Ultrasensitive Fluorescent “ON-OFF” Label-Free Immunosensor for Detection of Vitellogenin of Marine Medaka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Vtg and Anti-Lv-mAbs
2.3. Fabrication of RGO
2.4. The Modification of RGO
2.5. Preparation of CQDs
2.6. Characterization
2.7. Conjugation of CQDs and Anti-Lv-mAbs
2.8. The Optimized Amount of RGO_PDDA
2.9. The Immunosensing for Vtg and Interferences
3. Results and Discussion
3.1. Morphology and Structure of the GO, RGO, RGO_PDDA, and CQDs
3.2. FTIR Spectra of the RGO and RGO_PDDA
3.3. Zeta Potentials of RGO, RGO_PDDA, and CQDs
3.4. FRET between RGO, RGO_PDDA, and CQDs
3.5. Optical Properties of CQDs and Anti-Lv-mAb/CQDs
3.6. PL Quenching (“OFF”) between RGO, RGO_PDDA, and Anti-Lv-mAb/CQDs
3.7. PL Regaining (“ON”) for Detection of Vtg
3.8. Reproducibility, Selectivity, and Stability of the Immunosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, B.; Huang, Y.; He, M.; Hu, B. Hollow fiber liquid-liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection for the determination of various environmental estrogens in environ-mental and biological samples. J. Chromatogr. A 2013, 1305, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Zhan, H.; Hu, J.; Zhang, T.; Xu, H.; Wong, M.; Xu, B.; Zheng, C. The occurrence, potential toxicity, and toxicity mechanism of bisphenol S, a substitute of bisphenol A: A critical review of recent progress. Ecotoxicol. Environ. Saf. 2019, 173, 192–202. [Google Scholar] [CrossRef]
- Li, C.; Wei, Y.; Zhang, S.; Tan, W. Advanced methods to analyze steroid estrogens in environmental samples. Environ. Chem. Lett. 2020, 18, 543–559. [Google Scholar] [CrossRef]
- Ferreira, M.F.; Nostro, F.L.L.; Fernández, D.A.; Genovese, G. Endocrine disruption in the sub Antarctic fish Pata-gonotothen tessellata (Perciformes, Notothenidae) from Beagle Channel associated to anthropogenic impact. Mar. Environ. Res. 2021, 171, 105478. [Google Scholar] [CrossRef] [PubMed]
- Glineur, A.; Beccaria, M.; Purcaro, G. Exploring 20 eV electron impact ionization in gas chromatography-tandem mass spectrometry for the determination of estrogenic compounds. J. Chromatogr. A 2021, 1652, 462359. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Y.; Zhang, Y.; Kou, Q.; Zhang, Y.; Wang, Y.; Chen, L.; Sun, Y.; Zhang, H.; Jung, Y.M. Detection and Identification of Estrogen Based on Surface-Enhanced Resonance Raman Scattering (SERRS). Molecules 2018, 23, 1330. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Quan, W.; Li, C.; Xiang, Z. Analysis of volatile terpenoid compounds in Rhododendron species by multi-dimensional gas chromatography with quadrupole time-of-flight mass spectrometry. Microchem. J. 2019, 149, 104064. [Google Scholar] [CrossRef]
- Tuteja, S.K.; Chen, R.; Kukkar, M.; Song, C.K.; Mutreja, R.; Singh, S.; Paul, A.K.; Lee, H.; Kim, K.H.; Deep, A. A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs). Biosens. Bioelectron. 2016, 86, 548–556. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Q.; Liu, Y.; Cui, J.; Liu, H.; Wang, P.; Li, Y.; Chen, L.; Zhao, Z.; Dong, Y. A novel label-free electrochemical immunosensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection. Biosens. Bioelectron. 2017, 90, 31–38. [Google Scholar] [CrossRef]
- Wu, D.; Liu, Y.; Wang, Y.; Hu, L.; Ma, H.; Wang, G.; Wei, Q. Label-free electrochemiluminescent immunosensor for detection of prostate specific antigen based on aminated graphene quantum dots and carboxyl graphene quantum dots. Sci. Rep. 2016, 6, 20511. [Google Scholar] [CrossRef]
- Ganganboina, A.B.; Doong, R.A. Graphene quantum dots decorated gold-polyaniline nanowire for impedimetric detection of carcinoembryonic antigen. Sci. Rep. 2019, 9, 7214. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.K.A.; Yu, R.M.K.; Islam, R.; Nguyen, T.H.T.; Bui, T.L.H.; Kong, R.Y.C.; O’Connor, W.A.; Leusch, F.D.; Priestley, M.A.; MacFarlane, G.R. The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs. Environ. Pollut. 2019, 248, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Matozzo, V.; Gagne, F.; Marin, M.G.; Ricciardi, F.; Blaise, C. Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: A review. Environ. Int. 2008, 34, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Pow, C.S.D.L.; Yost, E.E.; Aday, D.D.; Kullman, S.W. Sharing the roles: An assessment of Japanese medaka estrogen receptors in vitellogenin induction. Environ. Sci. Technol. 2016, 50, 8886–8895. [Google Scholar]
- Verderame, M.; Scudiero, R. Estrogen-dependent, extrahepatic synthesis of vitellogenin in male vertebrates: A mini-review. C. R. Biol. 2017, 340, 139–144. [Google Scholar] [CrossRef]
- De Alkimin, G.D.; Fracácio, R. Analysis of vitellogenin by histochemical method as an indicator of estrogenic effect in male Danio rerio exposed to metals. Environ. Sci. Pollut. Res. 2020, 27, 17789. [Google Scholar] [CrossRef]
- Felix, F.S.; Baccaro, A.L.B.; Angnes, L. Disposable voltammetric immunosensors integrated with microfluidic plat-forms for biomedical, agricultural and food analyses: A Review. Sensors 2018, 18, 4124. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Kaushal, A.; Kumar, A.; Kumar, D. Recent advances in biosensors for diagnosis of celiac disease: A review. Biotechnol. Bioeng. 2019, 116, 444–451. [Google Scholar] [CrossRef]
- Yi, X.; Li, C.; Zhong, X.; Gong, Y. Development of a lipovitellin-based sandwich ELISA for determination of vitellogenin in the marine medaka Oryzias melastigma. Chemosphere 2018, 197, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Pan, Z.; Zhang, Y.; Zhang, X.; Tian, H.; Wang, W.; Ru, S. Distribution of vitellogenin in Japanese flounder (Paralichthys olivaceus) for biomarker analysis of marine environmental estrogens. Aquat. Toxicol. 2019, 216, 105321. [Google Scholar] [CrossRef]
- Oğuz, E.K.; Ergöz, B.; Oğuz, A.R. Histopathological alterations in Van fish (Alburnus tarichi Güldenstädt, 1814) exposed to tebuconazole. Chem. Ecol. 2022, 38, 17–26. [Google Scholar] [CrossRef]
- Darain, F.; Park, D.S.; Park, J.S.; Chang, S.C.; Shim, Y.B. A separation-free amperometric immunosensor for vitellogenin based on screen-printed carbon arrays modified with a conductive polymer. Biosens. Bioelectron. 2005, 20, 1780–1787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ru, S.; Wang, J.; Wang, D.; Zhao, L.; Teng, H.; Dai, Z.; Zhang, W.; Yang, A. Ultrasensitive label-free electro-chemical immunosensors for detecting marine medaka (Oryzias melastigma) vitellogenin based on novel Cu2O–BSA nano-particles and anti-lipovitellin monoclonal antibody. Sens. Actuators B Chem. 2021, 345, 130358. [Google Scholar]
- Wang, J.; Wang, J.; Zhang, Z.; Zhang, X.; Ru, S.; Dong, Y. Development of an immunosensor for quantifying zebrafish vitellogenin based on the Octet system. Anal. Biochem. 2017, 533, 60–65. [Google Scholar] [CrossRef]
- Cocci, P.; Palermo, F.A.; Pucciarelli, S.; Miano, A.; Cuccioloni, M.; Angeletti, M.; Roncarati, A.; Mosconi, G. Identification, partial characterization, and use of grey mullet (Mugil cephalus) vitellogenins for the development of ELISA and biosensor immunoassays. Int. Aquat. Res. 2019, 11, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.K.; Shalabney, A.; Khalaila, I.; Grüner, C.; Rauschenbach, B.; Abdulhalim, I. In Highly sensitive SERS based nano-sculptured thin film biosensor for the detection of vitellogenin: An endocrine disruption biomarker. In Optical Sensors; Optica Publishing Group: Washington, DC, USA, 2014; p. SeM3C.3. [Google Scholar]
- Algar, W.R.; Hildebrandt, N.; Vogel, S.S.; Medintz, I.L. FRET as a biomolecular research tool—Understanding its potential while avoiding pitfalls. Nat. Methods 2019, 16, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, D.; Kumar, V.; Kumar, A.; Kaur, I. Graphene quantum dots FRET based sensor for early detection of heart attack in human. Biosens. Bioelectron. 2016, 79, 495–499. [Google Scholar] [CrossRef]
- Yang, A.L.; Su, Y.; Zhang, Z.Z.; Wang, H.D.; Qi, C.; Ru, S.; Wang, J. Preparation of graphene quantum dots by visible-fenton reaction and ultrasensitive label-free immunosensor for detecting lipovitellin of paralichthys olivaceus. Biosensors 2022, 12, 246. [Google Scholar] [CrossRef]
- Rani, U.A.; Ng, L.Y.; Ng, C.Y.; Mahmoudi, E. A review of carbon quantum dots and their applications in wastewater treatment. Adv. Colloid Interface Sci. 2020, 278, 102124. [Google Scholar] [CrossRef]
- Fernando, K.A.; Sahu, S.; Liu, Y.; Lewis, W.K.; Guliants, E.A.; Jafariyan, A.; Wang, P.; Bunker, C.E.; Sun, Y.P. Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 2015, 7, 8363–8376. [Google Scholar] [CrossRef]
- Shaari, N.; Kamarudin, S.K.; Bahru, R. Carbon and graphene quantum dots in fuel cell application: An overview. Int. J. Energy Res. 2021, 45, 1396. [Google Scholar] [CrossRef]
- Janus, Ł.; Radwan-Pragłowska, J.; Piątkowski, M.; Bogdał, D. Coumarin-modified CQDs for biomedical applications-two-step synthesis and characterization. Int. J. Mol. Sci. 2020, 21, 8073. [Google Scholar] [CrossRef] [PubMed]
- Walther, B.K.; Dinu, C.Z.; Guldi, D.M.; Sergeyev, V.G.; Creager, S.E.; Cooke, J.P.; Guiseppi-Elie, A. Nanobiosensing with graphene and carbon quantum dots: Recent advances. Mater. Today 2020, 39, 23–46. [Google Scholar] [CrossRef]
- Qi, C.; Wang, H.D.; Yang, A.L.; Wang, X.X.; Xu, J. Facile fabrication of highly fluorescent N-doped carbon quantum dots using an ultrasonic-assisted hydrothermal method: Optical properties and cell imaging. ACS Omega 2021, 6, 32904. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bing, X.; Yu, K.; Tian, H.; Wang, W.; Ru, S. Preparation of a polyclonal antibody against goldfish (Carassius auratus) vitellogenin and its application to detect the estrogenic effects of monocrotophos pesticide. Ecotoxicol. Environ. Saf. 2015, 111, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, X.; Shan, R.; Ma, S.; Tian, H.; Wang, W.; Ru, S. Lipovitellin as an antigen to improve the precision of sandwich ELISA for quantifying zebrafish (Danio rerio) vitellogenin. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2016, 185–186, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Li, C.R.; Kim, K.T.; Kang, Y.J.; Kim, A.; Kang, S.W.; Park, J.S. A novel enzyme-linked immunosorbent assay system for the quantitative analysis of Carassius auratus vitellogenin. Chemosphere 2005, 59, 997. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, L.; Du, L.; Yue, L.; Guan, R.; Zhang, Q.; Hou, G.; Shao, R. Layer-by-layer assembly modification to prepare firmly bonded Si-graphene composites for high-performance anodes. RSC Adv. 2016, 6, 4835. [Google Scholar] [CrossRef]
- Celestino, G.G.; Henriques, R.R.; Shiguihara, A.L.; Constantino, V.R.L.; Melo, R.D.S.; Júnior, J.A. Adsorption of gallic acid on nanoclay modified with poly(diallyldimethylammonium chloride). Environ. Sci. Pollut. Res. 2019, 26, 28444. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Zhao, J.; Song, J.; Su, C.; Wang, Z. Surface modified TiO2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of Microcystis aeruginosa. Water Res. 2018, 131, 320–333. [Google Scholar] [CrossRef]
- Yuan, Y.; Shen, C.; Chen, J.; Ren, X. Synthesis and characterization of cross-linked quaternized chitosan/poly(diallyldimethylammonium chloride) blend anion-exchange membranes. Ionics 2018, 24, 1173–1180. [Google Scholar] [CrossRef]
- Liu, G.; Liu, S.; Ma, K.; Wang, H.; Wang, X.; Liu, G.; Jin, W. Polyelectrolyte functionalized Ti2CTx MXene membranes for pervaporation dehydration of isopropanol/water mixtures. Ind. Eng. Chem. Res. 2020, 59, 4732–4741. [Google Scholar] [CrossRef]
- Eluyemi, M.S.; Eleruja, M.A.; Adedeji, A.V.; Olofinjana, B.; Fasakin, O.; Akinwunmi, O.O.; Ilori, O.O.; Famojuro, A.T.; Ayinde, S.A.; Ajayi, E.O.B. Synthesis and characterization of graphene oxide and reduced graphene oxide thin films deposited by spray pyrolysis method. Graphene 2016, 5, 2169–3439. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Sharma, V.; Jain, Y.; Kumari, M.; Gupta, R.; Sharma, S.K.; Sachdev, K. Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol. Symp. 2017, 376, 1700006. [Google Scholar] [CrossRef]
- Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I. Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 2017, 7, 45030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, I.; Rana, D.; Sarkar, G.; Bhattacharyya, A.; Saha, N.R.; Mondal, S.; Pattanayak, S.; Chattopadhyay, S.; Chattopadhyay, D. Physical and electrochemical characterization of reduced graphene oxide/silver nanocomposites synthesized by adopting a green approach. RSC Adv. 2015, 5, 25357. [Google Scholar] [CrossRef]
- Johra, F.T.; Jung, W.G. Hydrothermally reduced graphene oxide as a supercapacitor. Appl. Surf. Sci. 2015, 357, 1911–1914. [Google Scholar] [CrossRef]
- Gao, T.; Wang, X.; Yang, L.Y.; He, H.; Ba, X.X.; Zhao, J.; Jiang, F.L.; Liu, Y. Red, yellow, and blue luminescence by graphene quantum dots: Syntheses, mechanism, and cellular imaging. ACS Appl. Mater. Interfaces 2017, 9, 24846. [Google Scholar] [CrossRef]
No | Sensor Type | Antibody Type | LOD (ng/mL) | Linear Range (ng/mL) | Reference |
---|---|---|---|---|---|
1 | Optical biosensor | polyAb | Data not shown | 78–5000 | [24] |
2 | Optical biosensor | polyAb | 31 | 70–739 | [25] |
3 | Optical biosensor | polyAb | 0.005 | Data not shown | [26] |
5 | Electrochemical sensor | mAb | 0.09 | 0.25–7.8 | [22] |
6 | Electrochemical sensor | mAb | 0.03 | 0.1–1000 | [23] |
7 | ELISA | polyAb | 3.1 | 15.6–500 | [19] |
8 | ELISA | polyAb | 4.6 | 7.8–2000 | [21] |
9 | ELISA | mAb | 0.75 | 1.95–250 | [20] |
10 | FRET sensor | mAb | 0.0009 | 0.001–1500 | [29] |
11 | FRET sensor | mAb | 0.04 | 0.1–3000 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, C.; Yang, A.; Wang, H.; Zhang, Z.; Wang, J. Ultrasensitive Fluorescent “ON-OFF” Label-Free Immunosensor for Detection of Vitellogenin of Marine Medaka. Chemosensors 2022, 10, 510. https://doi.org/10.3390/chemosensors10120510
Qi C, Yang A, Wang H, Zhang Z, Wang J. Ultrasensitive Fluorescent “ON-OFF” Label-Free Immunosensor for Detection of Vitellogenin of Marine Medaka. Chemosensors. 2022; 10(12):510. https://doi.org/10.3390/chemosensors10120510
Chicago/Turabian StyleQi, Chong, Ailing Yang, Huaidong Wang, Zhenzhong Zhang, and Jun Wang. 2022. "Ultrasensitive Fluorescent “ON-OFF” Label-Free Immunosensor for Detection of Vitellogenin of Marine Medaka" Chemosensors 10, no. 12: 510. https://doi.org/10.3390/chemosensors10120510
APA StyleQi, C., Yang, A., Wang, H., Zhang, Z., & Wang, J. (2022). Ultrasensitive Fluorescent “ON-OFF” Label-Free Immunosensor for Detection of Vitellogenin of Marine Medaka. Chemosensors, 10(12), 510. https://doi.org/10.3390/chemosensors10120510