Development of Cyanine 813@Imidazole-Based Doped Supported Devices for Divalent Metal Ions Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instrumentation
2.3. Synthesis of Cyanine Dye Cy813@Imidazol (Cy1)
2.4. Synthesis of Cy1 Doped Mesoporous Silica Nanoparticles
2.5. Synthesis of Cy1 Doped Polymer Nanoparticles
2.6. Spectrophotometric and Spectrofluorometric Measurements
- Characterization data of IR813 in ethanol: λabs. = 815 nm, λemis. = 830 nm, and ϕF = 0.060.
- Characterization data of Cy1 in ethanol: λabs. = 678 nm, λemis. = 785 nm.
2.7. Determination of the Detection and Quantification Limits (LOD and LOQ)
- LOD = ydl = yblank + 3std, where ydl = signal detection limit and std = standard deviation.
- LOQ = ydl = yblank + 10std, where ydl = signal detection limit and std = standard deviation.
2.8. Metal Sensing by Dye-Doped MNs
2.9. Metal Sensing by Dye-Doped PMMA Nanoparticles
3. Results and Discussion
3.1. Synthesis and Characterization of Dye Cy1
3.2. Sensorial Ability towards Metal Ions
3.3. Cy1-Doped Mesoporous Silica Nanoparticles for Metal Sensing
3.4. Cy1-Doped PMMA Polymer Nanoparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, W.; Guo, S.; Hu, C.; Fan, J.; Peng, X. Recent Development of Chemosensors Based on Cyanine Platforms. Chem. Rev. 2016, 116, 7768–7817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, Z.; Yang, J.; Yi, L.; Liao, L.; Xiao, X. Development of a method for the detection of Cu2+ in the environment and live cells using a synthesized spider web-like fluorescent probe. Biosens. Bioelectron. 2021, 182, 113174. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiao, X.; He, B.; Jiang, M.; Nie, C.; Lin, Y.-W.; Liao, L. A novel resonance fluorescence chemosensor based on the formation of heterobinuclear complex with a di-tetradentate macrocyclic ligand and europium (III) for the determination of uranium (VI). Sens. Actuators B Chem. 2018, 262, 359–364. [Google Scholar] [CrossRef]
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.; Goodfellow, W.L.; Adams, W.J.; Menzie, C.A. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environ. Manag. 2020, 65, 131–159. [Google Scholar] [CrossRef] [Green Version]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Dalmieda, J.; Kruse, P. Metal Cation Detection in Drinking Water. Sensors 2019, 19, 5134. [Google Scholar] [CrossRef] [Green Version]
- USA EPA. National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic (accessed on 1 February 2022).
- EUR-Lex. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 1 February 2022).
- USA EPA. National Primary Drinking Water Guidelines, 2009. Epa 816-F-09-004. Available online: https://www.nrc.gov/docs/ML1307/ML13078A040.pdf (accessed on 1 February 2022).
- Kruse, P. Review on water quality sensors. J. Phys. D Appl. Phys. 2018, 51, 203002. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Huang, B.; Hu, X.; Zhang, L.; Li, D.; Guo, M.; Zhang, X.; Yuan, H.; Wu, H.-C. Colorimetric detection of copper ions based on a supramolecular complex of water-soluble polythiophene and ATP. Analyst 2013, 138, 1649. [Google Scholar] [CrossRef]
- Kar, C.; Shindo, Y.; Oka, K.; Nishiyama, S.; Suzuki, K.; Citterio, D. Spirolactam capped cyanine dyes for designing NIR probes to target multiple metal ions. RSC Adv. 2017, 7, 24970–24980. [Google Scholar] [CrossRef] [Green Version]
- Strehmel, B.; Schmitz, C.; Kütahya, C.; Pang, Y.; Drewitz, A.; Mustroph, H. Photophysics and photochemistry of NIR absorbers derived from cyanines: Key to new technologies based on chemistry 4.0. Beilstein J. Org. Chem. 2020, 16, 415–444. [Google Scholar] [CrossRef] [Green Version]
- Shindy, H.A. Fundamentals in the chemistry of cyanine dyes: A review. Dye. Pigment. 2017, 145, 505–513. [Google Scholar] [CrossRef]
- Mishra, A.; Behera, R.K.; Behera, P.K.; Mishra, B.K.; Behera, G.B. Cyanines during the 1990s: A Review. Chem. Rev. 2000, 100, 1973–2012. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.; Kampfer, H.; Matejec, R.; Lapp, O.; Krafft, W.; Frenken, H.; Lührig, H.; Scheerer, R.; Heilmann, M.; Meckl, H.; et al. Photography. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany; Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000. [Google Scholar]
- Della Pelle, G.; Delgado López, A.; Salord Fiol, M.; Kostevšek, N. Cyanine Dyes for Photo-Thermal Therapy: A Comparison of Synthetic Liposomes and Natural Erythrocyte-Based Carriers. Int. J. Mol. Sci. 2021, 22, 6914. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Huang, H.; Xu, K.; Tong, L.; Yang, G.; Liu, X.; An, L. Highly sensitive and selective near-infrared fluorescent probe for zinc and its application to macrophage cells. Chem. Commun. 2006, 34, 3609–3611. [Google Scholar] [CrossRef]
- Tang, B.; Cui, L.J.; Xu, K.H.; Tong, L.L.; Yang, G.W.; An, L.G. A Sensitive and Selective Near-Infrared Fluorescent Probe for Mercuric Ions and Its Biological Imaging Applications. ChemBioChem 2008, 9, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.-W.; Lin, V.S.-Y.Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, R.; Yuan, W.; Liu, Q.; Shi, M.; Feng, W.; Wu, Z.; Hu, K.; Li, F. Easy-to-Use Colorimetric Cyanine Probe for the Detection of Cu2+ in Wilson’s Disease. ACS Appl. Mater. Interfaces 2018, 10, 20377–20386. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Yang, D.; Tan, R.; Zhao, R.R.; Xu, R.; Zhou, Z.J.; Zhang, J.F.; Zhou, Y. A cyanine-based colorimetric and fluorescent probe for highly selective sensing and bioimaging of phosphate ions. Dye. Pigment. 2016, 133, 127–131. [Google Scholar] [CrossRef]
- Wu, D.; Chen, L.; Lee, W.; Ko, G.; Yin, J.; Yoon, J. Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coord. Chem. Rev. 2018, 354, 74–97. [Google Scholar] [CrossRef]
- Marcelo, G.A.; Pires, S.M.G.; Faustino, M.A.F.; Simões, M.M.Q.; Neves, M.G.P.M.S.; Santos, H.M.; Capelo, J.L.; Mota, J.P.; Lodeiro, C.; Oliveira, E. New dual colorimetric/fluorimetric probes for Hg2+ detection & extraction based on mesoporous SBA-16 nanoparticles containing porphyrin or rhodamine chromophores. Dye. Pigment. 2019, 161, 427–437. [Google Scholar] [CrossRef]
- Zhen, D.; Shi, S.; Gao, C.; Kang, Q.; Xiao, X.; Grimes, C.A.; Cai, Q. Bi, Fe, and Ti ternary co-doped ZrO2 nanocomposites as a mass spectrometry matrix for the determination of bisphenol A and tetrabromobisphenol A in tea. Microchim. Acta 2020, 187, 582. [Google Scholar] [CrossRef] [PubMed]
- Narayan, R.; Nayak, U.; Raichur, A.; Garg, S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Ping, J.; Qin, J.; Yang, M.; Wu, X.; You, M.; You, F.; Peng, H. A Comprehensive Study of Drug Loading in Hollow Mesoporous Silica Nanoparticles: Impacting Factors and Loading Efficiency. Nanomaterials 2021, 11, 1293. [Google Scholar] [CrossRef]
- Galhano, J.; Marcelo, G.A.; Duarte, M.P.; Oliveira, E. Ofloxacin@Doxorubicin-Epirubicin functionalized MCM-41 mesoporous silica–based nanocarriers as synergistic drug delivery tools for cancer related bacterial infections. Bioorg. Chem. 2022, 118, 105470. [Google Scholar] [CrossRef] [PubMed]
- Mureseanu, M.; Reiss, A.; Stefanescu, I.; David, E.; Parvulescu, V.; Renard, G.; Hulea, V. Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 2008, 73, 1499–1504. [Google Scholar] [CrossRef]
- Kumar, R.; Rauwel, P.; Rauwel, E. Nanoadsorbants for the Removal of Heavy Metals from Contaminated Water: Current Scenario and Future Directions. Processes 2021, 9, 1379. [Google Scholar] [CrossRef]
- Duarte, F.; Cuerva, C.; Fernández-Lodeiro, C.; Fernández-Lodeiro, J.; Jiménez, R.; Cano, M.; Lodeiro, C. Polymer Micro and Nanoparticles Containing B(III) Compounds as Emissive Soft Materials for Cargo Encapsulation and Temperature-Dependent Applications. Nanomaterials 2021, 11, 3437. [Google Scholar] [CrossRef] [PubMed]
- Visaveliya, N.; Hoffmann, C.; Groß, A.; Täuscher, E.; Ritter, U.; Koehler, J.M. Micro-flow assisted synthesis of fluorescent polymer nanoparticles with tuned size and surface properties. Nanotechnol. Rev. 2016, 5, 259–272. [Google Scholar] [CrossRef]
- Cuerva, C.; Fernández-Lodeiro, J.; Cano, M.; Capelo-Martínez, J.L.; Lodeiro, C. Water-soluble hollow nanocrystals from self-assembly of AIEE-active Pt(II) metallomesogens. Nano Res. 2021, 14, 245–254. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Prashanthi, S.; Bangal, P.R.; Patra, A. Photophysics and Dynamics of Dye-Doped Conjugated Polymer Nanoparticles by Time-Resolved and Fluorescence Correlation Spectroscopy. J. Phys. Chem. C 2013, 117, 26750–26759. [Google Scholar] [CrossRef]
- Conceição, D.; Ferreira, D.; Ferreira, L. Photochemistry and Cytotoxicity Evaluation of Heptamethinecyanine Near Infrared (NIR) Dyes. Int. J. Mol. Sci. 2013, 14, 18557–18571. [Google Scholar] [CrossRef]
- Berlman, I.B. Handbook of Fluorescence Spectra of Aromatic Molecules; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Montalti, M.; Credi, A.; Prodi, L.; Teressa, M.G. Handbook of Photochemistry, 3rd ed.; Taylor & Francis: Bocan Raton, FL, USA, 2006. [Google Scholar]
- Bouteiller, C.; Clavé, G.; Bernardin, A.; Chipon, B.; Massonneau, M.; Renard, P.-Y.; Romieu, A. Novel Water-Soluble Near-Infrared Cyanine Dyes: Synthesis, Spectral Properties, and Use in the Preparation of Internally Quenched Fluorescent Probes. Bioconjug. Chem. 2007, 18, 1303–1317. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, X.; Su, H.; Fang, W.; Zhang, Y. The fluorescence regulation mechanism of the paramagnetic metal in a biological HNO sensor. Chem. Commun. 2015, 51, 9616–9619. [Google Scholar] [CrossRef] [PubMed]
- Morais, N.A.; Fernandes, L.; Ariana-Machado, J.; Capelo, J.L.; Lodeiro, C.; Oliveira, E. An unusual emissive and colorimetric copper (II) detection by a selective probe based on a pseudo-crown cysteine dye: Solution and gas phase studies. Inorg. Chem. Commun. 2017, 86, 299–303. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
- Oliveira, E.; Santos, H.M.; Jorge, S.; Rodríguez-González, B.; Novio, F.; Lorenzo, J.; Ruiz-Molina, D.; Capelo, J.L.; Lodeiro, C. Sustainable synthesis of luminescent CdTe quantum dots coated with modified silica mesoporous nanoparticles: Towards new protein scavengers and smart drug delivery carriers. Dye. Pigment. 2019, 161, 360–369. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Axe, L. Synthesis and characterization of iron oxide-coated silica and its effect on metal adsorption. J. Colloid Interface Sci. 2005, 282, 11–19. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, Y.; Cui, J.; Hosta-Rigau, L.; Heath, J.K.; Nice, E.C.; Caruso, F. Encapsulation of Water-Insoluble Drugs in Polymer Capsules Prepared Using Mesoporous Silica Templates for Intracellular Drug Delivery. Adv. Mater. 2010, 22, 4293–4297. [Google Scholar] [CrossRef] [Green Version]
Metal (M) | MDA (nM) | MQA (nM) | Association Constants (LogKass.), σ L:M |
---|---|---|---|
Zn2+ | 39 | 77 | 12.68 ± 0.16 a (2:1) a |
Cu2+ | 37 | 74 | 14.76 ± 0.09 a/14.79 ± 0.06 b (2:1) |
Cd2+ | 74 | 99 | 12.62 ± 0.08 a (2:1) |
Co2+ | 65 | 87 | 12.80 ± 0.01 a (2:1) |
Ni2+ | 56 | 93 | 12.08 ± 0.02 a (2:1) |
Hg2+ | 31 | 62 | 14.05 ± 0.06 a (2:1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galhano, J.; Marcelo, G.A.; Santos, H.M.; Capelo-Martínez, J.L.; Lodeiro, C.; Oliveira, E. Development of Cyanine 813@Imidazole-Based Doped Supported Devices for Divalent Metal Ions Detection. Chemosensors 2022, 10, 80. https://doi.org/10.3390/chemosensors10020080
Galhano J, Marcelo GA, Santos HM, Capelo-Martínez JL, Lodeiro C, Oliveira E. Development of Cyanine 813@Imidazole-Based Doped Supported Devices for Divalent Metal Ions Detection. Chemosensors. 2022; 10(2):80. https://doi.org/10.3390/chemosensors10020080
Chicago/Turabian StyleGalhano, Joana, Gonçalo A. Marcelo, Hugo M. Santos, José Luis Capelo-Martínez, Carlos Lodeiro, and Elisabete Oliveira. 2022. "Development of Cyanine 813@Imidazole-Based Doped Supported Devices for Divalent Metal Ions Detection" Chemosensors 10, no. 2: 80. https://doi.org/10.3390/chemosensors10020080
APA StyleGalhano, J., Marcelo, G. A., Santos, H. M., Capelo-Martínez, J. L., Lodeiro, C., & Oliveira, E. (2022). Development of Cyanine 813@Imidazole-Based Doped Supported Devices for Divalent Metal Ions Detection. Chemosensors, 10(2), 80. https://doi.org/10.3390/chemosensors10020080