Interference Free HPLC-SERS for the Trace Analysis of Residual Furazolidones in the Aquaculture Sediment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instruments
2.3. Au NPs Preparation
2.4. Standard Solution Preparation
2.5. Extraction Method for FZD in Sediment
3. Results
3.1. Optimization of Extraction Conditions
3.2. HPLC Analysis and Purification
3.3. SERS Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, N.-N.; Chen, M.-M.; Sheng, L.-Q.; Chen, S.-S.; Xu, H.-J.; Liu, Z.-D.; Song, C.-F.; Qiao, R. Determination of nitrofuran metabolites in shrimp by high performance liquid chromatography with fluorescence detection and liquid chromatography–tandem mass spectrometry using a new derivatization reagent. J. Chromatogr. A 2014, 1327, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Leitner, A.; Zöllner, P.; Lindner, W. Determination of the metabolites of nitrofuran antibiotics in animal tissue by high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2001, 939, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Vass, M.; Hruska, K.; Franek, M. Nitrofuran antibiotics: A review on the application, prohibition and residual analysis. Vet. Med. 2008, 53, 469. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Yang, H.; Wang, Y.; Si, W.; Deng, A. Direct detection of 3-amino-5-methylmorpholino-2-oxazolidinone (AMOZ) in food samples without derivatisation step by a sensitive and specific monoclonal antibody based ELISA. Food Chem. 2012, 135, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Guo, W.; Quan, W.; Jiang, J.; Qu, B. Occurrence and levels of nitrofuran metabolites in sea cucumber from Dalian, China. Food Addit. Contam. Part A 2016, 33, 1672–1677. [Google Scholar] [CrossRef]
- Fan, W.; Yang, S.; Gao, W.; Wang, D.; Fan, M. Highly sensitive bromide aided SERS detection of furazolidone and 3-amino-2-oxazolidinone residual in aquaculture products. Microchem. J. 2021, 169, 106532. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, L.; Le, T. An immunochromatography test strip for rapid, quantitative and sensitive detection of furazolidone metabolite, 3-amino-2-oxazolidinone, in animal tissues. Food Agric. Immunol. 2017, 28, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Tang, S.; Chen, Q.; Zou, J.; Zhang, T.; Liu, F.; Zhang, S.; Sun, C.; Xiao, X. Furazolidone induced oxidative DNA damage via up-regulating ROS that caused cell cycle arrest in human hepatoma G2 cells. Toxicol. Lett. 2011, 201, 205–212. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L. Simultaneous determination and identification of furazolidone, furaltadone, nitrofurazone, and nitrovin in feeds by HPLC and LC-MS. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 377–390. [Google Scholar] [CrossRef]
- Cooper, K.; Mulder, P.J.; Van Rhijn, J.; Kovacsics, L.; McCracken, R.; Young, P.; Kennedy, D. Depletion of four nitrofuran antibiotics and their tissue-bound metabolites in porcine tissues and determination using LC-MS/MS and HPLC-UV. Food Addit. Contam. 2005, 22, 406–414. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, D.; Liu, W.; Zheng, L.; Wang, Y.; Liu, X.; Fan, M.; Gong, Z. Rapid screening of rhodamine B in food by hydrogel solid-phase extraction coupled with direct fluorescence detection. Food Chem. 2020, 316, 126378. [Google Scholar] [CrossRef] [PubMed]
- Samuelsen, O.B.; Solheim, E.; Lunestad, B.T. Fate and microbiological effects of furazolidone in a marine aquaculture sediment. Sci. Total Environ. 1991, 108, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Capone, D.G.; Weston, D.P.; Miller, V.; Shoemaker, C. Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 1996, 145, 55–75. [Google Scholar] [CrossRef]
- Kalantzi, I.; Rico, A.; Mylona, K.; Pergantis, S.A.; Tsapakis, M. Fish farming, metals and antibiotics in the eastern Mediterranean Sea: Is there a threat to sediment wildlife? Sci. Total Environ. 2021, 764, 142843. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; Yang, Y.; Huang, Z.; Long, N.V.; Fu, C. Engineering of SERS substrates based on noble metal nanomaterials for chemical and biomedical applications. Appl. Spectrosc. Rev. 2015, 50, 499–525. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2019, 14, 28–117. [Google Scholar] [CrossRef] [Green Version]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hui, B.; Zhang, X.; Zhu, J.; Gong, Z.; Fan, M. Facile Preparation of Ag-NP-Deposited HRGB-SERS Substrate for Detection of Polycyclic Aromatic Hydrocarbons in Water. Chemosensors 2022, 10, 406. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, W.; Gong, Z.; Wu, W.; Fan, M.; Wang, D.; Brolo, A.G. Detection of buried explosives using a surface-enhanced Raman scattering (SERS) substrate tailored for miniaturized spectrometers. ACS Sens. 2020, 5, 2933–2939. [Google Scholar] [CrossRef]
- Fan, M.; Andrade, G.F.S.; Brolo, A.G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2019, 1097, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Andrade, G.F.; Brolo, A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Sun, X.-T.; Wang, Y.; Zhang, W.-S.; Xu, Z.-R. Microparticles with size/charge selectivity and pH response for SERS monitoring of 6-thioguanine in blood serum. Sens. Actuators B Chem. 2018, 273, 1539–1547. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Bagheri, A.R.; Guo, X.; Li, J.; Ma, J.; Chen, L. Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: A green approach and hazardous waste elimination. Talanta 2020, 215, 120933. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, K.; Zhao, X.; Zhang, W.; Liu, Y.; Jiang, J.; Cui, Y. Highly stable Zr (IV)-based metal–organic frameworks for chiral separation in reversed-phase liquid chromatography. J. Am. Chem. Soc. 2020, 143, 390–398. [Google Scholar] [CrossRef]
- Hu, K.; Shi, Y.; Zhu, W.; Cai, J.; Zhao, W.; Zeng, H.; Zhang, Z.; Zhang, S. Facile synthesis of magnetic sulfonated covalent organic framework composites for simultaneous dispersive solid-phase extraction and determination of β-agonists and fluoroquinolones in food samples. Food Chem. 2021, 339, 128079. [Google Scholar] [CrossRef]
- Fuh, M.-R.S.; Chan, S.-A.; Wang, H.-L.; Lin, C.-Y. Determination of antibacterial reagents by liquid chromatography-electrospray-mass spectrometry. Talanta 2000, 52, 141–151. [Google Scholar] [CrossRef]
- Frens, G. Particle size and sol stability in metal colloids. Kolloid-Zeitschrift und Zeitschrift für Polymere 1972, 250, 736–741. [Google Scholar] [CrossRef]
- Vinas, P.; Campillo, N.; Carrasco, L.; Hernández-Córdoba, M. Analysis of nitrofuran residues in animal feed using liquid chromatography and photodiode-array detection. Chromatographia 2007, 65, 85–89. [Google Scholar] [CrossRef]
- Barbosa, J.; Moura, S.; Barbosa, R.; Ramos, F.; da Silveira, M.I.N. Determination of nitrofurans in animal feeds by liquid chromatography-UV photodiode array detection and liquid chromatography-ionspray tandem mass spectrometry. Anal. Chim. Acta 2007, 586, 359–365. [Google Scholar] [CrossRef]
- JohnáBlanchflower, W.; GlennáKennedy, D. Determination of furazolidone in porcine tissue using thermospray liquid chromatography–mass spectrometry and a study of the pharmacokinetics and stability of its residues. Analyst 1995, 120, 2347–2351. [Google Scholar]
- Kao, Y.-M.; Chang, M.-H.; Cheng, C.-C.; Chou, S.-S. Multiresidue determination of veterinary drugs in chicken and swine muscles by high performance liquid chromatography. J. Food Drug Anal. 2001, 9, 84–95. [Google Scholar] [CrossRef]
- McCracken, R.J.; Kennedy, D.G. Determination of furazolidone in animal feeds using liquid chromatography with UV and thermospray mass spectrometric detection. J. Chromatogr. A 1997, 771, 349–354. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.X.; Wang, J.P. Multidetermination of Four Nitrofurans in Animal Feeds by a Sensitive and Simple Enzyme-Linked Immunosorbent Assay. J. Agric. Food Chem. 2009, 57, 2181–2185. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-A.; Zhang, Y.-L.; Zhao, Y.; Zhang, X.-L.; Sun, M.-L.; Zhang, W. Superhydrophobic SERS chip based on a Ag coated natural taro-leaf. Nanoscale 2016, 8, 11487–11493. [Google Scholar] [CrossRef]
- Sun, H.; Li, X.; Hu, Z.; Gu, C.; Chen, D.; Wang, J.; Li, B.; Jiang, T.; Zhou, X. Hydrophilic-hydrophobic silver nanowire-paper based SERS substrate for in-situ detection of furazolidone under various environments. Appl. Surf. Sci. 2021, 556, 149748. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, B.; Huang, Y.; Fan, M. Interference Free HPLC-SERS for the Trace Analysis of Residual Furazolidones in the Aquaculture Sediment. Chemosensors 2022, 10, 508. https://doi.org/10.3390/chemosensors10120508
Zeng B, Huang Y, Fan M. Interference Free HPLC-SERS for the Trace Analysis of Residual Furazolidones in the Aquaculture Sediment. Chemosensors. 2022; 10(12):508. https://doi.org/10.3390/chemosensors10120508
Chicago/Turabian StyleZeng, Boming, Yuting Huang, and Meikun Fan. 2022. "Interference Free HPLC-SERS for the Trace Analysis of Residual Furazolidones in the Aquaculture Sediment" Chemosensors 10, no. 12: 508. https://doi.org/10.3390/chemosensors10120508
APA StyleZeng, B., Huang, Y., & Fan, M. (2022). Interference Free HPLC-SERS for the Trace Analysis of Residual Furazolidones in the Aquaculture Sediment. Chemosensors, 10(12), 508. https://doi.org/10.3390/chemosensors10120508