SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. SERS Substrate Preparation
2.3. AFM Analysis
2.4. Protein Solution Deposition
2.5. Spectra Measurement
2.6. SERS Spectra Preprocessing
2.7. Training and Testing Data
2.8. Machine Learning Algorithms
2.9. Model Evaluation
2.9.1. Coefficient of Determination R2
2.9.2. Root Mean Square Error (RMSE)
2.9.3. Precision
2.9.4. Recall
2.9.5. F1 Score
3. Results
3.1. SERS Substrate
3.2. SERS Spectra
3.3. Data Processing
3.4. Classification Using LDA
3.5. Regression with Regularization
3.6. Loadings
3.7. Error Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, G.; Gentile, F.; Coluccio, M.L.; Perri, A.M.; Nicastri, A.; Mecarini, F.; Cojoc, G.; Candeloro, P.; Liberale, C.; De Angelis, F.; et al. Principal Component Analysis Based Methodology to Distinguish Protein SERS Spectra. J. Mol. Struct. 2011, 993, 500–505. [Google Scholar] [CrossRef]
- Boginskaya, I.; Sedova, M.; Baburin, A.; Afanas’ev, K.; Zverev, A.; Echeistov, V.; Ryzhkov, V.; Rodionov, I.; Tonanaiskii, B.; Ryzhikov, I.; et al. SERS-Active Substrates Nanoengineering Based on e-Beam Evaporated Self-Assembled Silver Films. Appl. Sci. 2019, 9, 3988. [Google Scholar] [CrossRef] [Green Version]
- Sigolaeva, L.V.; Nechaeva, N.L.; Ignatov, A.I.; Filatova, L.Y.; Sharifullin, T.Z.; Eichhorn, J.; Schacher, F.H.; Pergushov, D.V.; Merzlikin, A.M.; Kurochkin, I.N. In Situ SERS Sensing by a Laser-Induced Aggregation of Silver Nanoparticles Templated on a Thermoresponsive Polymer. Biosensors 2022, 12, 628. [Google Scholar] [CrossRef] [PubMed]
- Podoynitsyn, S.N.; Sorokina, O.N.; Nechaeva, N.L.; Yanovich, S.V.; Kurochkin, I.N. Surface-Enhanced Raman Spectroscopy in Tandem with a Gradient Electric Field from 4-Mercaptophenylboronic Acid on Silver Nanoparticles. Microchim. Acta 2020, 187, 566. [Google Scholar] [CrossRef] [PubMed]
- Lane, L.A.; Qian, X.; Nie, S. SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chem. Rev. 2015, 115, 10489–10529. [Google Scholar] [CrossRef]
- Schlücker, S. SERS Microscopy: Nanoparticle Probes and Biomedical Applications. ChemPhysChem 2009, 10, 1344–1354. [Google Scholar] [CrossRef]
- David, C.; Guillot, N.; Shen, H.; Toury, T.; Chapelle, M.L. de la SERS Detection of Biomolecules Using Lithographed Nanoparticles towards a Reproducible SERS Biosensor. Nanotechnology 2010, 21, 475501. [Google Scholar] [CrossRef]
- Kurochkin, I.N.; Eremenko, A.V.; Evtushenko, E.G.; Nechaeva, N.L.; Durmanov, N.N.; Guliev, R.R.; Ryzhikov, I.A.; Boginskaya, I.A.; Sarychev, A.K.; Ivanov, A.V.; et al. SERS for Bacteria, Viruses, and Protein Biosensing. In Macro, Micro, and Nano-Biosensors; Springer International Publishing: Cham, Switzerland, 2021; pp. 75–94. [Google Scholar]
- Petti, L.; Capasso, R.; Rippa, M.; Pannico, M.; La Manna, P.; Peluso, G.; Calarco, A.; Bobeico, E.; Musto, P. A Plasmonic Nanostructure Fabricated by Electron Beam Lithography as a Sensitive and Highly Homogeneous SERS Substrate for Bio-Sensing Applications. Vib. Spectrosc. 2016, 82, 22–30. [Google Scholar] [CrossRef]
- Suresh, V.; Ding, L.; Chew, A.B.; Yap, F.L. Fabrication of Large-Area Flexible SERS Substrates by Nanoimprint Lithography. ACS Appl. Nano Mater. 2018, 1, 886–893. [Google Scholar] [CrossRef]
- Green, M.; Liu, F.M. SERS Substrates Fabricated by Island Lithography: The Silver/Pyridine System. J. Phys. Chem. B 2003, 107, 13015–13021. [Google Scholar] [CrossRef]
- Coluccio, M.L.; Das, G.; Mecarini, F.; Gentile, F.; Pujia, A.; Bava, L.; Tallerico, R.; Candeloro, P.; Liberale, C.; De Angelis, F.; et al. Silver-Based Surface Enhanced Raman Scattering (SERS) Substrate Fabrication Using Nanolithography and Site Selective Electroless Deposition. Microelectron. Eng. 2009, 86, 1085–1088. [Google Scholar] [CrossRef]
- Boginskaya, I.; Nechaeva, N.; Tikhomirova, V.; Kryukova, O.; Evdokimov, V.; Bulaeva, N.; Golukhova, E.; Ryzhikov, I.; Kost, O.; Afanasev, K.; et al. Human Angiotensin I-converting Enzyme Study by Surface-enhanced Raman Spectroscopy. J. Raman Spectrosc. 2021, 52, 1529–1539. [Google Scholar] [CrossRef]
- Boginskaya, I.; Safiullin, R.; Tikhomirova, V.; Kryukova, O.; Nechaeva, N.; Bulaeva, N.; Golukhova, E.; Ryzhikov, I.; Kost, O.; Afanasev, K.; et al. Human Angiotensin I-Converting Enzyme Produced by Different Cells: Classification of the SERS Spectra with Linear Discriminant Analysis. Biomedicines 2022, 10, 1389. [Google Scholar] [CrossRef]
- Baburin, A.S.; Gritchenko, A.S.; Orlikovsky, N.A.; Dobronosova, A.A.; Rodionov, I.A.; Balykin, V.I.; Melentiev, P.N. State-of-the-Art Plasmonic Crystals for Molecules Fluorescence Detection. Opt. Mater. Express 2019, 9, 1173. [Google Scholar] [CrossRef]
- Yankovskii, G.M.; Komarov, A.V.; Puz’ko, R.S.; Baryshev, A.V.; Afanas’ev, K.N.; Boginskaya, I.A.; Bykov, I.V.; Merzlikin, A.M.; Rodionov, I.A.; Ryzhikov, I.A. Structural and Optical Properties of Single and Bilayer Silver and Gold Films. Phys. Solid State 2016, 58, 2503–2510. [Google Scholar] [CrossRef]
- Baburin, A.S.; Ivanov, A.; Trofimov, I.; Dobronosovaa, A.; Melentiev, P.; Balykin, V.; Moskalev, D.; Pishchimova, A.; Ganieva, L.; Ryzhikov, I.; et al. Highly Directional Plasmonic Nanolaser Based on High-Performance Noble Metal Film Photonic Crystal. In Proceedings of the Nanophotonics VII, Strasbourg, France, 22–26 April 2018; Andrews, D.L., Nunzi, J.-M., Ostendorf, A., Bain, A.J., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 159. [Google Scholar]
- Baburin, A.S.; Ivanov, A.I.; Ryzhikov, I.A.; Trofimov, I.V.; Gabidullin, A.R.; Moskalev, D.O.; Panfilov, Y.V.; Rodionov, I.A. Crystalline Structure Dependence on Optical Properties of Silver Thin Film over Time. In Proceedings of the 2017 Progress In Electromagnetics Research Symposium—Spring (PIERS), St. Petersburg, Russia, 22–25 May 2017; pp. 1497–1502. [Google Scholar]
- Koga, M.; Murai, J.; Saito, H.; Kasayama, S. Glycated Albumin and Glycated Hemoglobin Are Influenced Differently by Endogenous Insulin Secretion in Patients with Type 2 Diabetes. Diabetes Care 2010, 33, 270–272. [Google Scholar] [CrossRef] [Green Version]
- Kohzuma, T.; Koga, M. LucicaTM GA-L Glycated Albumin Assay Kit: A New Diagnostic Test for Diabetes Mellitus. Mol. Diagnosis Ther. 2010, 14, 49–51. [Google Scholar] [CrossRef]
- Kouzuma, T.; Usami, T.; Yamakoshi, M.; Takahashi, M.; Imamura, S. An Enzymatic Method for the Measurement of Glycated Albumin in Biological Samples. Clin. Chim. Acta 2002, 324, 61–71. [Google Scholar] [CrossRef]
- Roohk, H.V.; Zaidi, A.R. A Review of Glycated Albumin as an Intermediate Glycation Index for Controlling Diabetes. J. Diabetes Sci. Technol. 2008, 2, 1114–1121. [Google Scholar] [CrossRef] [Green Version]
- Anguizola, J.; Matsuda, R.; Barnaby, O.S.; Hoy, K.S.; Wa, C.; DeBolt, E.; Koke, M.; Hage, D.S. Review: Glycation of Human Serum Albumin. Clin. Chim. Acta 2013, 425, 64–76. [Google Scholar] [CrossRef]
- Kohzuma, T.; Yamamoto, T.; Uematsu, Y.; Shihabi, Z.K.; Freedman, B.I. Basic Performance of an Enzymatic Method for Glycated Albumin and Reference Range Determination. J. Diabetes Sci. Technol. 2011, 5, 1455–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dingari, N.C.; Horowitz, G.L.; Kang, J.W.; Dasari, R.R.; Barman, I. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation. PLoS ONE 2012, 7, e32406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nechaeva, N.L.; Boginskaya, I.A.; Ivanov, A.V.; Sarychev, A.K.; Eremenko, A.V.; Ryzhikov, I.A.; Lagarkov, A.N.; Kurochkin, I.N. Multiscale Flaked Silver SERS-Substrate for Glycated Human Albumin Biosensing. Anal. Chim. Acta 2020, 1100, 250–257. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, A.D.; da Silva, L.J.; Ribeiro, J.P.O.; Ferreira, K.C.; Rosas, J.T.F.; Santos, A.A.; da Silva, C.B. Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging. Sensors 2020, 20, 4319. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Choi, H.; Cha, K.; Chung, H. Random Forest as a Potential Multivariate Method for Near-Infrared (NIR) Spectroscopic Analysis of Complex Mixture Samples: Gasoline and Naphtha. Microchem. J. 2013, 110, 739–748. [Google Scholar] [CrossRef]
- Mekonnen, B.K.; Yang, W.; Hsieh, T.-H.; Liaw, S.-K.; Yang, F.-L. Accurate Prediction of Glucose Concentration and Identification of Major Contributing Features from Hardly Distinguishable Near-Infrared Spectroscopy. Biomed. Signal Process. Control 2020, 59, 101923. [Google Scholar] [CrossRef]
- Arslan, M.; Guzel, M.; Demirci, M.; Ozdemir, S. SMOTE and Gaussian Noise Based Sensor Data Augmentation. In Proceedings of the 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, 11–15 September 2019; pp. 1–5. [Google Scholar]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Shvalya, V.; Filipič, G.; Zavašnik, J.; Abdulhalim, I.; Cvelbar, U. Surface-Enhanced Raman Spectroscopy for Chemical and Biological Sensing Using Nanoplasmonics: The Relevance of Interparticle Spacing and Surface Morphology. Appl. Phys. Rev. 2020, 7, 031307. [Google Scholar] [CrossRef]
- Ducourtieux, S.; Podolskiy, V.A.; Grésillon, S.; Buil, S.; Berini, B.; Gadenne, P.; Boccara, A.C.; Rivoal, J.C.; Bragg, W.D.; Banerjee, K.; et al. Near-Field Optical Studies of Semicontinuous Metal Films. Phys. Rev. B Condens. Matter Mater. Phys. 2001, 64, 165403. [Google Scholar] [CrossRef] [Green Version]
- Grésillon, S.; Aigouy, L.; Boccara, A.C.; Rivoal, J.C.; Quelin, X.; Desmarest, C.; Gadenne, P.; Shubin, V.A.; Sarychev, A.K.; Shalaev, V.M. Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films. Phys. Rev. Lett. 1999, 82, 4520–4523. [Google Scholar] [CrossRef]
- Breit, M.; Podolskiy, V.A.; Grésillon, S.; von Plessen, G.; Feldmann, J.; Rivoal, J.C.; Gadenne, P.; Sarychev, A.K.; Shalaev, V.M. Experimental Observation of Percolation-Enhanced Nonlinear Light Scattering from Semicontinuous Metal Films. Phys. Rev. B 2001, 64, 125106. [Google Scholar] [CrossRef]
- Seal, K.; Nelson, M.A.; Ying, Z.C.; Genov, D.A.; Sarychev, A.K.; Shalaev, V.M. Growth, Morphology, and Optical and Electrical Properties of Semicontinuous Metallic Films. Phys. Rev. B 2003, 67, 035318. [Google Scholar] [CrossRef] [Green Version]
- Brouers, F.; Blacher, S.; Lagarkov, A.N.; Sarychev, A.K.; Gadenne, P.; Shalaev, V.M. Theory of Giant Raman Scattering from Semicontinuous Metal Films. Phys. Rev. B 1997, 55, 13234–13245. [Google Scholar] [CrossRef] [Green Version]
- Synytsya, A.; Alexa, P.; de Boer, J.; Loewe, M.; Moosburger, M.; Würkner, M.; Volka, K. Raman Spectroscopic Study of Serum Albumins: An Effect of Proton- and γ-Irradiation. J. Raman Spectrosc. 2007, 38, 1646–1655. [Google Scholar] [CrossRef]
- Jurasekova, Z.; Marconi, G.; Sanchez-Cortes, S.; Torreggiani, A. Spectroscopic and Molecular Modeling Studies on the Binding of the Flavonoid Luteolin and Human Serum Albumin. Biopolymers 2009, 91, 917–927. [Google Scholar] [CrossRef]
- Kiselev, M.A.; Gryzunov, I.A.; Dobretsov, G.E.; Komarova, M.N. Size of a Human Serum Albumin Molecule in Solution. Biofizika 2001, 46, 423–427. [Google Scholar]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef]
Band Position, cm−1 | Band Assignment | Band Position, cm−1 | Band Assignment |
---|---|---|---|
335, 414, 512 | S-S | 1107, 1130 | rNH3, Lys |
630 | Tyr | 1178, 1214 | Tyr |
650 | ν C−S, Cys | 1230–1300 | Amid III |
757 | ρ(CH2) | 1345 | ω CH2, Trp |
834, 859 | Tyr | 1455 | δCH2 δCH3 |
907 | ν(C–C) | 1591 | Phe, Trp |
952 | ν(C–C) (Random), Trp | 1612 | Tyr |
1010, 1038 | Phe | 1662 | Amid I (Random) |
Concentration GHSA | Precision | Recall | F1 | Quantity |
---|---|---|---|---|
0% GHSA | 1.00 | 1.00 | 1.00 | 6 |
3% GHSA | 1.00 | 0.83 | 0.91 | 6 |
5% GHSA | 0.71 | 0.83 | 0.77 | 6 |
7% GHSA | 0.83 | 0.83 | 0.83 | 6 |
10% GHSA | 1.00 | 1.00 | 1.00 | 6 |
13% GHSA | 1.00 | 1.00 | 1.00 | 6 |
15% GHSA | 1.00 | 1.00 | 1.00 | 6 |
18% GHSA | 1.00 | 1.00 | 1.00 | 6 |
20% GHSA | 1.00 | 1.00 | 1.00 | 6 |
23% GHSA | 1.00 | 0.83 | 0.91 | 6 |
25% GHSA | 0.86 | 1.00 | 0.92 | 6 |
Macro AVG | 0.95 | 0.94 | 0.94 | 66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slipchenko, E.A.; Boginskaya, I.A.; Safiullin, R.R.; Ryzhikov, I.A.; Sedova, M.V.; Afanasev, K.N.; Nechaeva, N.L.; Kurochkin, I.N.; Merzlikin, A.M.; Lagarkov, A.N. SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods. Chemosensors 2022, 10, 520. https://doi.org/10.3390/chemosensors10120520
Slipchenko EA, Boginskaya IA, Safiullin RR, Ryzhikov IA, Sedova MV, Afanasev KN, Nechaeva NL, Kurochkin IN, Merzlikin AM, Lagarkov AN. SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods. Chemosensors. 2022; 10(12):520. https://doi.org/10.3390/chemosensors10120520
Chicago/Turabian StyleSlipchenko, Ekaterina A., Irina A. Boginskaya, Robert R. Safiullin, Ilya A. Ryzhikov, Marina V. Sedova, Konstantin N. Afanasev, Natalia L. Nechaeva, Ilya N. Kurochkin, Alexander M. Merzlikin, and Andrey N. Lagarkov. 2022. "SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods" Chemosensors 10, no. 12: 520. https://doi.org/10.3390/chemosensors10120520
APA StyleSlipchenko, E. A., Boginskaya, I. A., Safiullin, R. R., Ryzhikov, I. A., Sedova, M. V., Afanasev, K. N., Nechaeva, N. L., Kurochkin, I. N., Merzlikin, A. M., & Lagarkov, A. N. (2022). SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods. Chemosensors, 10(12), 520. https://doi.org/10.3390/chemosensors10120520