Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids for Sensitive Surface-Enhanced Raman Scattering Detection
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Electrochemical Fabrication of Ag7O8NO3 Micro-Pyramids
2.3. Formation of Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids
2.4. Characterization and SERS Measurements
2.5. Preparation of SERS Sample
3. Results and Discussion
3.1. Characteristics of Ag7O8NO3 Micro-Pyramids
3.2. Fabrication of Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids
3.3. SERS Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Zhou, H.; Hu, Z.; Yu, G.; Yang, D.; Zhao, J. Label and Label-Free Based Surface-Enhanced Raman Scattering for Pathogen Bacteria Detection: A Review. Biosens. Bioelectron. 2017, 94, 131–140. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [Green Version]
- Vendrell, M.; Maiti, K.K.; Dhaliwal, K.; Chang, Y.-T. Surface-Enhanced Raman Scattering in Cancer Detection and Imaging. Trends Biotechnol. 2013, 31, 249–257. [Google Scholar] [CrossRef]
- Pérez-Jiménez, A.I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-Enhanced Raman Spectroscopy: Benefits, Trade-Offs and Future Developments. Chem. Sci. 2020, 11, 4563–4577. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Zhou, R.; Takei, K.; Hong, M. Toward Flexible Surface-Enhanced Raman Scattering (SERS) Sensors for Point-of-Care Diagnostics. Adv. Sci. 2019, 6, 1900925. [Google Scholar] [CrossRef]
- Ultrasensitive Surface-Enhanced Raman Scattering Detection in Common Fluids. Available online: https://www.pnas.org/doi/10.1073/pnas.1518980113 (accessed on 1 August 2022).
- Kumar, S.; Goel, P.; Singh, J.P. Flexible and Robust SERS Active Substrates for Conformal Rapid Detection of Pesticide Residues from Fruits. Sens. Actuators B Chem. 2017, 241, 577–583. [Google Scholar] [CrossRef]
- Kumar, S.; Gahlaut, S.K.; Singh, J.P. Sculptured Thin Films: Overcoming the Limitations of Surface-Enhanced Raman Scattering Substrates. Appl. Surf. Sci. Adv. 2022, 12, 100322. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, J.; Liu, T.; Tao, Y.; Jiang, R.; Liu, M.; Xiao, G.; Zhu, J.; Zhou, Z.-K.; Wang, X.; et al. Plasmonic Gold Mushroom Arrays with Refractive Index Sensing Figures of Merit Approaching the Theoretical Limit. Nat. Commun. 2013, 4, 2381. [Google Scholar] [CrossRef] [Green Version]
- Gellé, A.; Jin, T.; de la Garza, L.; Price, G.D.; Besteiro, L.V.; Moores, A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem. Rev. 2020, 120, 986–1041. [Google Scholar] [CrossRef]
- Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors 2019, 9, 78. [Google Scholar] [CrossRef]
- Li, Z.; Kurouski, D. Plasmon-Driven Chemistry on Mono- and Bimetallic Nanostructures. Acc. Chem. Res. 2021, 54, 2477–2487. [Google Scholar] [CrossRef]
- Zhang, Q.; Lee, Y.H.; Phang, I.Y.; Lee, C.K.; Ling, X.Y. Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles. Small 2014, 10, 2703–2711. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; He, D.; Dao, T.D.; Nagao, T.; Weng, Q.; Tang, D.; Wang, X.; Tian, W.; Golberg, D.; et al. Magnetically Assembled Ni@Ag Urchin-Like Ensembles with Ultra-Sharp Tips and Numerous Gaps for SERS Applications. Small 2014, 10, 2564–2569. [Google Scholar] [CrossRef]
- Pazos-Pérez, N.; Barbosa, S.; Rodríguez-Lorenzo, L.; Aldeanueva-Potel, P.; Pérez-Juste, J.; Pastoriza-Santos, I.; Alvarez-Puebla, R.A.; Liz-Marzán, L.M. Growth of Sharp Tips on Gold Nanowires Leads to Increased Surface-Enhanced Raman Scattering Activity. J. Phys. Chem. Lett. 2010, 1, 24–27. [Google Scholar] [CrossRef]
- Iarossi, M.; Hubarevich, A.; Iachetta, G.; Dipalo, M.; Huang, J.-A.; Darvill, D.; De Angelis, F. Probing ND7/23 Neuronal Cells before and after Differentiation with SERS Using Sharp-Tipped Au Nanopyramid Arrays. Sens. Actuators B Chem. 2022, 361, 131724. [Google Scholar] [CrossRef]
- Marshall, A.R.L.; Stokes, J.; Viscomi, F.N.; Proctor, J.E.; Gierschner, J.; Bouillard, J.-S.G.; Adawi, A.M. Determining Molecular Orientation via Single Molecule SERS in a Plasmonic Nano-Gap. Nanoscale 2017, 9, 17415–17421. [Google Scholar] [CrossRef]
- Park, W.-H.; Park, S.-G.; Kang, M.; Hyun, M.S.; Choi, N.; Kim, D.-H.; Choo, J. Direct Visualization of a Surface-Enhanced Raman Spectroscopy Nano-Gap via Electrostatic Force Microscopy: Dependence on Charge Transfer from the Underlying Surface Nano-Gap Distance. Appl. Surf. Sci. 2019, 479, 874–878. [Google Scholar] [CrossRef]
- Minati, L.; Maniglio, D.; Benetti, F.; Chiappini, A.; Speranza, G. Multimodal Gold Nanostars as SERS Tags for Optically-Driven Doxorubicin Release Study in Cancer Cells. Materials 2021, 14, 7272. [Google Scholar] [CrossRef]
- Jalani, G.; Cerruti, M. Nano Graphene Oxide-Wrapped Gold Nanostars as Ultrasensitive and Stable SERS Nanoprobes. Nanoscale 2015, 7, 9990–9997. [Google Scholar] [CrossRef]
- Qingquan, G.; Xinfu, M.; Yu, X.; Wei, T.; Hui, Z. Green Synthesis and Formation Mechanism of Ag Nanoflowers Using L-Cysteine and the Assessment of Ag Nanoflowers as SERS Substrates. Colloids Surf. Physicochem. Eng. Asp. 2017, 530, 33–37. [Google Scholar] [CrossRef]
- He, H.; Sun, D.-W.; Pu, H.; Huang, L. Bridging Fe3O4@Au Nanoflowers and Au@Ag Nanospheres with Aptamer for Ultrasensitive SERS Detection of Aflatoxin B1. Food Chem. 2020, 324, 126832. [Google Scholar] [CrossRef]
- Jung, G.-B.; Kim, J.-H.; Burm, J.S.; Park, H.-K. Fabrication of Chitosan-Silver Nanoparticle Hybrid 3D Porous Structure as a SERS Substrate for Biomedical Applications. Appl. Surf. Sci. 2013, 273, 179–183. [Google Scholar] [CrossRef]
- Liu, K.; Bai, Y.; Zhang, L.; Yang, Z.; Fan, Q.; Zheng, H.; Yin, Y.; Gao, C. Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis. Nano Lett. 2016, 16, 3675–3681. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, R.; Zhang, H.; Guo, Y.; Wang, J.; Wang, J. Colloidal Porous Gold Nanoparticles. Nanoscale 2018, 10, 18473–18481. [Google Scholar] [CrossRef]
- Zheng, P.; Wu, L.; Raj, P.; Mizutani, T.; Szabo, M.; Hanson, W.A.; Barman, I. A Dual-Modal Single-Antibody Plasmonic Spectro-Immunoassay for Detection of Small Molecules. Small 2022, 18, 2200090. [Google Scholar] [CrossRef]
- Zheng, P.; Kasani, S.; Wu, N. Converting Plasmonic Light Scattering to Confined Light Absorption and Creating Plexcitons by Coupling a Gold Nano-Pyramid Array onto a Silica–Gold Film. Nanoscale Horiz. 2019, 4, 516–525. [Google Scholar] [CrossRef]
- Zheng, P.; Raj, P.; Wu, L.; Szabo, M.; Hanson, W.A.; Mizutani, T.; Barman, I. Leveraging Nanomechanical Perturbations in Raman Spectro-Immunoassays to Design a Versatile Serum Biomarker Detection Platform. Small 2022, 18, 2204541. [Google Scholar] [CrossRef]
- Khan, M.N.; Zharnikov, M. Irradiation Promoted Exchange Reaction with Disulfide Substituents. J. Phys. Chem. C 2013, 117, 14534–14543. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Li, R.; Li, Z.; Wang, X.; Wang, H.; Wu, Y.; Jiang, S.; Lu, Z. Formation Mechanism and Characterization of Immiscible Nanoporous Binary Cu-Ag Alloys with Excellent Surface-Enhanced Raman Scattering Performance by Chemical Dealloying of Glassy Precursors. Inorg. Chem. Front. 2020, 7, 1127–1139. [Google Scholar] [CrossRef]
- Fu, H.-Y.; Lang, X.-Y.; Hou, C.; Wen, Z.; Zhu, Y.-F.; Zhao, M.; Li, J.-C.; Zheng, W.-T.; Liu, Y.-B.; Jiang, Q. Nanoporous Au/SnO/Ag Heterogeneous Films for Ultrahigh and Uniform Surface-Enhanced Raman Scattering. J. Mater. Chem. C 2014, 2, 7216–7222. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, Y.; Wang, W. Hollow and Nanoporous Ag Sub-Microcubes as SERS Substrates. Chem. Commun. 2022. [Google Scholar] [CrossRef]
- Koya, A.N.; Zhu, X.; Ohannesian, N.; Yanik, A.A.; Alabastri, A.; Proietti Zaccaria, R.; Krahne, R.; Shih, W.-C.; Garoli, D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS Nano 2021, 15, 6038–6060. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.; Liu, H.; Hou, Y.; Hirata, A.; Fujita, T.; Chen, M. Effect of Residual Silver on Surface-Enhanced Raman Scattering of Dealloyed Nanoporous Gold. J. Phys. Chem. C 2011, 115, 19583–19587. [Google Scholar] [CrossRef]
- Bekana, D.; Liu, R.; Li, S.; Liu, J.-F. Fabrication of Nanoporous Silver Film by Dealloying Ag/α-Fe2O3 Nanocomposite for Surface-Enhanced Raman Spectroscopy. Sens. Actuators B Chem. 2019, 286, 94–100. [Google Scholar] [CrossRef]
- Li, R.; Liu, X.J.; Wang, H.; Wu, Y.; Chu, X.M.; Lu, Z.P. Nanoporous Silver with Tunable Pore Characteristics and Superior Surface Enhanced Raman Scattering. Corros. Sci. 2014, 84, 159–164. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, S.; Liang, Y.; Cui, Z.; Wu, S.; Qin, C.; Luo, S.; Inoue, A. Understanding the Macroscopical Flexibility/Fragility of Nanoporous Ag: Depending on Network Connectivity and Micro-Defects. J. Mater. Sci. Technol. 2020, 53, 91–101. [Google Scholar] [CrossRef]
- Lu, L.; Eychmüller, A. Ordered Macroporous Bimetallic Nanostructures: Design, Characterization, and Applications. Acc. Chem. Res. 2008, 41, 244–253. [Google Scholar] [CrossRef]
- Qin, Y.; Mo, F.; Yao, S.; Wu, Y.; He, Y.; Yao, W. Facile Synthesis of Porous Ag Crystals as SERS Sensor for Detection of Five Methamphetamine Analogs. Molecules 2022, 27, 3939. [Google Scholar] [CrossRef]
- Khinevich, N.; Bandarenka, H.; Zavatski, S.; Girel, K.; Tamulevičienė, A.; Tamulevičius, T.; Tamulevičius, S. Porous Silicon—A Versatile Platform for Mass-Production of Ultrasensitive SERS-Active Substrates. Microporous Mesoporous Mater. 2021, 323, 111204. [Google Scholar] [CrossRef]
- Sanguansap, Y.; Karn-orachai, K.; Laocharoensuk, R. Tailor-Made Porous Striped Gold-Silver Nanowires for Surface Enhanced Raman Scattering Based Trace Detection of β-Hydroxybutyric Acid. Appl. Surf. Sci. 2020, 500, 144049. [Google Scholar] [CrossRef]
- Clay, M.; Cui, Q.; Sha, Y.; Chen, J.; Rondinone, A.J.; Wu, Z.; Chen, J.; Gu, Z. Galvanic Synthesis of Bi-Modal Porous Metal Nanostructures Using Aluminum Nanoparticle Templates. Mater. Lett. 2012, 88, 143–147. [Google Scholar] [CrossRef]
- Kang, S.; Shin, W.; Kang, K.; Choi, M.-H.; Kim, Y.-J.; Kim, Y.-K.; Min, D.-H.; Jang, H. Revisiting of Pd Nanoparticles in Cancer Treatment: All-Round Excellence of Porous Pd Nanoplates in Gene-Thermo Combinational Therapy. ACS Appl. Mater. Interfaces 2018, 10, 13819–13828. [Google Scholar] [CrossRef]
- Petri, M.V.; Ando, R.A.; Camargo, P.H.C. Tailoring the Structure, Composition, Optical Properties and Catalytic Activity of Ag–Au Nanoparticles by the Galvanic Replacement Reaction. Chem. Phys. Lett. 2012, 531, 188–192. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Wei, C.; Tao, Y.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Dealloying: An Effective Method for Scalable Fabrication of 0D, 1D, 2D, 3D Materials and Its Application in Energy Storage. Nano Today 2021, 37, 101094. [Google Scholar] [CrossRef]
- Rurainsky, C.; Manjón, A.G.; Hiege, F.; Chen, Y.-T.; Scheu, C.; Tschulik, K. Electrochemical Dealloying as a Tool to Tune the Porosity, Composition and Catalytic Activity of Nanomaterials. J. Mater. Chem. A 2020, 8, 19405–19413. [Google Scholar] [CrossRef]
- Ngô, B.-N.D.; Roschning, B.; Albe, K.; Weissmüller, J.; Markmann, J. On the Origin of the Anomalous Compliance of Dealloying-Derived Nanoporous Gold. Scr. Mater. 2017, 130, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, L.; Zhao, Y.; Wang, W.Y.; Liu, Y.; Gu, C.; Li, J.; Zhang, G.; Huang, T.J.; Yang, S. Electrocarving during Electrodeposition Growth. Adv. Mater. 2018, 30, 1805686. [Google Scholar] [CrossRef]
- Breyfogle, B.E.; Phillips, R.J.; Switzer, J.A. Epitaxial Electrodeposition of Silver Oxide Nitrate (Ag(Ag3O4)2NO3) onto Highly-Oriented Conducting Metal Oxides in the Lead-Thallium-Oxygen System. Chem. Mater. 1992, 4, 1356–1360. [Google Scholar] [CrossRef]
- Tanaka, R.; Takata, S.; Katayama, M.; Takahashi, R.; Grepstad, J.K.; Tybell, T.; Matsumoto, Y. Photocatalytic Synthesis of Silver-Oxide Clathrate Ag7O8NO3. J. Electrochem. 2010, 157, E181. [Google Scholar] [CrossRef]
- Waterhouse, G.I.N.; Metson, J.B.; Bowmaker, G.A. Synthesis, Vibrational Spectra and Thermal Stability of Ag3O4 and Related Ag7O8X Salts. Polyhedron 2007, 26, 3310–3322. [Google Scholar] [CrossRef]
- Grier, D.; Ben-Jacob, E.; Clarke, R.; Sander, L.M. Morphology and Microstructure in Electrochemical Deposition of Zinc. Phys. Rev. Lett. 1986, 56, 1264–1267. [Google Scholar] [CrossRef]
- Chung, A.J.; Huh, Y.S.; Erickson, D. Large Area Flexible SERS Active Substrates Using Engineered Nanostructures. Nanoscale 2011, 3, 2903. [Google Scholar] [CrossRef]
- Wagner, M.; Andrew Lin, K.-Y.; Oh, W.-D.; Lisak, G. Metal-Organic Frameworks for Pesticidal Persistent Organic Pollutants Detection and Adsorption—A Mini Review. J. Hazard. Mater. 2021, 413, 125325. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, L.; Liu, H.; Ding, Q.; Jia, C.; Liao, S.; Cheng, N.; Yue, M.; Yang, S. Nanoporous Silver Nanorods as Surface-Enhanced Raman Scattering Substrates. Biosens. Bioelectron. 2022, 202, 114004. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, Z.; Luo, J.; Dan, Z.; Qin, F.; Chang, H. (1 1 1)-Facet Dominant Ultrafine Nanoporous Silver as SERS Substrates with High Sensitivities and Ultrahigh Detection Limits. Appl. Surf. Sci. 2021, 556, 149820. [Google Scholar] [CrossRef]
- Lang, X.Y.; Guan, P.F.; Zhang, L.; Fujita, T.; Chen, M.W. Characteristic Length and Temperature Dependence of Surface Enhanced Raman Scattering of Nanoporous Gold. J. Phys. Chem. C 2009, 113, 10956–10961. [Google Scholar] [CrossRef]
- Wi, J.-S.; Kim, J.D.; Lee, W.; Choi, H.; Kwak, M.; Song, J.; Lee, T.G.; Ok, J.G. Inkjet−Printable Nanoporous Ag Disk Arrays Enabling Coffee−Ring Effect−Driven Analyte Enrichment Towards Practical SERS Applications. Int. J. Precis. Eng. Manuf.-Green Technol. 2022, 9, 421–429. [Google Scholar] [CrossRef]
- Hildebrandt, P.; Stockburger, M. Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed on Colloidal Silver. J. Phys. Chem. 1984, 88, 5935–5944. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, S.; Huo, Y.; Ning, T.; Liu, A.; Zhang, C.; He, Y.; Wang, M.; Li, C.; Man, B. 3D Silver Nanoparticles with Multilayer Graphene Oxide as a Spacer for Surface Enhanced Raman Spectroscopy Analysis. Nanoscale 2018, 10, 5897–5905. [Google Scholar] [CrossRef]
- Hussain, A.; Sun, D.-W.; Pu, H. Bimetallic Core Shelled Nanoparticles (Au@AgNPs) for Rapid Detection of Thiram and Dicyandiamide Contaminants in Liquid Milk Using SERS. Food Chem. 2020, 317, 126429. [Google Scholar] [CrossRef]
- Zhu, C.; Meng, G.; Zheng, P.; Huang, Q.; Li, Z.; Hu, X.; Wang, X.; Huang, Z.; Li, F.; Wu, N. A Hierarchically Ordered Array of Silver-Nanorod Bundles for Surface-Enhanced Raman Scattering Detection of Phenolic Pollutants. Adv. Mater. 2016, 28, 4871–4876. [Google Scholar] [CrossRef]
- Long, G.L.; Winefordner, J.D. Limit of Detection. A Closer Look at the IUPAC Definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar] [CrossRef]
- Zhou, Y.; Marar, A.; Kner, P.; Ramasamy, R.P. Charge-Directed Immobilization of Bacteriophage on Nanostructured Electrode for Whole-Cell Electrochemical Biosensors. Anal. Chem. 2017, 89, 5734–5741. [Google Scholar] [CrossRef]
- Li, A.; Xin, X.; Zhang, T.; Xu, T.; Li, L.; Liu, C.; Li, W.; Li, J.; Li, Y.; Lu, R. Facile Synthesis of Two-Dimensional PA-Ag@C Film for Highly Sensitive SERS Detection. Surf. Interface Anal. 2023, 55, 71–81. [Google Scholar] [CrossRef]
- Wen, P.; Yang, F.; Ge, C.; Li, S.; Xu, Y.; Chen, L. Self-Assembled Nano-Ag/Au@Au Film Composite SERS Substrates Show High Uniformity and High Enhancement Factor for Creatinine Detection. Nanotechnology 2021, 32, 395502. [Google Scholar] [CrossRef]
- Kong, L.; Chen, J.; Huang, M. GO/Au@Ag Nanobones Decorated Membrane for Simultaneous Enrichment and on-Site SERS Detection of Colorants in Beverages. Sens. Actuators B Chem. 2021, 344, 130163. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, Y.; Gao, Z.; Zhou, H.; Zhang, Q.; Xu, R.; Zhang, C.; Yao, H.; Liu, M. High-Performance Surface-Enhanced Raman Scattering Substrates Based on the ZnO/Ag Core-Satellite Nanostructures. Nanomaterials 2022, 12, 1286. [Google Scholar] [CrossRef]
- Qu, L.-L.; Geng, Z.-Q.; Wang, W.; Yang, K.-C.; Wang, W.-P.; Han, C.-Q.; Yang, G.-H.; Vajtai, R.; Li, D.-W.; Ajayan, P.M. Recyclable Three-Dimensional Ag Nanorod Arrays Decorated with O-g-C3N4 for Highly Sensitive SERS Sensing of Organic Pollutants. J. Hazard. Mater. 2019, 379, 120823. [Google Scholar] [CrossRef]
- Xu, D.; Duan, L.; Jia, W.; Yang, G.; Gu, Y. Fabrication of Ag@Fe2O3 Hybrid Materials as Ultrasensitive SERS Substrates for the Detection of Organic Dyes and Bilirubin in Human Blood. Microchem. J. 2021, 161, 105799. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, Y.; Qian, R.; Zhao, B.; Zhu, P. Synthesis of Ball-Like Ag Nanorod Aggregates for Surface-Enhanced Raman Scattering and Catalytic Reduction. Nanomaterials 2016, 6, 99. [Google Scholar] [CrossRef]
- Cheng, M.; Li, C.; Li, W.; Liu, Y. Trace Cd2+ Ions Detection on the Flower-Like Ag@CuO Substrate. Nanomaterials 2020, 10, 1664. [Google Scholar] [CrossRef]
- Pu, H.; Huang, Z.; Xu, F.; Sun, D.-W. Two-Dimensional Self-Assembled Au-Ag Core-Shell Nanorods Nanoarray for Sensitive Detection of Thiram in Apple Using Surface-Enhanced Raman Spectroscopy. Food Chem. 2021, 343, 128548. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, W.; Wang, H.; Yang, X.; Zhang, S.; Yuan, Y.; Wu, T.; Du, Y. A Surface Enhanced Raman Scattering (SERS) Microdroplet Detector for Trace Levels of Crystal Violet. Microchim. Acta 2013, 180, 997–1004. [Google Scholar] [CrossRef]
- Li, B.; Shi, Y.; Cui, J.; Liu, Z.; Zhang, X.; Zhan, J. Au-Coated ZnO Nanorods on Stainless Steel Fiber for Self-Cleaning Solid Phase Microextraction-Surface Enhanced Raman Spectroscopy. Anal. Chim. Acta 2016, 923, 66–73. [Google Scholar] [CrossRef]
- Meng, W.; Hu, F.; Zhang, L.-Y.; Jiang, X.-H.; Lu, L.-D.; Wang, X. SERS and DFT Study of Crystal Violet. J. Mol. Struct. 2013, 1035, 326–331. [Google Scholar] [CrossRef]
- Harraz, F.A.; Ismail, A.A.; Bouzid, H.; Al-Sayari, S.A.; Al-Hajry, A.; Al-Assiri, M.S. Surface-Enhanced Raman Scattering (SERS)-Active Substrates from Silver Plated-Porous Silicon for Detection of Crystal Violet. Appl. Surf. Sci. 2015, 331, 241–247. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, Y.; Chen, Y.; Bi, N.; Qi, H.; Qin, M.; Song, D.; Zhang, H.; Tian, Y. High Performance Au/Ag Core/Shell Bipyramids for Determination of Thiram Based on Surface-Enhanced Raman Scattering: High Performance Au/Ag Core/Shell Bipyramids for Determination of Thiram Based on SERS. J. Raman Spectrosc. 2012, 43, 1374–1380. [Google Scholar] [CrossRef]
- Sun, L.; Wang, C. Highly Sensitive and Rapid Surface Enhanced Raman Spectroscopic (SERS) Determination of Thiram on the Epidermis of Fruits and Vegetables Using A Silver Nanoparticle-Modified Fibrous Swab. Anal. Lett. 2020, 53, 973–983. [Google Scholar] [CrossRef]
- Sun, H.; Liu, H.; Wu, Y. A Green, Reusable SERS Film with High Sensitivity for in-Situ Detection of Thiram in Apple Juice. Appl. Surf. Sci. 2017, 416, 704–709. [Google Scholar] [CrossRef]
- Chen, M.; Luo, W.; Liu, Q.; Hao, N.; Zhu, Y.; Liu, M.; Wang, L.; Yang, H.; Chen, X. Simultaneous In Situ Extraction and Fabrication of Surface-Enhanced Raman Scattering Substrate for Reliable Detection of Thiram Residue. Anal. Chem. 2018, 90, 13647–13654. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Tang, H.; Wang, X.; Yuan, Y.; Zhu, C. Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids for Sensitive Surface-Enhanced Raman Scattering Detection. Chemosensors 2022, 10, 539. https://doi.org/10.3390/chemosensors10120539
Guo L, Tang H, Wang X, Yuan Y, Zhu C. Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids for Sensitive Surface-Enhanced Raman Scattering Detection. Chemosensors. 2022; 10(12):539. https://doi.org/10.3390/chemosensors10120539
Chicago/Turabian StyleGuo, Linfan, Haibin Tang, Xiujuan Wang, Yupeng Yuan, and Chuhong Zhu. 2022. "Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids for Sensitive Surface-Enhanced Raman Scattering Detection" Chemosensors 10, no. 12: 539. https://doi.org/10.3390/chemosensors10120539
APA StyleGuo, L., Tang, H., Wang, X., Yuan, Y., & Zhu, C. (2022). Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids for Sensitive Surface-Enhanced Raman Scattering Detection. Chemosensors, 10(12), 539. https://doi.org/10.3390/chemosensors10120539