Dual-Signal-Encoded Barcodes with Low Background Signal for High-Sensitivity Analysis of Multiple Tumor Markers
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Chemicals
2.2. Characterization
2.3. Synthesis of CdTe QDs
2.4. Synthesis of Polystyrene MBs
2.5. A Silica Shell Coating and Functionalization of Microbeads
2.6. Bioconjugation of QDs with dAb
2.7. Bioconjugation of MBs with cAb
2.8. 6-Plex Sandwich Immunoassay of Tumor Biomarkers
3. Results and Discussion
3.1. Construction of DSBs with Low Background
3.2. Optimization of the Addition Amount of cAb
3.3. Non-Specific Binding
3.4. Application of DSBs in High-Sensitivity Analysis of Multiple Tumor Markers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanodra, N.M.; Silvestri, G.A.; Tanner, N.T. Screening and early detection efforts in lung cancer. Cancer 2015, 121, 1347. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Zhang, P.; Zhang, F.; Liu, H.; Fan, J.; Liu, X.; Yang, G.; Jiang, L.; Wang, S. A self-cleaning TiO2 nanosisal-like coating toward disposing nanobiochips of cancer detection. ACS Nano. 2015, 9, 9284. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W.; Hanson, V.; Johnson, G.D.; Royalty, J.E.; Richardson, L.C. From cancer screening to treatment: Service delivery and referral in the national breast and cervical cancer early detection program. Cancer 2014, 120, 2549. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, X.; Luan, C.; Wang, H.; Chen, B.; Zhao, Y. Hybrid hydrogel photonic barcodes for multiplex detection of tumor markers. Biosens. Bioelectron. 2017, 87, 264. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Cheng, Y.; Wang, J.; Lu, J.; Zhang, B.; Zhao, Y.; Gu, Z. Aptamer-functionalized barcode particles for the capture and detection of multiple types of circulating tumor cells. Adv. Mater. 2014, 26, 7333. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, B.; Cui, T. Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection. Biosens. Bioelectron. 2015, 72, 168. [Google Scholar] [CrossRef]
- Zhong, Z.; Wu, W.; Wang, D.; Wang, D.; Shan, J.; Qing, Y.; Zhang, Z. Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: Carcinoembryonic antigen as a model. Biosens. Bioelectron. 2010, 25, 2379. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Dong, S.; Zhu, P.; Diao, G.; Yang, Z. Quantum-dot-tagged photonic crystal beads for multiplex detection of tumor markers. Chem. Commun. 2014, 50, 14589. [Google Scholar] [CrossRef]
- Liu, N.; Liang, W.; Ma, X.; Li, X.; Ning, B.; Cheng, C.; Ou, G.; Wang, B.; Zhang, J.; Gao, Z. Simultaneous and combined detection of multiple tumor biomarkers for prostate cancer in human serum by suspension array technology. Biosens. Bioelectron. 2013, 47, 92. [Google Scholar] [CrossRef]
- Malinick, A.S.; Lambert, A.S.; Stuart, D.D.; Li, B.; Puente, E.; Cheng, Q. Detection of multiple sclerosis biomarkers in serum by ganglioside microarrays and surface plasmon resonance imaging. ACS Sens. 2020, 5, 3617. [Google Scholar] [CrossRef]
- He, X.P.; Hu, X.L.; James, T.D.; Yoon, J.; Tian, H. Multiplexed photoluminescent sensors: Towards improved disease diagnostics. Chem. Soc. Rev. 2017, 46, 6687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, N.; Dang, H.; Das, A.; Sim, M.S.; Chung, I.Y.; Choo, J. SERS biosensors for ultrasensitive detection of multiple biomarkers expressed in cancer cells. Biosens. Bioelectron. 2020, 164, 112326. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ge, X.; Cen, S.; Wang, A.; Luo, X.; Feng, J. Ultrasensitive dual-signal ratiometric electrochemical aptasensor for neuron-specific enolase based on Au nanoparticles@Pd nanoclusters-poly(bismarck brown Y) and dendritic AuPt nanoassemblies. Sens. Actuators B Chem. 2020, 311, 127931. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; He, L.; Feng, Y.; Tan, H.; Chen, X.; Yang, W. Simultaneous detection of multiple neuroendocrine tumor markers in patient serum with an ultrasensitive and antifouling electrochemical immunosensor. Biosens. Bioelectron. 2021, 194, 113603. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Lan, Q.; Li, C.; Xia, X. Morphologically Flex Sm-MOF Based Electrochemical Immunosensor for Ultrasensitive Detection of a Colon Cancer Biomarker. Anal. Chem. 2022, 94, 3013. [Google Scholar] [CrossRef]
- Wu, W.; Yu, X.; Gao, M.; Gull, S.; Shen, L.; Wang, W.; Li, L.; Yin, Y.; Li, W. Precisely Encoded Barcodes Using Tetrapod CdSe/CdS Quantum Dots with a Large Stokes Shift for Multiplexed Detection. Adv. Funct. Mater. 2019, 30, 1906707. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Y.; Jiang, X. Barcoded point-of-care bioassays. Chem. Soc. Rev. 2019, 48, 850. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; He, J.; Cao, Y.; Fang, X.; Chi, X.; Yi, J.; Wu, J.; Guo, Q.; Masoomi, H.; et al. Precisely Encoded Barcodes through the Structure-Fluorescence Combinational Strategy: A Flexible, Robust, and Versatile Multiplexed Biodetection Platform with Ultrahigh Encoding Capacities. Small 2021, 17, 2100315. [Google Scholar] [CrossRef]
- Gao, X.; Nie, S. Quantum Dot-Encoded Mesoporous Beads with High Brightness and Uniformity: Rapid Readout Using Flow Cytometry. Anal. Chem. 2004, 76, 2406. [Google Scholar] [CrossRef]
- Leng, Y.; Sun, K.; Chen, X.; Li, W. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem. Soc. Rev. 2015, 44, 5552. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Zhang, D.S.; Wei, D.; Lin, Y.; Zhang, S.; He, H.; Wei, X.; Gu, H.; Xu, H. Three-Dimensional Barcodes with Ultrahigh Encoding Capacities: A Flexible, Accurate, and Reproducible Encoding Strategy for Suspension Arrays. Chem. Mater. 2017, 29, 10398–10408. [Google Scholar] [CrossRef]
- Dagher, M.; Kleinman, M.; Ng, A.; Juncker, D.; Nanotechnol, N. Ensemble multicolour FRET model enables barcoding at extreme FRET levels. Nat. Biotechnol. 2018, 13, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Liu, X.; Li, W. Progress and challenges in functional nanomaterial-based suspension array technology for multiplexed biodetection. View 2022, 3, 20200140. [Google Scholar] [CrossRef]
- Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435. [Google Scholar] [CrossRef]
- Nolan, J.P.; Sklar, L.A. Suspension array technology: Evolution of the flat-array paradigm. Trends Biotechnol. 2002, 20, 9. [Google Scholar] [CrossRef]
- Uhlen, M.; Bandrowski, A.; Carr, S.; Edwards, A.; Ellenberg, J.; Lundberg, E.; Rimm, D.L.; Rodriguez, H.; Hiltke, T.; Snyder, M.; et al. A proposal for validation of antibodies. Nat. Methods 2016, 13, 823. [Google Scholar] [CrossRef]
- Zou, L.; Gu, Z.; Zhang, N.; Zhang, Y.; Fang, Z.; Zhu, W.; Zhong, X. Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase. J. Mater. Chem. 2008, 18, 2807. [Google Scholar] [CrossRef]
- Sarma, D.; Mielke, J.; Sahre, M.; Beck, U.; Hodoroaba, V.; Rurack, K. TSEM-based contour analysis as a tool for the quantification of the profile roughness of silica shells on polystyrene core particles. Appl. Surf. Sci. 2017, 426, 446. [Google Scholar] [CrossRef]
- Zhang, X.; Du, X. Carbon Nanodot-Decorated Ag@SiO2 Nanoparticles for Fluorescence and Surface-Enhanced Raman Scattering Immunoassays. ACS Appl. Mater. Interfaces 2016, 8, 1033. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, S. General Strategy to Fabricate Electrochemiluminescence Sandwich-Type Nanoimmunosensors Using CdTe@ZnS Quantum Dots as Luminescent Labels and Fe3O4@SiO2 Nanoparticles as Magnetic Separable Scaffolds. ACS Sens. 2016, 1, 358. [Google Scholar] [CrossRef]
- Song, E.; Yu, M.; Wang, Y.; Hu, W.; Yang, S. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens. Bioelectron. 2015, 72, 320. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Zhang, Z.; Yan, X.; Xing, J.; Zhang, K.; Huang, J.; Zheng, J.; Li, W. Multiplex immunodetection of tumor markers with a suspension array built upon core-shell structured functional fluorescence-encoded microspheres. Anal. Chim. Acta 2010, 665, 63. [Google Scholar] [CrossRef] [PubMed]
- Vafajoo, A.; Rostami, A.; Parsa, S.F.; Salarian, R.; Ee, N.R.; Ee, G.R.; Ee, M.R.; Tahriri, M.; Vashaee, D.; Tayebi, L. Early Diagnosis of Disease Using Microbead Array Technology: A Review. Anal. Chim. Acta 2018, 1032, S1451806428. [Google Scholar] [CrossRef]
- Wu, W.; Shen, M.; Liu, X.; Shen, L.; Ke, X.; Li, W. Highly sensitive fluorescence-linked immunosorbent assay basedA on aggregation-induced emission luminogens incorporated nanobeads. Biosens. Bioelectron. 2020, 150, 111912. [Google Scholar] [CrossRef]
- Yz, A.; Xz, A.; Xp, B.; Jing, H.A.; Wz, A.; Bc, B.; Zga, C. Multiplex detection of tumor markers with photonic suspension array. Anal. Chim. Acta 2009, 633, 103. [Google Scholar] [CrossRef]
- Leng, Y.; Wu, W.; Li, L.; Lin, K.; Sun, K. Magnetic/Fluorescent Barcodes Based on Cadmium-Free Near-Infrared-Emitting Quantum Dots for Multiplexed Detection. Adv. Funct. Mater. 2016, 26, 7581. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Tang, W.-S.; Ding, S.-N. Dual-Signal-Encoded Barcodes with Low Background Signal for High-Sensitivity Analysis of Multiple Tumor Markers. Chemosensors 2022, 10, 142. https://doi.org/10.3390/chemosensors10040142
Zhang B, Tang W-S, Ding S-N. Dual-Signal-Encoded Barcodes with Low Background Signal for High-Sensitivity Analysis of Multiple Tumor Markers. Chemosensors. 2022; 10(4):142. https://doi.org/10.3390/chemosensors10040142
Chicago/Turabian StyleZhang, Bo, Wan-Sheng Tang, and Shou-Nian Ding. 2022. "Dual-Signal-Encoded Barcodes with Low Background Signal for High-Sensitivity Analysis of Multiple Tumor Markers" Chemosensors 10, no. 4: 142. https://doi.org/10.3390/chemosensors10040142
APA StyleZhang, B., Tang, W. -S., & Ding, S. -N. (2022). Dual-Signal-Encoded Barcodes with Low Background Signal for High-Sensitivity Analysis of Multiple Tumor Markers. Chemosensors, 10(4), 142. https://doi.org/10.3390/chemosensors10040142