Introducing Graphene–Indium Oxide Electrochemical Sensor for Detecting Ethanol in Aqueous Samples with CCD-RSM Optimization
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Instrumentation
2.3. Synthesis Procedure
2.4. Electrode Fabrication
2.5. Experimental Design and Data Analysis
3. Results and Discussion
3.1. Characterization
3.2. Optimization of Sensor Efficiency Using Response Surface Methodology
3.3. Post Analysis and Analytical Figures of Merit
3.4. Mechanism of Reaction
3.5. Selectivity of the Sensor and Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yarita, T.; Nakajima, R.; Otsuka, S.; Ihara, T.; Takatsu, A.; Shibukawa, M. Determination of ethanol in alcoholic beverages by high-performance liquid chromatography–flame ionization detection using pure water as mobile phase. J. Chromatogr. A 2002, 976, 387–391. [Google Scholar] [CrossRef]
- Vonach, R.; Lendl, B.; Kellner, R. High-performance liquid chromatography with real-time Fourier-transform infrared detection for the determination of carbohydrates, alcohols and organic acids in wines. J. Chromatogr. A 1998, 824, 159–167. [Google Scholar] [CrossRef]
- Wang, M.-L.; Choong, Y.-M.; Su, N.-W.; Lee, M.-H. A rapid method for determination of ethanol in alcoholic beverages using capillary gas chromatography. J. Food Drug Anal. 2003, 11, 133–140. [Google Scholar] [CrossRef]
- Apers, S.; Van Meenen, E.; Pieters, L.; Vlietinck, A.J. Quality control of liquid herbal drug preparations: Ethanol content and test on methanol and 2-propanol. J. Pharm. Biomed. Anal. 2003, 33, 529–537. [Google Scholar] [CrossRef]
- Mendes, L.S.; Oliveira, F.C.; Suarez, P.A.; Rubim, J.C. Determination of ethanol in fuel ethanol and beverages by Fourier transform (FT)-near infrared and FT-Raman spectrometries. Anal. Chim. Acta 2003, 493, 219–231. [Google Scholar] [CrossRef]
- Tipparat, P.; Lapanantnoppakhun, S.; Jakmunee, J.; Grudpan, K. Determination of ethanol in liquor by near-infrared spectrophotometry with flow injection. Talanta 2001, 53, 1199–1204. [Google Scholar] [CrossRef]
- Boyaci, I.H.; Genis, H.E.; Guven, B.; Tamer, U.; Alper, N. A novel method for quantification of ethanol and methanol in distilled alcoholic beverages using Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 1171–1176. [Google Scholar] [CrossRef]
- Thangamani, G.J.; Deshmukh, K.; Chidambaram, K.; Ahamed, M.B.; Sadasivuni, K.K.; Ponnamma, D.; Faisal, M.; Nambiraj, N.A.; Pasha, S.K.K. Influence of CuO nanoparticles and graphene nanoplatelets on the sensing behaviour of poly(vinyl alcohol) nanocomposites for the detection of ethanol and propanol vapors. J. Mater. Sci. Mater. Electron. 2018, 29, 5186–5205. [Google Scholar] [CrossRef]
- Liang, S.; Zhu, J.; Ding, J.; Bi, H.; Yao, P.; Han, Q.; Wang, X. Deposition of cocoon-like ZnO on graphene sheets for improving gas-sensing properties to ethanol. Appl. Surf. Sci. 2015, 357, 1593–1600. [Google Scholar] [CrossRef]
- Cao, J.; Xu, Y.; Sui, L.; Zhang, X.; Gao, S.; Cheng, X.; Zhao, H.; Huo, L. Highly selective low-temperature triethylamine sensor based on Ag/Cr2O3 mesoporous microspheres. Sens. Actuators B Chem. 2015, 220, 910–918. [Google Scholar] [CrossRef]
- Yin, Z.; Sun, Z.; Wu, J.; Liu, R.; Zhang, S.; Qian, Y.; Min, Y. Facile synthesis of hexagonal single-crystalline ZnCo2O4 nanosheet arrays assembled by mesoporous nanosheets as electrodes for high-performance electrochemical capacitors and gas sensors. Appl. Surf. Sci. 2018, 457, 1103–1109. [Google Scholar] [CrossRef]
- Tan, J.; Dun, M.; Li, L.; Zhao, J.; Tan, W.; Lin, Z.; Huang, X. Synthesis of hollow and hollowed-out Co3O4 microspheres assembled by porous ultrathin nanosheets for ethanol gas sensors: Responding and recovering in one second. Sens. Actuators B Chem. 2017, 249, 44–52. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Kitabatake, K.; Suda, M.; Muramatsu, H.; Ataka, T.; Mori, A.; Tamiya, E.; Karube, I. Amperometric detection of alcohol in beer using a flow cell and immobilized alcohol dehydrogenase. Anal. Chem. 1991, 63, 2391–2393. [Google Scholar] [CrossRef]
- Aydoğdu Tığ, G. Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-Cysteine)/reduced graphene oxide nanocomposite. Talanta 2017, 175, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Jalal, A.H.; Pala, N. Selective Detection of Alcohol Through Ethyl-glucuronide (EtG) Immunosensor Based on 2D Zinc Oxide Nanostructures. IEEE Sens. J. 2019, 19, 3984–3992. [Google Scholar] [CrossRef]
- Luo, J.; Jiang, S.; Zhang, H.; Jiang, J.; Liu, X. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta 2012, 709, 47–53. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Godelmann, R.; Steiner, M.; Ansay, B.; Weigel, J.; Krieg, G. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor. Chem. Cent. J. 2010, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Wang, S.; Zhang, Y.; Zhou, M. Different morphologies of ZnO and their ethanol sensing property. Sens. Actuators B Chem. 2014, 192, 480–487. [Google Scholar] [CrossRef]
- Rothschild, A.; Tuller, H.L. Gas sensors: New materials and processing approaches. J. Electroceram. 2006, 17, 1005–1012. [Google Scholar] [CrossRef]
- Tian, Y.; Li, J.; Xiong, H.; Dai, J. Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property. Appl. Surf. Sci. 2012, 258, 8431–8438. [Google Scholar] [CrossRef]
- Xu, X.; Li, C.; Pei, K.; Zhao, K.; Zhao, Z.K.; Li, H. Ionic liquids used as QCM coating materials for the detection of alcohols. Sens. Actuators B Chem. 2008, 134, 258–265. [Google Scholar] [CrossRef]
- de Lacy Costello, B.; Ewen, R.; Gunson, H.; Ratcliffe, N.M.; Spencer-Phillips, P.T.N. The development of a sensor system for the early detection of soft rot in stored potato tubers. Meas. Sci. Technol. 2000, 11, 1685. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, T.; Wang, Z. UV light activation of TiO2-doped SnO2 thick film for sensing ethanol at room temperature. Mater. Trans. 2010, 51, 243. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.-J.; Fang, Y.; Wu, K.; Hsieh, W.; Chen, C.; Chen, G.; Ju, M.-S.; Lin, J.-J.; Hwang, S.B. High sensitivity ethanol gas sensor integrated with a solid-state heater and thermal isolation improvement structure for legal drink-drive limit detecting. Sens. Actuators B Chem. 1998, 50, 227–233. [Google Scholar] [CrossRef]
- Yazıcı, A.; Dalbul, N.; Altındal, A.; Salih, B.; Bekaroğlu, Ö. Ethanol sensing property of novel phthalocyanines substituted with 3, 4-dihydroxy-3-cyclobuten-1, 2-dione. Sens. Actuators B Chem. 2014, 202, 14–22. [Google Scholar] [CrossRef]
- Tomassetti, M.; Angeloni, R.; Marchiandi, S.; Castrucci, M.; Sammartino, M.; Campanella, L. Direct Methanol (or Ethanol) Fuel Cell as Enzymatic or Non-Enzymatic Device, Used to Check Ethanol in Several Pharmaceutical and Forensic Samples. Sensors 2018, 18, 3596. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Kochmann, S.; Hirsch, T.; Wolfbeis, O.S. Graphenes in chemical sensors and biosensors. TrAC Trends Anal. Chem. 2012, 39, 87–113. [Google Scholar] [CrossRef]
- Boroujerdi, R.; Abdelkader, A.; Paul, R. State of the Art in Alcohol Sensing with 2D Materials. Nano-Micro Lett. 2020, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Bahadır, E.B.; Sezgintürk, M.K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 2015, 478, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.Y.; Lu, Y.H.; Lin, J.D.; Zhong, S.; Wee, A.T.S.; Chen, W. Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog. Surf. Sci. 2013, 88, 132–159. [Google Scholar] [CrossRef]
- Teymourian, H.; Salimi, A.; Khezrian, S. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron. 2013, 49, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, Z.-H.; Zheng, X.-Q.; Xu, J.-Y.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2012, 34, 125–131. [Google Scholar] [CrossRef]
- Antiochia, R.; Gorton, L. A new osmium-polymer modified screen-printed graphene electrode for fructose detection. Sensors Actuators B Chem. 2014, 195, 287–293. [Google Scholar] [CrossRef]
- Ruecha, N.; Rangkupan, R.; Rodthongkum, N.; Chailapakul, O. Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron. 2014, 52, 13–19. [Google Scholar] [CrossRef]
- Song, Y.; Luo, Y.; Zhu, C.; Li, H.; Du, D.; Lin, Y. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 2016, 76, 195–212. [Google Scholar] [CrossRef]
- Hashemzadeh, H.; Raissi, H. Covalent organic framework as smart and high efficient carrier for anticancer drug delivery: A DFT calculations and molecular dynamics simulation study. J. Phys. D Appl. Phys. 2018, 51, 345401. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Al-Rekabi, S.H.; Al-Wahib, A.; Sharba, M.J. The Use of Nanocomposite Au/Fe2H2O4-GO Based on Surface Plasmon Resonance to Detect Toxic Arsenic(V) in Aqueous Solution. IOP Conf. Ser. Mater. Sci. Eng. 2019, 518, 052006. [Google Scholar] [CrossRef]
- Singh, P.; Mabdullah, M.; Sagadevan, S.; Kaur, C.; Ikram, S. Highly sensitive ethanol sensor based on TiO2 nanoparticles and its photocatalyst activity. Optik 2019, 182, 512–518. [Google Scholar] [CrossRef]
- Acharyya, D.; Bhattacharyya, P. Alcohol sensing performance of ZnO hexagonal nanotubes at low temperatures: A qualitative understanding. Sens. Actuators B Chem. 2016, 228, 373–386. [Google Scholar] [CrossRef]
- Sun, X.; Hao, H.; Ji, H.; Li, X.; Cai, S.; Zheng, C. Nanocasting synthesis of In2O3 with appropriate mesostructured ordering and enhanced gas-sensing property. ACS Appl. Mater. Interfaces 2013, 6, 401–409. [Google Scholar] [CrossRef] [PubMed]
- de Lacy Costello, B.P.J.; Ewen, R.J.; Ratcliffe, N.M.; Sivanand, P.S. Thick film organic vapour sensors based on binary mixtures of metal oxides. Sens. Actuators B Chem. 2003, 92, 159–166. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, L.; Jiang, X.; Tian, X.; Huang, Y.; Hou, P.; Zhang, S.; Xu, X. Design of superior ethanol gas sensor based on indium oxide/molybdenum disulfide nanocomposite via hydrothermal route. Appl. Surf. Sci. 2018, 447, 49–56. [Google Scholar] [CrossRef]
- Chen, X.; Deng, N.; Zhang, X.; Yang, Y.; Li, J.; Hong, B.; Fang, J.; Xu, J.; Jin, D.; Peng, X.; et al. Preparation of Fe-doped In2O3 gas sensing semiconductor by one-step impregnation with enhanced ethanol sensing. Chem. Phys. Lett. 2019, 722, 96–103. [Google Scholar] [CrossRef]
- Chen, X.; Deng, N.; Zhang, X.; Li, J.; Yang, Y.; Hong, B.; Jin, D.; Peng, X.; Wang, X.; Ge, H.; et al. Cerium-doped indium oxide nanosphere arrays with enhanced ethanol-sensing properties. J. Nanopart. Res. 2019, 21, 77. [Google Scholar] [CrossRef]
- Zhang, Z.; Ahmad, F.; Zhao, W.; Yan, W.; Zhang, W.; Huang, H.; Ma, C.; Zeng, J. Enhanced Electrocatalytic Reduction of CO2 via Chemical Coupling between Indium Oxide and Reduced Graphene Oxide. Nano Lett. 2019, 19, 4029–4034. [Google Scholar] [CrossRef]
- Hong, Q.; Yang, L.; Ge, L.; Liu, Z.; Li, F. Direct-laser-writing of three-dimensional porous graphene frameworks on indium-tin oxide for sensitive electrochemical biosensing. Analyst 2018, 143, 3327–3334. [Google Scholar] [CrossRef]
- Kim, I.H.; Kim, D.; Yin, M.Y.; Han, J.H.; Kwon, S.J.; Cho, E.S. Characteristics of graphene embedded indium tin oxide (ITO-graphene-ITO) transparent conductive films. Mol. Cryst. Liq. Cryst. 2018, 676, 95–104. [Google Scholar] [CrossRef]
- Chandni, U.; Henriksen, E.A.; Eisenstein, J. Transport in indium-decorated graphene. Phys. Rev. B 2015, 91, 245402. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Strickler, J.R.; Gunasekaran, S. Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Nanoscale 2012, 4, 4594–4602. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Liu, D.; Lei, W.; Chen, Y. Synthesis of an indium oxide nanoparticle embedded graphene three-dimensional architecture for enhanced lithium-ion storage. J. Mater. Chem. A 2015, 3, 18238–18243. [Google Scholar] [CrossRef]
- Parsaee, Z.; Karachi, N.; Abrishamifar, S.M.; Kahkha, M.R.R.; Razavi, R. Silver-choline chloride modified graphene oxide: Novel nano-bioelectrochemical sensor for celecoxib detection and CCD-RSM model. Ultrason. Sonochem. 2018, 45, 106–115. [Google Scholar] [CrossRef]
- Bahrani, S.; Razmi, Z.; Ghaedi, M.; Asfaram, A.; Javadian, H. Ultrasound-accelerated synthesis of gold nanoparticles modified choline chloride functionalized graphene oxide as a novel sensitive bioelectrochemical sensor: Optimized meloxicam detection using CCD-RSM design and application for human plasma sample. Ultrason. Sonochem. 2018, 42, 776–786. [Google Scholar] [CrossRef]
- Khani, R.; Ghiamati, E.; Boroujerdi, R.; Rezaeifard, A.; Zaryabi, M.H. A new and highly selective turn-on fluorescent sensor with fast response time for the monitoring of cadmium ions in cosmetic, and health product samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 163, 120–126. [Google Scholar] [CrossRef]
- Jagannadham, K. Thermal conductivity of indium–graphene and indium-gallium–graphene composites. J. Electron. Mater. 2011, 40, 25–34. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, M.; Yang, Z. Facile fabrication of graphene oxide/Nafion/indium oxide for humidity sensing with highly sensitive capacitance response. Sens. Actuators B Chem. 2019, 292, 187–195. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, K.; Wei, T.; Yan, J.; Song, L.; Shao, B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 2010, 48, 1686–1689. [Google Scholar] [CrossRef]
- Fan, Z.J.; Kai, W.; Yan, J.; Wei, T.; Zhi, L.J.; Feng, J.; Ren, Y.M.; Song, L.P.; Wei, F. Facile synthesis of graphene nanosheets via fe reduction of exfoliated graphite oxide. ACS Nano 2011, 5, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Huang, Y.; Wang, L. A facile synthesis of reduced graphene oxide with Zn powder under acidic condition. Mater. Lett. 2013, 91, 125–128. [Google Scholar] [CrossRef]
- Dey, R.S.; Hajra, S.; Sahu, R.K.; Raj, C.R.; Panigrahi, M.K. A rapid room temperature chemical route for the synthesis of graphene: Metal-mediated reduction of graphene oxide. Chem. Commun. 2012, 48, 1787–1789. [Google Scholar] [CrossRef] [PubMed]
- Pitts, M.R.; Harrison, J.R.; Moody, C.J. Perkin Transactions 1. Indium metal as a reducing agent in organic synthesis. J. Chem. Soc. 2001, 9, 955–977. [Google Scholar]
- Moody, C.J.; Pitts, M.R. Indium as a reducing agent: Reduction of aromatic nitro groups. Synlett 1998, 1998, 1028. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Shao, G.; Lu, Y.; Wu, F.; Yang, C.; Zeng, F.; Wu, Q. Graphene oxide: The mechanisms of oxidation and exfoliation. J. Mater. Sci. 2012, 47, 4400–4409. [Google Scholar] [CrossRef]
- Asfaram, A.; Ghaedi, M.; Goudarzi, A.; Rajabi, M. Response surface methodology approach for optimization of simultaneous dye and metal ion ultrasound-assisted adsorption onto Mn doped Fe3O4-NPs loaded on AC: Kinetic and isothermal studies. Dalton Trans. 2015, 44, 14707–14723. [Google Scholar] [CrossRef]
- Kicsi, A.; Cojocaru, C.; Macoveanu, M.; Bilba, D.J. Response surface methodology applied for zinc removal from aqueous solutions using sphagnum peat moss as sorbent. J. Environ. Prot. Ecol. 2010, 11, 614–622. [Google Scholar]
- Johra, F.T.; Lee, J.-W.; Jung, W.-G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Morais, A.; Alves, J.P.C.; Lima, F.A.S.; Lira-Cantu, M.; Nogueira, A.F. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers. J. Photonics Energy 2015, 5, 057408. [Google Scholar] [CrossRef]
- Moreira, V.R.; Lebron, Y.A.R.; da Silva, M.M.; de Souza Santos, L.V.; Jacob, R.S.; de Vasconcelos, C.K.B.; Viana, M.M. Graphene oxide in the remediation of norfloxacin from aqueous matrix: Simultaneous adsorption and degradation process. Environ. Sci. Pollut. Res. 2020, 27, 34513–34528. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Zhong, J.; Zhao, B.; Zhang, H.; Xu, L.; Sun, X.; Lee, S.T. CuxCo1−xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia–borane. Angew. Chem. Int. Ed. 2016, 55, 11950–11954. [Google Scholar] [CrossRef]
- Jeon, I.Y.; Kim, S.W.; Shin, S.H.; Jung, S.M.; Baek, J.B. Forming indium-carbon (In–C) bonds at the edges of graphitic nanoplatelets. Mater. Today Adv. 2020, 6, 100030. [Google Scholar] [CrossRef]
- Khan, G.G.; Ghosh, S.; Sarkar, A.; Mandal, G.; Mukherjee, G.D.; Manju, U.; Banu, N.; Dev, B.N. Defect engineered d 0 ferromagnetism in tin-doped indium oxide nanostructures and nanocrystalline thin-films. J. Appl. Phys. 2015, 118, 074303. [Google Scholar] [CrossRef]
- Hoch, L.B.; Wood, T.E.; O’Brien, P.G.; Liao, K.; Reyes, L.M.; Mims, C.A.; Ozin, G.A. The Rational Design of a Single-Component Photocatalyst for Gas-Phase CO2 Reduction Using Both UV and Visible Light. Adv. Sci. 2014, 1, 1400013. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-C.; Kuo, C.-H.; Juan, C.-C.; Lee, P.-J.; Chueh, Y.-L.; Lin, S.-J. Sn-doped In2O3 nanowires: Enhancement of electrical field emission by a selective area growth. Nanoscale Res. Lett. 2012, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Loh, J.Y.; Ye, Y.; Kherani, N.P. Reactor based XPS and other in-situ studies on the Effect of Substitution of Bismuth for Indium in Defect Laden Indium Oxide Hydroxide BizIn2−zO3−x(OH)y on the Photocatalytic Hydrogenation of Carbon Dioxide. arXiv 2019, arXiv:1904.07347. [Google Scholar]
- Rani, J.; Lim, J.; Oh, J.; Kim, D.; Lee, D.; Kim, J.-W.; Shin, H.S.; Kim, J.H.; Jun, S.C. Substrate and buffer layer effect on the structural and optical properties of graphene oxide thin films. RSC Adv. 2013, 3, 5926–5936. [Google Scholar] [CrossRef]
- Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I. Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Ciszewski, M.; Mianowski, A.; Nawrat, G.; Szatkowski, P. Reduced graphene oxide supported antimony species for high-performance supercapacitor electrodes. ISRN Electrochem. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Andrijanto, E.; Shoelarta, S.; Subiyanto, G.; Rifki, S. Facile synthesis of graphene from graphite using ascorbic acid as reducing agent. AIP Conf. Proc. 2016, 1725, 020003. [Google Scholar]
- Reich, S.; Thomsen, C. Raman spectroscopy of graphite. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 362, 2271–2288. [Google Scholar] [CrossRef] [PubMed]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Ferreira, E.M.; Moutinho, M.V.; Stavale, F.; Lucchese, M.M.; Capaz, R.B.; Achete, C.A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429. [Google Scholar] [CrossRef] [Green Version]
- Cançado, L.G.; Jorio, A.; Ferreira, E.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.; Ferrari, A.C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Rodriguez, R.D.; Ruban, A.; Pavlov, S.; Sheremet, E. The correlation between electrical conductivity and second-order Raman modes of laser-reduced graphene oxide. Phys. Chem. Chem. Phys. 2019, 21, 10125–10134. [Google Scholar] [CrossRef]
- Vollebregt, S.; Ishihara, R.; Tichelaar, F.; Hou, Y.; Beenakker, C.I.M. Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers. Carbon 2012, 50, 3542–3554. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.-J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 2013, 53, 38–49. [Google Scholar] [CrossRef]
- Palaniselvam, T.; Aiyappa, H.B.; Kurungot, S. An efficient oxygen reduction electrocatalyst from graphene by simultaneously generating pores and nitrogen doped active sites. J. Mater. Chem. 2012, 22, 23799–23805. [Google Scholar] [CrossRef]
- Le, H.D.; Ngo, T.T.T.; Le, D.Q.; Nguyen, X.N.; Phan, N.M. Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 035012. [Google Scholar]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35. [Google Scholar] [CrossRef]
- Dong, X.; Wang, P.; Fang, W.; Su, C.-Y.; Chen, Y.-H.; Li, L.-J.; Huang, W.; Chen, P. Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon 2011, 49, 3672–3678. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Saral, A. Stochastic modeling approaches based on neural network and linear–nonlinear regression techniques for the determination of single droplet collection efficiency of countercurrent spray towers. Environ. Modeling Assess. 2007, 12, 13–26. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Demirel, S.; Vanderbei, R.J. Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard. Mater. 2009, 171, 551–562. [Google Scholar] [CrossRef]
- Liu, H.-L.; Lan, Y.-W.; Cheng, Y.-C. Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology. Process Biochem. 2004, 39, 1953–1961. [Google Scholar] [CrossRef]
- Radoi, A.; Compagnone, D.; Devic, E.; Palleschi, G. Low potential detection of NADH with Prussian Blue bulk modified screen-printed electrodes and recombinant NADH oxidase from Thermus thermophilus. Sens. Actuators B Chem. 2007, 121, 501–506. [Google Scholar] [CrossRef]
- Thauern, H.; Glaum, R. Synthesis, Crystal Structure Determination and Vibrational Spectra of Indium(II) Indium(III) Oxidephosphate, (In2)4+(In3+)2O2(PO4)2. Z. Für Anorg. Und Allg. Chem. 2004, 630, 2463–2467. [Google Scholar] [CrossRef]
Notation | Factor | Unit | Range and Levels | ||||
---|---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |||
A | Scan Rate | mV/s | 10 | 40 | 70 | 100 | 130 |
B | Ethanol Concentration | mol/L | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
C | Amount of Binder | wt% | 5 | 7.5 | 10 | 12.5 | 15 |
D | Age of the Sensor | days | 7 | 14 | 21 | 28 | 35 |
Run | A | B | C | D | Response (Current) | Space Type |
---|---|---|---|---|---|---|
1 | 100 | 0.3 | 12.5 | 14 | 2.335 | Factorial |
2 | 100 | 0.3 | 7.5 | 14 | 2.613 | Factorial |
3 | 40 | 0.7 | 12.5 | 14 | 3.859 | Factorial |
4 | 40 | 0.3 | 12.5 | 28 | 2.981 | Factorial |
5 | 40 | 0.7 | 12.5 | 28 | 4.392 | Factorial |
6 | 100 | 0.7 | 12.5 | 28 | 4.196 | Factorial |
7 | 40 | 0.3 | 7.5 | 14 | 2.798 | Factorial |
8 | 70 | 0.5 | 10 | 21 | 2.284 | Centre |
9 | 100 | 0.7 | 12.5 | 14 | 3.975 | Factorial |
10 | 100 | 0.3 | 7.5 | 28 | 2.786 | Factorial |
11 | 40 | 0.7 | 7.5 | 28 | 3.177 | Factorial |
12 | 40 | 0.7 | 7.5 | 14 | 3.513 | Factorial |
13 | 70 | 0.5 | 10 | 21 | 2.742 | Centre |
14 | 70 | 0.5 | 10 | 21 | 2.556 | Centre |
15 | 70 | 0.5 | 10 | 21 | 2.747 | Centre |
16 | 40 | 0.3 | 7.5 | 28 | 2.688 | Factorial |
17 | 40 | 0.3 | 12.5 | 14 | 2.893 | Factorial |
18 | 100 | 0.7 | 7.5 | 28 | 4.087 | Factorial |
19 | 100 | 0.3 | 12.5 | 28 | 2.795 | Factorial |
20 | 100 | 0.7 | 7.5 | 14 | 4.157 | Factorial |
21 | 70 | 0.5 | 5 | 21 | 2.501 | Axial |
22 | 70 | 0.5 | 10 | 21 | 2.705 | Centre |
23 | 70 | 0.9 | 10 | 21 | 3.976 | Axial |
24 | 130 | 0.5 | 10 | 21 | 2.905 | Axial |
25 | 10 | 0.5 | 10 | 21 | 3.435 | Axial |
26 | 70 | 0.5 | 10 | 7 | 2.934 | Axial |
27 | 70 | 0.5 | 10 | 35 | 2.876 | Axial |
28 | 70 | 0.5 | 10 | 21 | 3.371 | Centre |
29 | 70 | 0.5 | 15 | 21 | 3.231 | Axial |
30 | 70 | 0.1 | 10 | 21 | 2.356 | Axial |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 9.46 | 14 | 0.6757 | 6.11 | 0.0009 | Significant |
A | 0.0072 | 1 | 0.0072 | 0.0656 | 0.8016 | |
B | 6.73 | 1 | 6.73 | 60.88 | <0.0001 | |
C | 0.3919 | 1 | 0.3919 | 3.55 | 0.0806 | |
D | 0.0296 | 1 | 0.0296 | 0.2680 | 0.6128 | |
AB | 0.3321 | 1 | 0.3321 | 3.01 | 0.1050 | |
AC | 0.3280 | 1 | 0.3280 | 2.97 | 0.1069 | |
AD | 0.0232 | 1 | 0.0232 | 0.2098 | 0.6540 | |
BC | 0.1171 | 1 | 0.1171 | 1.06 | 0.3207 | |
BD | 0.0043 | 1 | 0.0043 | 0.0391 | 0.8460 | |
CD | 0.1691 | 1 | 0.1691 | 1.53 | 0.2364 | |
A2 | 0.6946 | 1 | 0.6946 | 6.29 | 0.0251 | |
B2 | 0.6859 | 1 | 0.6859 | 6.21 | 0.0259 | |
C2 | 0.1896 | 1 | 0.1896 | 1.72 | 0.2114 | |
D2 | 0.2366 | 1 | 0.2366 | 2.14 | 0.1654 | |
Residual | 1.55 | 14 | 0.1105 | |||
Lack of Fit | 1.18 | 10 | 0.1183 | 1.30 | 0.4310 | Not significant |
Pure Error | 0.3641 | 4 | 0.0910 | |||
Cor Total a | 11.16 | 29 |
Response Type | Predicted Mean | Predicted Median | Number of Runs | SE Pred a | 95% PI b Low | Data Mean | 95% PI b High |
---|---|---|---|---|---|---|---|
Current (µA) | 2.87068 | 2.87068 | 3 | 0.250235 | 2.33397 | 2.99267 | 3.40738 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boroujerdi, R.; Paul, R. Introducing Graphene–Indium Oxide Electrochemical Sensor for Detecting Ethanol in Aqueous Samples with CCD-RSM Optimization. Chemosensors 2022, 10, 42. https://doi.org/10.3390/chemosensors10020042
Boroujerdi R, Paul R. Introducing Graphene–Indium Oxide Electrochemical Sensor for Detecting Ethanol in Aqueous Samples with CCD-RSM Optimization. Chemosensors. 2022; 10(2):42. https://doi.org/10.3390/chemosensors10020042
Chicago/Turabian StyleBoroujerdi, Ramin, and Richard Paul. 2022. "Introducing Graphene–Indium Oxide Electrochemical Sensor for Detecting Ethanol in Aqueous Samples with CCD-RSM Optimization" Chemosensors 10, no. 2: 42. https://doi.org/10.3390/chemosensors10020042
APA StyleBoroujerdi, R., & Paul, R. (2022). Introducing Graphene–Indium Oxide Electrochemical Sensor for Detecting Ethanol in Aqueous Samples with CCD-RSM Optimization. Chemosensors, 10(2), 42. https://doi.org/10.3390/chemosensors10020042