li, J.; Wang, J.; Ying, Y. Detection of Metal Ions by Atomic Emission Spectroscopy from Liquid-Electrode Discharge Plasma. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1269–1272. [Google Scholar] [CrossRef]
- Bosch Ojeda, C.; Sanchez Rojas, F. Recent Applications in Derivative Ultraviolet/Visible Absorption Spectrophotometry: 2009–2011. Microchem. J. 2013, 106, 1–16. [Google Scholar] [CrossRef]
- Nasraoui, S.; Al-Hamry, A.; Teixeira, P.R.; Ameur, S.; Paterno, L.G.; Ben Ali, M.; Kanoun, O. Electrochemical Sensor for Nitrite Detection in Water Samples Using Flexible Laser-Induced Graphene Electrodes Functionalized by CNT Decorated by Au Nanoparticles. J. Electroanal. Chem. 2021, 880, 114893. [Google Scholar] [CrossRef]
- Talbi, M.; Al-Hamry, A.; Teixeira, P.R.; Paterno, L.G.; Ali, M.B.; Kanoun, O. Enhanced Nitrite Detection by a Carbon Screen Printed Electrode Modified with Photochemically-Made AuNPs. Chemosensors 2022, 10, 40. [Google Scholar] [CrossRef]
- Brahem, A.; Al-Hamry, A.; Gross, M.A.; Paterno, L.G.; Ali, M.B.; Kanoun, O. Stability Enhancement of Laser-Scribed Reduced Graphene Oxide Electrodes Functionalized by Iron Oxide/Reduced Graphene Oxide Nanocomposites for Nitrite Sensors. J. Compos. Sci. 2022, 6, 221. [Google Scholar] [CrossRef]
- Xiao, S.; Chen, L.; Xiong, X.; Zhang, Q.; Feng, J.; Deng, S.; Zhou, L. A New Impedimetric Sensor Based on Anionic Intercalator for Detection of Lead Ions with Low Cost and High Sensitivity. J. Electroanal. Chem. 2018, 827, 175–180. [Google Scholar] [CrossRef]
- Chabbah, T.; Abderrazak, H.; Souissi, R.; Saint-Martin, P.; Casabianca, H.; Chatti, S.; Mercier, R.; Rassas, I.; Errachid, A.; Hammami, M.; et al. A Sensitive Impedimetric Sensor Based on Biosourced Polyphosphine Films for the Detection of Lead Ions. Chemosensors 2020, 8, 34. [Google Scholar] [CrossRef]
- Bratov, A.; Abramova, N.; Ipatov, A. Recent Trends in Potentiometric Sensor Arrays—A Review. Anal. Chim. Acta 2010, 678, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Gruden, R.; Kanoun, O. Low-Cost Online Determination of Calcium-Magnesium-Ratio by Cyclic Voltammetry. In Proceedings of the 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), Castelldefels, Spain, 11–14 February 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Gruden, R.; Kanoun, O. Low-Cost Multifunctional Sensorsystem for Online Determination of Aqueous Solutions. In Proceedings of the 2015 IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD15), Mahdia, Tunisia, 22–25 March 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Peng, Z.; Cao, Y.; Gao, Y.; Wang, K.; Song, H.; Yan, S. Fabrication of NiS2 Nanomaterial for Ca2+, Mg2+ Sensing. In Proceedings of the International Conference on Optoelectronic and Microelectronic Technology and Application, Nanjing, China, 20–22 October 2020; Liu, J., Ed.; SPIE: Bellingham, WA, USA, 2020; p. 21. [Google Scholar] [CrossRef]
- Kumbhat, S.; Singh, U. A Potassium-Selective Electrochemical Sensor Based on Crown-Ether Functionalized Self Assembled Monolayer. J. Electroanal. Chem. 2018, 809, 31–35. [Google Scholar] [CrossRef]
- Akhter, F.; Nag, A.; Alahi, M.E.E.; Liu, H.; Mukhopadhyay, S.C. Electrochemical Detection of Calcium and Magnesium in Water Bodies. Sens. Actuators A Phys. 2020, 305, 111949. [Google Scholar] [CrossRef]
- Machado, R.; Soltani, N.; Dufour, S.; Salam, M.; Carlen, P.; Genov, R.; Thompson, M. Biofouling-Resistant Impedimetric Sensor for Array High-Resolution Extracellular Potassium Monitoring in the Brain. Biosensors 2016, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Podrażka, M.; Bączyńska, E.; Kundys, M.; Jeleń, P.; Witkowska Nery, E. Electronic Tongue—A Tool for All Tastes? Biosensors 2017, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Tahara, Y.; Toko, K. Electronic Tongues–A Review. IEEE Sens. J. 2013, 13, 3001–3011. [Google Scholar] [CrossRef]
- Riul, A.; dos Santos, D.S.; Wohnrath, K.; Di Tommazo, R.; Carvalho, A.C.P.L.F.; Fonseca, F.J.; Oliveira, O.N.; Taylor, D.M.; Mattoso, L.H.C. Artificial Taste Sensor: Efficient Combination of Sensors Made from Langmuir—Blodgett Films of Conducting Polymers and a Ruthenium Complex and Self-Assembled Films of an Azobenzene-Containing Polymer. Langmuir 2002, 18, 239–245. [Google Scholar] [CrossRef]
- Riul, A.; Gallardo Soto, A.M.; Mello, S.V.; Bone, S.; Taylor, D.M.; Mattoso, L.H.C. An Electronic Tongue Using Polypyrrole and Polyaniline. Synth. Met. 2003, 132, 109–116. [Google Scholar] [CrossRef]
- Cortinapuig, M.; Munozberbel, X.; Alonsolomillo, M.; Munozpascual, F.; Delvalle, M. EIS Multianalyte Sensing with an Automated SIA System—An Electronic Tongue Employing the Impedimetric Signal. Talanta 2007, 72, 774–779. [Google Scholar] [CrossRef]
- Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. A Screen-Printed Voltammetric Electronic Tongue for the Analysis of Complex Mixtures of Metal Ions. Sens. Actuators B Chem. 2017, 250, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Men, H.; Zou, S.; Li, Y.; Wang, Y.; Ye, X.; Wang, P. A Novel Electronic Tongue Combined MLAPS with Stripping Voltammetry for Environmental Detection. Sens. Actuators B Chem. 2005, 110, 350–357. [Google Scholar] [CrossRef]
- Cavallari, M.R.; Braga, G.S.; da Silva, M.F.P.; Izquierdo, J.E.E.; Paterno, L.G.; Dirani, E.A.T.; Kymissis, I.; Fonseca, F.J. A Hybrid Electronic Nose and Tongue for the Detection of Ketones: Improved Sensor Orthogonality Using Graphene Oxide-Based Detectors. IEEE Sens. J. 2017, 17, 1971–1980. [Google Scholar] [CrossRef]
- Markovic, M.; Dosen, S.; Popovic, D.; Graimann, B.; Farina, D. Sensor Fusion and Computer Vision for Context-Aware Control of a Multi Degree-of-Freedom Prosthesis. J. Neural Eng. 2015, 12, 066022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvini, R.; Pigani, L. Toward the Development of Combined Artificial Sensing Systems for Food Quality Evaluation: A Review on the Application of Data Fusion of Electronic Noses, Electronic Tongues and Electronic Eyes. Sensors 2022, 22, 577. [Google Scholar] [CrossRef]
- Banerjee, R.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. A Review on Combined Odor and Taste Sensor Systems. J. Food Eng. 2016, 190, 10–21. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Haddi, Z.; Amari, A.; Bouchikhi, B.; Mimendia, A.; Cetó, X.; del Valle, M. Hybrid Electronic Tongue Based on Multisensor Data Fusion for Discrimination of Beers. Sens. Actuators B Chem. 2013, 177, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Winquist, F.; Holmin, S.; Krantz-Rülcker, C.; Wide, P.; Lundström, I. A Hybrid Electronic Tongue. Anal. Chim. Acta 2000, 406, 147–157. [Google Scholar] [CrossRef]
- Söderström, C.; Rudnitskaya, A.; Legin, A.; Krantz-Rülcker, C. Differentiation of Four Aspergillus Species and One Zygosaccharomyces with Two Electronic Tongues Based on Different Measurement Techniques. J. Biotechnol. 2005, 119, 300–308. [Google Scholar] [CrossRef]
- Kutyła-Olesiuk, A.; Nowacka, M.; Wesoły, M.; Ciosek, P. Evaluation of Organoleptic and Texture Properties of Dried Apples by Hybrid Electronic Tongue. Sens. Actuators B Chem. 2013, 187, 234–240. [Google Scholar] [CrossRef]
- Labrador, R.H.; Masot, R.; Alcañiz, M.; Baigts, D.; Soto, J.; Martínez-Mañez, R.; García-Breijo, E.; Gil, L.; Barat, J.M. Prediction of NaCl, Nitrate and Nitrite Contents in Minced Meat by Using a Voltammetric Electronic Tongue and an Impedimetric Sensor. Food Chem. 2010, 122, 864–870. [Google Scholar] [CrossRef]
- Hira, Z.M.; Gillies, D.F. A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data. Adv. Bioinform. 2015, 2015, 198363. [Google Scholar] [CrossRef] [PubMed]
- Nasraoui, S.; Ameur, S.; Al-Hamry, A.; Ben Ali, M.; Kanoun, O. Development of an Efficient Voltammetric Sensor for the Monitoring of 4-Aminophenol Based on Flexible Laser Induced Graphene Electrodes Modified with MWCNT-PANI. Sensors 2022, 22, 833. [Google Scholar] [CrossRef]
- Gruden, R.; Buchholz, A.; Kanoun, O. Electrochemical Analysis of Water and Suds by Impedance Spectroscopy and Cyclic Voltammetry. J. Sens. Sens. Syst. 2014, 3, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Al-Hamry, A.; Panzardi, E.; Mugnaini, M.; Kanoun, O. Health Monitoring of Human Breathing by Graphene Oxide Based Sensors. In Proceedings of the Sensors and Measuring Systems: 19th ITG/GMA-Symposium, Nuremberg, Germany, 26–27 June 2018; Volume 4. [Google Scholar]
- Verleysen, M.; François, D. The Curse of Dimensionality in Data Mining and Time Series Prediction. In Computational Intelligence and Bioinspired Systems; Cabestany, J., Prieto, A., Sandoval, F., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3512, pp. 758–770. ISBN 978-3-540-26208-4. [Google Scholar] [CrossRef]
- Ghrissi, H.; Veloso, A.C.A.; Marx, Í.M.G.; Dias, T.; Peres, A.M. A Potentiometric Electronic Tongue as a Discrimination Tool of Water-Food Indicator/Contamination Bacteria. Chemosensors 2021, 9, 143. [Google Scholar] [CrossRef]
- Yu, H.; Yang, J. A Direct LDA Algorithm for High-Dimensional Data—With Application to Face Recognition. Pattern Recognit. 2001, 34, 2067–2070. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Sun, Z.; Chen, Y. Fault Detection Using the Clustering-KNN Rule for Gas Sensor Arrays. Sensors 2016, 16, 2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.-C. Improving D-S Evidence Theory for Data Fusion System. Wu Feng J. 2007, 13, 263–276. [Google Scholar]
- Sentz, K.; Ferson, S. Combination of Evidence in Dempster-Shafer Theory. Ph.D. Thesis, Binghamton University, Binghamton, NY, USA, 2002. [Google Scholar]
- Lu, T.; Al-Hamry, A.; Rosolen, J.M.; Hu, Z.; Hao, J.; Wang, Y.; Adiraju, A.; Yu, T.; Matsubara, E.Y.; Kanoun, O. Flexible Impedimetric Electronic Nose for High-Accurate Determination of Individual Volatile Organic Compounds by Tuning the Graphene Sensitive Properties. Chemosensors 2021, 9, 360. [Google Scholar] [CrossRef]
- Mei, Y.; Zhang, Q.-W.; Gu, Q.; Liu, Z.; He, X.; Tian, Y. Pillar[5]Arene-Based Fluorescent Sensor Array for Biosensing of Intracellular Multi-Neurotransmitters through Host–Guest Recognitions. J. Am. Chem. Soc. 2022, 144, 2351–2359. [Google Scholar] [CrossRef]
- Lu, T.; Al-Hamry, A.; Talbi, M.; Zhang, J.; Adiraju, A.; Hou, M.; Kanoun, O. Functionalized PEDOT:PSS Based Sensor Array for Determination of Metallic Ions in Smart Agriculture. In Proceedings of the 2021 6th International Conference on Nanotechnology for Instrumentation and Measurement (NanofIM), Opole, Poland, 25 November 2021; pp. 1–4. [Google Scholar]
- Ross, A.; Jain, A. Information Fusion in Biometrics. Pattern Recognit. Lett. 2003, 24, 2115–2125. [Google Scholar] [CrossRef]
- Bader, O.; Haddad, D.; Kallel, A.Y.; Hassine, T.; Amara, N.E.B.; Kanoun, O. Identification of Communication Cables Based on Scattering Parameters and a Support Vector Machine Algorithm. IEEE Sens. Lett. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Liu, Q.; Chen, Z. Electronic-Tongue Colorimetric-Sensor Array for Discrimination and Quantitation of Metal Ions Based on Gold-Nanoparticle Aggregation. Anal. Chem. 2019, 91, 6315–6320. [Google Scholar] [CrossRef] [PubMed]
- Sipos, L.; Kovács, Z.; Sági-Kiss, V.; Csiki, T.; Kókai, Z.; Fekete, A.; Héberger, K. Discrimination of Mineral Waters by Electronic Tongue, Sensory Evaluation and Chemical Analysis. Food Chem. 2012, 135, 2947–2953. [Google Scholar] [CrossRef] [PubMed]
- Men, H.; Ge, Z.; Guo, Y.; An, L.; Peng, Y. Biomimetic Electronic Tongue for Classification of Mineral Water. In Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, 11–12 April 2009; pp. 621–624. [Google Scholar]
- Li, W.; Yi, P.; Wu, Y.; Pan, L.; Li, J. A New Intrusion Detection System Based on KNN Classification Algorithm in Wireless Sensor Network. J. Electr. Comput. Eng. 2014, 2014, 240217. [Google Scholar] [CrossRef] [Green Version]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis: Wiley Series in Probability and Statistics, 5th ed.; Wiley: Chichester, UK, 2011; ISBN 978-0-470-74991-3. [Google Scholar]
- Śliwińska, M.; Garcia-Hernandez, C.; Kościński, M.; Dymerski, T.; Wardencki, W.; Namieśnik, J.; Śliwińska-Bartkowiak, M.; Jurga, S.; Garcia-Cabezon, C.; Rodriguez-Mendez, M. Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy. Sensors 2016, 16, 1654. [Google Scholar] [CrossRef]
- Banerjee, M.B.; Roy, R.B.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. Cross-Perception Fusion Model of Electronic Nose and Electronic Tongue for Black Tea Classification. In Computational Intelligence, Communications, and Business Analytics; Mandal, J.K., Dutta, P., Mukhopadhyay, S., Eds.; Communications in Computer and Information Science; Springer: Singapore, 2017; Volume 775, pp. 407–415. ISBN 978-981-10-6426-5. [Google Scholar]
- Teye, E.; Huang, X.; Han, F.; Botchway, F. Discrimination of Cocoa Beans According to Geographical Origin by Electronic Tongue and Multivariate Algorithms. Food Anal. Methods 2014, 7, 360–365. [Google Scholar] [CrossRef]
- Hamilton, D.; Pacheco, R.; Myers, B.; Peltzer, B. KNN vs. SVM: A Comparison of Algorithms. In Proceedings of the Fire Continuum-Preparing for the Future of Wildland Fire, Missoula, MT, USA, 21–24 May 2018; Hood, S.M., Drury, S., Steelman, T., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2020; pp. 95–109. [Google Scholar]
- Liu, Y. Random Forest Algorithm in Big Data Environment. Comput. Model. New Technol. 2014, 18, 147–151. [Google Scholar]
- Tian, X.; Wang, J.; Ma, Z.; Li, M.; Wei, Z. Combination of an E-Nose and an E-Tongue for Adulteration Detection of Minced Mutton Mixed with Pork. J. Food Qual. 2019, 2019, 4342509. [Google Scholar] [CrossRef] [Green Version]
- Haddi, Z.; Alami, H.; El Bari, N.; Tounsi, M.; Barhoumi, H.; Maaref, A.; Jaffrezic-Renault, N.; Bouchikhi, B. Electronic Nose and Tongue Combination for Improved Classification of Moroccan Virgin Olive Oil Profiles. Food Res. Int. 2013, 54, 1488–1498. [Google Scholar] [CrossRef]
- Banerjee, M.B.; Roy, R.B.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. Black Tea Classification Employing Feature Fusion of E-Nose and E-Tongue Responses. J. Food Eng. 2019, 244, 55–63. [Google Scholar] [CrossRef]
- Xu, M.; Wang, J.; Zhu, L. The Qualitative and Quantitative Assessment of Tea Quality Based on E-Nose, E-Tongue and E-Eye Combined with Chemometrics. Food Chem. 2019, 289, 482–489. [Google Scholar] [CrossRef]
- Prieto, N.; Gay, M.; Vidal, S.; Aagaard, O.; de Saja, J.A.; Rodriguez-Mendez, M.L. Analysis of the Influence of the Type of Closure in the Organoleptic Characteristics of a Red Wine by Using an Electronic Panel. Food Chem. 2011, 129, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Zhao, J.; Chen, Q. Instrumental Intelligent Test of Food Sensory Quality as Mimic of Human Panel Test Combining Multiple Cross-Perception Sensors and Data Fusion. Anal. Chim. Acta 2014, 841, 68–76. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Al-Hamry, A.; Hao, J.; Liu, Y.; Qu, Y.; Kanoun, O. Machine Learning-Based Multi-Level Fusion Framework for a Hybrid Voltammetric and Impedimetric Metal Ions Electronic Tongue. Chemosensors 2022, 10, 474. https://doi.org/10.3390/chemosensors10110474
Lu T, Al-Hamry A, Hao J, Liu Y, Qu Y, Kanoun O. Machine Learning-Based Multi-Level Fusion Framework for a Hybrid Voltammetric and Impedimetric Metal Ions Electronic Tongue. Chemosensors. 2022; 10(11):474. https://doi.org/10.3390/chemosensors10110474
Chicago/Turabian StyleLu, Tianqi, Ammar Al-Hamry, Junfeng Hao, Yang Liu, Yunze Qu, and Olfa Kanoun. 2022. "Machine Learning-Based Multi-Level Fusion Framework for a Hybrid Voltammetric and Impedimetric Metal Ions Electronic Tongue" Chemosensors 10, no. 11: 474. https://doi.org/10.3390/chemosensors10110474
APA StyleLu, T., Al-Hamry, A., Hao, J., Liu, Y., Qu, Y., & Kanoun, O. (2022). Machine Learning-Based Multi-Level Fusion Framework for a Hybrid Voltammetric and Impedimetric Metal Ions Electronic Tongue. Chemosensors, 10(11), 474. https://doi.org/10.3390/chemosensors10110474