Coupled Multiphysics Modelling of Sensors for Chemical, Biomedical, and Environmental Applications with Focus on Smart Materials and Low-Dimensional Nanostructures
Abstract
:1. Introduction
2. Low-Dimensional Nanostructures and Sensors
3. Smart Materials for Sensing Applications and Coupled Effects
4. Mathematical and Computational Models for Smart Materials and Low-Dimensional Nanostructures
4.1. Coupled Multiscale Models: Strain and Pressure Sensing Applications
4.2. Properties of Nanostructure-Based Sensors, First-Principles Approaches, and Bandstructure Calculations
4.3. Continuum-Mechanics Coupling, Reduced-Order Methods, Coarse-Graining, and Other Numerical Procedures
5. Further Characteristics and Areas of Applications
5.1. Carbon Allotropes and Sensors
5.2. Nucleic-Acid-Based Sensors and Related Applications
5.3. Environmentally-Friendly and Other Innovative Technologies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, X.Q.; Liu, J.X.; Gupta, V. Fundamental formulations and recent achievements in piezoelectric nano-structures: A review. Nanoscale 2013, 5, 1716–1726. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Ghosh, I. Quantum dots and peptides: A bright future together. Pept. Sci. Orig. Res. Biomol. 2007, 88, 325–339. [Google Scholar] [CrossRef]
- Ambhorkar, P.; Wang, Z.; Ko, H.; Lee, S.; Koo, K.I.; Kim, K.; Cho, D.I.D. Nanowire-based biosensors: From growth to applications. Micromachines 2018, 9, 679. [Google Scholar] [CrossRef] [Green Version]
- Raymo, F.M.; Yildiz, I. Luminescent chemosensors based on semiconductor quantum dots. Phys. Chem. Chem. Phys. 2007, 9, 2036–2043. [Google Scholar] [CrossRef] [PubMed]
- Melnik, R. Coupled effects in low-Dimensional nanostructures and multiphysics modeling. In Encyclopedia of Nanoscience and Nanotechnology; American Scientific Publishers: Stevenson Ranch, CA, USA, 2011; Volume 12, pp. 517–531. [Google Scholar]
- Arnold, A. Self-consistent relaxation-time models in quantum mechanics. Commun. Partial Differ. Equ. 1996, 21, 473–506. [Google Scholar] [CrossRef]
- Schulz, L.; Inci, B.; Pech, M.; Schulz, D. Subdomain-based exponential integrators for quantum Liouville-type equations. J. Comput. Electron. 2021, 20, 2070–2090. [Google Scholar] [CrossRef]
- Narcowich, F.J. A Dyson-like expansion for solutions to the quantum Liouville equation. J. Math. Phys. 1986, 27, 2502–2510. [Google Scholar] [CrossRef]
- Coalson, R.D.; Karplus, M. Generalized quantum Liouville equation: Its solution by wave packet dynamics. J. Chem. Phys. 1983, 79, 6150–6161. [Google Scholar] [CrossRef]
- Bian, X.; Wu, Y.; Teh, H.H.; Zhou, Z.; Chen, H.T.; Subotnik, J.E. Modeling nonadiabatic dynamics with degenerate electronic states, intersystem crossing, and spin separation: A key goal for chemical physics. J. Chem. Phys. 2021, 154, 110901. [Google Scholar] [CrossRef]
- Sytnyk, D.; Melnik, R. Mathematical models with nonlocal initial conditions: An exemplification from quantum mechanics. Math. Comput. Appl. 2021, 26, 73. [Google Scholar] [CrossRef]
- Osborn, T.; Molzahn, F. Moyal quantum mechanics: The semiclassical Heisenberg dynamics. Ann. Phys. 1995, 241, 79–127. [Google Scholar] [CrossRef] [Green Version]
- McQuarrie, B.; Osborn, T.; Tabisz, G. Semiclassical Moyal quantum mechanics for atomic systems. Phys. Rev. A 1998, 58, 2944. [Google Scholar] [CrossRef]
- Narcowich, F.J. Geometry and uncertainty. J. Math. Phys. 1990, 31, 354–364. [Google Scholar] [CrossRef]
- Klein, U. From probabilistic mechanics to quantum theory. Quantum Stud. Math. Found. 2020, 7, 77–98. [Google Scholar] [CrossRef] [Green Version]
- Frensley, W.R. Wigner-function model of a resonant-tunneling semiconductor device. Phys. Rev. B 1987, 36, 1570. [Google Scholar] [CrossRef]
- Frensley, W.R. Heterostructure and quantum well physics. In VLSI Electronics Microstructure Science; Academic Press, Inc.: San Diego, CA, USA, 1994; Volume 24, pp. 1–24. [Google Scholar]
- Mains, R.; Haddad, G.I. An accurate re-formulation of the Wigner function method for quantum transport modeling. J. Comput. Phys. 1994, 112, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Croitoru, M.; Gladilin, V.; Fomin, V.; Devreese, J.; Magnus, W.; Schoenmaker, W.; Sorée, B. Quantum transport in a nanosize double-gate metal-oxide-semiconductor field-effect transistor. J. Appl. Phys. 2004, 96, 2305–2310. [Google Scholar] [CrossRef]
- Callebaut, H.; Hu, Q. Importance of coherence for electron transport in terahertz quantum cascade lasers. J. Appl. Phys. 2005, 98, 104505. [Google Scholar] [CrossRef]
- Dinh, T.; Valavanis, A.; Lever, L.; Ikonić, Z.; Kelsall, R. Extended density-matrix model applied to silicon-based terahertz quantum cascade lasers. Phys. Rev. B 2012, 85, 235427. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, E.; Morzyński, M.; Daviller, G.; Kutz, J.N.; Brunton, B.W.; Brunton, S.L. Sparsity enabled cluster reduced-order models for control. J. Comput. Phys. 2018, 352, 388–409. [Google Scholar] [CrossRef]
- Freeman, W. Double longitudinal-optical phonon intrawell depopulated terahertz quantum cascade structures: Electron transport modeling using a density matrix method. Appl. Phys. Lett. 2021, 118, 241107. [Google Scholar] [CrossRef]
- Schuff, J.; Fiderer, L.J.; Braun, D. Improving the dynamics of quantum sensors with reinforcement learning. New J. Phys. 2020, 22, 035001. [Google Scholar] [CrossRef]
- Delle Site, L.; Klein, R. Liouville-type equations for the n-particle distribution functions of an open system. J. Math. Phys. 2020, 61, 083102. [Google Scholar] [CrossRef]
- Klein, R.; Delle Site, L. Derivation of Liouville-like equations for the n-state probability density of an open system with thermalized particle reservoirs and its link to molecular simulation. J. Phys. A Math. Theor. 2022, 55, 155002. [Google Scholar] [CrossRef]
- Rundle, R.P.; Everitt, M.J. Overview of the phase space formulation of quantum mechanics with application to quantum technologies. Adv. Quantum Technol. 2021, 4, 2100016. [Google Scholar] [CrossRef]
- Willatzen, M.; Lassen, B.; Voon, L.L.Y.; Melnik, R.V. Dynamic coupling of piezoelectric effects, spontaneous polarization, and strain in lattice-mismatched semiconductor quantum-well heterostructures. J. Appl. Phys. 2006, 100, 024302. [Google Scholar] [CrossRef] [Green Version]
- Radulovic, N.; Willatzen, M.; Melnik, R.V.; Voon, L.C.L.Y. Influence of the metal contact size on the electron dynamics and transport inside the semiconductor heterostructure nanowire. J. Comput. Theor. Nanosci. 2006, 3, 551–559. [Google Scholar] [CrossRef]
- Mahapatra, D.R.; Willatzen, M.; Melnik, R.; Lassen, B. Modeling heterostructures with Schrödinger–Poisson–Navier iterative schemes, effect of carrier charge, and influence of electromechanical coupling. Nano 2012, 7, 1250031. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.; Sinha, N.; Melnik, R. Modeling of GaN/AlN heterostructure-based nano pressure sensors. In Nanoengineering: Fabrication, Properties, Optics, and Devices VI; International Society for Optics and Photonics: Washington, DC, USA, 2009; Volume 7402, p. 74020C. [Google Scholar]
- Babar, R.; Barcza, G.; Pershin, A.; Park, H.; Lindvall, O.B.; Thiering, G.; Legeza, Ö.; Warner, J.H.; Abrikosov, I.A.; Gali, A. Quantum sensor in a single layer van der Waals material. arXiv 2021, arXiv:2111.09589. [Google Scholar]
- Riyajuddin, S.; Kumar, S.; Gaur, S.P.; Sud, A.; Maruyama, T.; Ali, M.E.; Ghosh, K. Linear piezoresistive strain sensor based on graphene/g-C3N4/PDMS heterostructure. Nanotechnology 2020, 31, 295501. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wen, B.; Melnik, R.; Yao, S.; Li, T. Geometry dependent current-voltage characteristics of ZnO nanostructures: A combined nonequilibrium Green’s function and density functional theory study. Appl. Phys. Lett. 2009, 95, 192101. [Google Scholar] [CrossRef]
- Guo, J.; Wen, B.; Melnik, R.; Yao, S.; Li, T. Geometry and temperature dependent thermal conductivity of diamond nanowires: A non-equilibrium molecular dynamics study. Phys. E Low-Dimens. Syst. Nanostruct. 2010, 43, 155–160. [Google Scholar] [CrossRef]
- Prabhakar, S.; Raynolds, J.; Inomata, A.; Melnik, R. Manipulation of single electron spin in a GaAs quantum dot through the application of geometric phases: The Feynman disentangling technique. Phys. Rev. B 2010, 82, 195306. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, S.; Melnik, R.; Inomata, A. Geometric spin manipulation in semiconductor quantum dots. Appl. Phys. Lett. 2014, 104, 142411. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.K.; Melnik, R. Non-local optical response of nanowire-film system: Effect of geometric parameters. J. Coupled Syst. Multiscale Dyn. 2017, 5, 212–216. [Google Scholar] [CrossRef]
- Vvedensky, D.D. Multiscale modelling of nanostructures. J. Phys. Condens. Matter 2004, 16, R1537. [Google Scholar] [CrossRef]
- Lassen, B.; Voon, L.L.Y.; Willatzen, M.; Melnik, R. Exact envelope-function theory versus symmetrized Hamiltonian for quantum wires: A comparison. Solid State Commun. 2004, 132, 141–149. [Google Scholar] [CrossRef]
- Lassen, B.; Willatzen, M.; Melnik, R.; Voon, L.L.Y. Electronic structure of free-standing InP and InAs nanowires. J. Mater. Res. 2006, 21, 2927–2935. [Google Scholar] [CrossRef]
- March, N.H.; Rubio, A. Structural and electronic properties of low-dimensional C-nanoassemblies and possible analogues for Si (and Ge). J. Nanomater. 2011, 2011, 932350. [Google Scholar] [CrossRef]
- Ivády, V.; Barcza, G.; Thiering, G.; Li, S.; Hamdi, H.; Chou, J.P.; Legeza, Ö.; Gali, A. Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride. NPJ Comput. Mater. 2020, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Majidi, R.; Ramazani, A.; Rabczuk, T. Electronic properties of transition metal embedded twin T-graphene: A density functional theory study. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 133, 114806. [Google Scholar] [CrossRef]
- Jariwala, P.; Sonavane, Y.; Thakor, P.; Gupta, S.K. Strain dependent electronic transport of pristine Si and Ge nanowires. Comput. Mater. Sci. 2021, 188, 110181. [Google Scholar] [CrossRef]
- Yong, Y.; Cui, H.; Zhou, Q.; Su, X.; Kuang, Y.; Li, X. Ultrathin nanowire based on icosahedral W@ Au12 and application as NO gas sensor. J. Phys. Chem. Solids 2019, 127, 68–75. [Google Scholar] [CrossRef]
- Taffelli, A.; Dirè, S.; Quaranta, A.; Pancheri, L. MoS2 based photodetectors: A review. Sensors 2021, 21, 2758. [Google Scholar] [CrossRef]
- Shkodra, B.; Petrelli, M.; Costa Angeli, M.A.; Garoli, D.; Nakatsuka, N.; Lugli, P.; Petti, L. Electrolyte-gated carbon nanotube field-effect transistor-based biosensors: Principles and applications. Appl. Phys. Rev. 2021, 8, 041325. [Google Scholar] [CrossRef]
- Khan, M.S.; Srivastava, A. Geometry dependent structural and electronic properties of CdS nanowires: An ab inito study. Superlattices Microstruct. 2017, 101, 306–314. [Google Scholar] [CrossRef]
- Khan, M.; Srivastava, A. Diameter dependent electronic, optical and transport properties of CdSe nanowire: Ab initio study. Semiconductors 2019, 53, 1759–1768. [Google Scholar] [CrossRef]
- Somers, R.C.; Bawendi, M.G.; Nocera, D.G. CdSe nanocrystal based chem-/bio-sensors. Chem. Soc. Rev. 2007, 36, 579–591. [Google Scholar] [CrossRef]
- Marsili, F.; Najafi, F.; Dauler, E.; Bellei, F.; Hu, X.; Csete, M.; Molnar, R.J.; Berggren, K.K. Single-photon detectors based on ultranarrow superconducting nanowires. Nano Lett. 2011, 11, 2048–2053. [Google Scholar] [CrossRef]
- Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H. Superconducting nanowire single-photon detectors: Physics and applications. Supercond. Sci. Technol. 2012, 25, 063001. [Google Scholar] [CrossRef]
- Elezov, M.; Ozhegov, R.; Goltsman, G.; Makarov, V. Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution. Opt. Express 2019, 27, 30979–30988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knehr, E.; Kuzmin, A.; Doerner, S.; Wuensch, S.; Ilin, K.; Schmidt, H.; Siegel, M. Synchronous single-photon detection with self-resetting, GHz-gated superconducting NbN nanowires. Appl. Phys. Lett. 2020, 117, 132602. [Google Scholar] [CrossRef]
- Polakovic, T.; Armstrong, W.; Karapetrov, G.; Meziani, Z.E.; Novosad, V. Unconventional applications of superconducting nanowire single photon detectors. Nanomaterials 2020, 10, 1198. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, J.M.; Andoni, I.; Choi, E.J.; Fang, L.; Flores-Zuleta, H.; Humphrey, N.J.; Kim, D.H.; Shin, J.; Youn, H.; Penner, R.M. Sensors based upon nanowires, nanotubes, and nanoribbons: 2016–2020. Anal. Chem. 2020, 93, 124–166. [Google Scholar] [CrossRef] [PubMed]
- Paskaleva, B.; Hayat, M.M.; Tyo, J.S.; Wang, Z.; Martinez, M. Feature selection for spectral sensors with overlapping noisy spectral bands. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII; International Society for Optics and Photonics: Washington, DC, USA, 2006; Volume 6233, p. 623329. [Google Scholar]
- Murata, T.; Asahi, S.; Sanguinetti, S.; Kita, T. Infrared photodetector sensitized by InAs quantum dots embedded near an Al0.3Ga0.7As/GaAs heterointerface. Sci. Rep. 2020, 10, 11628. [Google Scholar] [CrossRef] [PubMed]
- Melnik, R.; Willatzen, M. Bandstructures of conical quantum dots with wetting layers. Nanotechnology 2003, 15, 1. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, S.; Melnik, R.V.; Neittaanmäki, P.; Tiihonen, T. Coupled magneto-thermo-electromechanical effects and electronic properties of quantum dots. J. Comput. Theor. Nanosci. 2013, 10, 534–547. [Google Scholar] [CrossRef]
- Prabhakar, S.; Melnik, R.; Bonilla, L.L. Electrical control of phonon-mediated spin relaxation rate in semiconductor quantum dots: Rashba versus Dresselhaus spin-orbit coupling. Phys. Rev. B 2013, 87, 235202. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, S.; Melnik, R.; Bonilla, L.L.; Badu, S. Thermoelectromechanical effects in relaxed-shape graphene and band structures of graphene quantum dots. Phys. Rev. B 2014, 90, 205418. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, S.; Melnik, R.; Bonilla, L.L. Gate control of Berry phase in III-V semiconductor quantum dots. Phys. Rev. B 2014, 89, 245310. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, S.; Melnik, R. Electric field control of spin splitting in III–V semiconductor quantum dots without magnetic field. Eur. Phys. J. B 2015, 88, 273. [Google Scholar] [CrossRef]
- Prabhakar, S.; Melnik, R. Tuning g-factor of electrons through spin–orbit coupling in GaAs/AlGaAs conical quantum dots. Int. J. Mod. Phys. B 2016, 30, 1642003. [Google Scholar] [CrossRef]
- Prabhakar, S.; Melnik, R. Berry phase and spin precession without magnetic fields in semiconductor quantum dots. Eur. Phys. J. B 2019, 92, 263. [Google Scholar] [CrossRef]
- León, C.; Melnik, R. Studies of shape memory graphene nanostructures via integration of physics-based modelling and machine learning. In Proceedings of the 9th edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS 2021), Sardinia, Italy, 13–16 June 2021. [Google Scholar]
- León, C.; Melnik, R. Machine Learning for Shape Memory Graphene Nanoribbons and Applications in Biomedical Engineering. Bioengineering 2022, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wen, B.; Melnik, R.; Yao, S.; Li, T. Molecular dynamics study on diamond nanowires mechanical properties: Strain rate, temperature and size dependent effects. Diam. Relat. Mater. 2011, 20, 551–555. [Google Scholar] [CrossRef]
- Wen, B.; Melnik, R.; Yao, S.; Li, T. Hydrogen-doped cubic diamond and the crystal structure of n-diamond. Chem. Phys. Lett. 2011, 516, 230–232. [Google Scholar] [CrossRef]
- Shao, T.; Wen, B.; Melnik, R.; Yao, S.; Kawazoe, Y.; Tian, Y. Temperature dependent elastic constants and ultimate strength of graphene and graphyne. J. Chem. Phys. 2012, 137, 194901. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Wen, B.; Zhang, Y.; Melnik, R. Thermal conductivity of diamond/SiC nano-polycrystalline composites and phonon scattering at interfaces. ACS Omega 2017, 2, 2344–2350. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xiao, J.; Yao, Z.; Zhang, X.; Younus, F.; Melnik, R.; Wen, B. Homogeneous and heterogeneous dislocation nucleation in diamond. Diam. Relat. Mater. 2018, 88, 110–117. [Google Scholar] [CrossRef]
- Huang, H.; Su, S.; Wu, N.; Wan, H.; Wan, S.; Bi, H.; Sun, L. Graphene-based sensors for human health monitoring. Front. Chem. 2019, 7, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashba, E.I. Spin–orbit coupling and spin transport. Phys. E Low-Dimens. Syst. Nanostruct. 2006, 34, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Mandal, D.; Banerjee, S. Surface acoustic wave (SAW) sensors: Physics, materials, and applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.M.; Akbar, S.A.; Morris, P.A. Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review. Sens. Actuators B Chem. 2019, 286, 624–640. [Google Scholar] [CrossRef]
- Tian, H.; Fan, H.; Li, M.; Ma, L. Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sens. 2016, 1, 243–250. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Zhao, L.; Sun, P.; Wang, T.; Liu, F.; Yan, X.; Gao, Y.; Liang, X.; Zhang, S. One step synthesis of branched SnO2/ZnO heterostructures and their enhanced gas-sensing properties. Sens. Actuators B Chem. 2019, 281, 415–423. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, W.; Yu, H.; Gao, L.; Song, Z.; Xu, S.; Li, M.; Wang, Y.; Song, H.; Tang, J. Solution-processed gas sensors employing SnO2 quantum dot/MWCNT nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.M.; Chen, L.Q.; Nan, C.W. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 2016, 28, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Dhote, R.P.; Gómez, H.; Melnik, R.N.; Zu, J. Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects. Comput. Phys. Commun. 2015, 192, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Dhote, R.; Gomez, H.; Melnik, R.; Zu, J. Effect of aspect ratio and boundary conditions in modeling shape memory alloy nanostructures with 3D coupled dynamic phase-field theories. Math. Probl. Eng. 2016, 2016, 3647470. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Du, H.; Wang, D.; Wang, L.; Melnik, R. Modelling ageing phenomenon in ferroelectrics via a Landau-type phenomenological model. Smart Mater. Struct. 2020, 30, 015017. [Google Scholar] [CrossRef]
- Matus, P.; Melnik, R.V.; Wang, L.; Rybak, I. Applications of fully conservative schemes in nonlinear thermoelasticity: Modelling shape memory materials. Math. Comput. Simul. 2004, 65, 489–509. [Google Scholar] [CrossRef]
- Wang, L.; Melnik, R.V. Dynamics of shape memory alloys patches. Mater. Sci. Eng. A 2004, 378, 470–474. [Google Scholar] [CrossRef]
- Wang, L.; Melnik, R. Dynamics of shape memory alloys patches with mechanically induced transformations. Discret. Contin. Dyn. Syst. 2006, 15, 1237. [Google Scholar] [CrossRef]
- Wang, L.; Melnik, R.V. Two-dimensional analysis of shape memory alloys under small loadings. Int. J. Multiscale Comput. Eng. 2006, 4, 291–304. [Google Scholar] [CrossRef]
- Wang, L.X.; Melnik, R.V. Differential-algebraic approach to coupled problems of dynamic thermoelasticity. Appl. Math. Mech. 2006, 27, 1185–1196. [Google Scholar] [CrossRef]
- Wang, L.; Melnik, R.V. Mechanically induced phase combination in shape memory alloys by Chebyshev collocation methods. Mater. Sci. Eng. A 2006, 438, 427–430. [Google Scholar] [CrossRef]
- Wang, L.X.; Melnik, R.V. Finite volume analysis of nonlinear thermo-mechanical dynamics of shape memory alloys. Heat Mass Transf. 2007, 43, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.X.; Melnik, R.V. Model reduction applied to square to rectangular martensitic transformations using proper orthogonal decomposition. Appl. Numer. Math. 2007, 57, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.X.; Melnik, R.V. Numerical model for vibration damping resulting from the first-order phase transformations. Appl. Math. Model. 2007, 31, 2008–2018. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.X.; Melnik, R.V. Thermo-mechanical wave propagations in shape memory alloy rod with phase transformations. Mech. Adv. Mater. Struct. 2007, 14, 665–676. [Google Scholar] [CrossRef]
- Wang, L.; Melnik, R. Modifying macroscale variant combinations in a two-dimensional structure using mechanical loadings during thermally induced transformation. Mater. Sci. Eng. A 2008, 481, 190–193. [Google Scholar] [CrossRef]
- Wang, L.; Melnik, R.V. Simulation of phase combinations in shape memory alloys patches by hybrid optimization methods. Appl. Numer. Math. 2008, 58, 511–524. [Google Scholar] [CrossRef]
- Wang, L.; Liu, R.; Melnik, R.V. Modeling large reversible electric-field-induced strain in ferroelectric materials using 90∘ orientation switching. Sci. China Ser. E Technol. Sci. 2009, 52, 141–147. [Google Scholar] [CrossRef]
- Wang, L.; Melnik, R.V. Control of coupled hysteretic dynamics of ferroelectric materials with a Landau-type differential model and feedback linearization. Smart Mater. Struct. 2009, 18, 074011. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.X.; Melnik, R.V. Low dimensional approximations to ferroelastic dynamics and hysteretic behavior due to phase transformations. J. Appl. Mech. 2010, 77, 031015. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Melnik, R.; Lv, F. Stress induced polarization switching and coupled hysteretic dynamics in ferroelectric materials. Front. Mech. Eng. 2011, 6, 287–291. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Melnik, R.V. A Preisach-type model based on differential operators for rate-dependent hysteretic dynamics. Phys. B Condens. Matter 2015, 470, 102–106. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Melnik, R. A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with minor loops and frequency dependence. J. Magn. Magn. Mater. 2016, 410, 144–149. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Melnik, R. A hysteresis model for ferroelectric ceramics with mechanism for minor loops. Phys. Lett. A 2017, 381, 344–350. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Melnik, R. Vibration energy harvesting based on stress-induced polarization switching: A phase field approach. Smart Mater. Struct. 2017, 26, 065022. [Google Scholar] [CrossRef]
- He, X.; Wang, D.; Wang, L.; Melnik, R. Modelling of creep hysteresis in ferroelectrics. Philos. Mag. 2018, 98, 1256–1271. [Google Scholar] [CrossRef]
- Wang, D.; Du, H.; Wang, L.; Melnik, R. A phase field approach for the fully coupled thermo-electro-mechanical dynamics of nanoscale ferroelectric actuators. Smart Mater. Struct. 2018, 27, 055012. [Google Scholar] [CrossRef]
- Wang, D.; Melnik, R.; Wang, L. Material influence in newly proposed ferroelectric energy harvesters. J. Intell. Mater. Syst. Struct. 2018, 29, 3305–3316. [Google Scholar] [CrossRef]
- He, X.; Du, H.; Tong, Z.; Wang, D.; Wang, L.; Melnik, R. A dynamic hysteresis model based on Landau phenomenological theory of fatigue phenomenon in ferroelectrics. Mater. Today Commun. 2020, 25, 101479. [Google Scholar] [CrossRef]
- Du, H.; Wang, D.; Wang, L.; Melnik, R. Investigation on energy dissipation by polarization switching in ferroelectric materials and the feasibility of its application in sound wave absorption. Appl. Phys. A 2020, 126, 1–15. [Google Scholar] [CrossRef]
- Srivastava, A.; Xu, R.; Escoto, A.; Ward, C.; Patel, R.V. Design of an ultra thin strain sensor using superelastic nitinol for applications in minimally invasive surgery. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 794–799. [Google Scholar]
- Karami, M.; Chen, X. Nanomechanics of shape memory alloys. Mater. Today Adv. 2021, 10, 100141. [Google Scholar] [CrossRef]
- Dhote, R.; Melnik, R.; Zu, J. Dynamic thermo-mechanical coupling and size effects in finite shape memory alloy nanostructures. Comput. Mater. Sci. 2012, 63, 105–117. [Google Scholar] [CrossRef]
- Dhote, R.; Melnik, R.; Zu, J. Dynamic multi-axial behavior of shape memory alloy nanowires with coupled thermo-mechanical phase-field models. Meccanica 2014, 49, 1561–1575. [Google Scholar] [CrossRef]
- Koledov, V.; Von Gratowski, S.; Nguyen, H.D.; Thi, H.L.N.; Vu, H.K.; Santos, G.N.; Oo, T.Z. Nano-manipulation and nano-assembling using shape memory alloy nanogripper of metal oxide and semiconductor single nanowires and nanoparticles for biological nanosensors. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 035003. [Google Scholar] [CrossRef]
- Kim, D.H.; Lu, N.; Ma, R.; Kim, Y.S.; Kim, R.H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A. Epidermal electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.W.; Tan, Y.J.; Yao, H.; Li, S.; See, H.H.; Hon, M.; Ng, K.A.; Xiong, B.; Ho, J.S.; Tee, B.C. A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Sci. Robot. 2019, 4, eaax2198. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Wang, H.; Pastorin, G.; Lee, C. Development of a flexible and disposable microneedle-fluidic-system with finger-driven drug loading and delivery functions for inflammation treatment. J. Microelectromech. Syst. 2015, 24, 565–574. [Google Scholar] [CrossRef]
- Hassani, F.A.; Shi, Q.; Wen, F.; He, T.; Haroun, A.; Yang, Y.; Feng, Y.; Lee, C. Smart materials for smart healthcare–moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater. Med. 2020, 1, 92–124. [Google Scholar] [CrossRef]
- van der Schaar, P.J.; Dijksman, J.F.; Broekhuizen-de Gast, H.; Shimizu, J.; van Lelyveld, N.; Zou, H.; Iordanov, V.; Wanke, C.; Siersema, P.D. A novel ingestible electronic drug delivery and monitoring device. Gastrointest. Endosc. 2013, 78, 520–528. [Google Scholar] [CrossRef]
- Khodagholy, D.; Gelinas, J.N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G.G.; Buzsáki, G. NeuroGrid: Recording action potentials from the surface of the brain. Nat. Neurosci. 2015, 18, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Arab Hassani, F.; Jin, H.; Yokota, T.; Someya, T.; Thakor, N. Soft sensors for a sensing-actuation system with high bladder voiding efficiency. Sci. Adv. 2020, 6, eaba0412. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.; Sun, Z.; He, T.; Shi, Q.; Zhu, M.; Zhang, Z.; Li, L.; Zhang, T.; Lee, C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 2020, 7, 2000261. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Liu, Z.; Li, N.; Shi, B.; Zou, Y.; Xie, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q. Symbiotic cardiac pacemaker. Nat. Commun. 2019, 10, 1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.I.; Son, J.H.; Hwang, G.T.; Jeong, C.K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S.H.; Byun, M.; Wang, Z.L. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014, 26, 2514–2520. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, W.; Deng, Y.; Fu, B.; Zhu, P.; Yu, Y.; Li, J.; Guo, J. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 2020, 73, 104773. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, N.; Liu, J.; Wen, Z.; Sun, X.; Lee, S.T.; Sun, B. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 2018, 12, 2893–2899. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Huang, Z.; Zhou, X.; Li, P.; Wang, Y.; Huang, Z.; Su, M.; Ren, W.; Li, F.; Li, M. Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv. Mater. 2017, 29, 1703236. [Google Scholar] [CrossRef]
- Han, D.; Morde, R.S.; Mariani, S.; La Mattina, A.A.; Vignali, E.; Yang, C.; Barillaro, G.; Lee, H. 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv. Funct. Mater. 2020, 30, 1909197. [Google Scholar] [CrossRef]
- Kim, J.; Lee, M.; Shim, H.J.; Ghaffari, R.; Cho, H.R.; Son, D.; Jung, Y.H.; Soh, M.; Choi, C.; Jung, S. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lew Yan Voon, L.; Galeriu, C.; Lassen, B.; Willatzen, M.; Melnik, R. Electronic structure of wurtzite quantum dots with cylindrical symmetry. Appl. Phys. Lett. 2005, 87, 041906. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, S.; Takhtamirov, E.; Melnik, R. Coupled multi-physics models for the analysis of the conduction and valence band eigenenergies in cylindrical quantum dots. Acta Phys.-Pol.-Ser. Gen. Phys. 2012, 121, 85. [Google Scholar] [CrossRef]
- Prabhakar, S.; Melnik, R.; Bonilla, L.L. Coupled multiphysics, barrier localization, and critical radius effects in embedded nanowire superlattices. J. Appl. Phys. 2013, 113, 244306. [Google Scholar] [CrossRef] [Green Version]
- Takhtamirov, E.; Melnik, R.V. Spin–orbit interaction in three-dimensionally bounded semiconductor nanostructures. New J. Phys. 2010, 12, 123006. [Google Scholar] [CrossRef] [Green Version]
- Takhtamirov, E.; Melnik, R.V. Excitation of plasmons in a two-dimensional electron gas with defects by microwaves: Wake-field method. Phys. Rev. B 2011, 84, 045313. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M.; Sium, F.S.; Islam, F.; Choudhury, S.M. A review on plasmonic and metamaterial based biosensing platforms for virus detection. Sens. Bio-Sens. Res. 2021, 33, 100429. [Google Scholar] [CrossRef]
- Xavier, J.; Yu, D.; Jones, C.; Zossimova, E.; Vollmer, F. Quantum nanophotonic and nanoplasmonic sensing: Towards quantum optical bioscience laboratories on chip. Nanophotonics 2021, 10, 1387–1435. [Google Scholar] [CrossRef]
- Patil, S.R.; Melnik, R.V. Thermoelectromechanical effects in quantum dots. Nanotechnology 2009, 20, 125402. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.R.; Melnik, R.V. Coupled electromechanical effects in II–VI group finite length semiconductor nanowires. J. Phys. D Appl. Phys. 2009, 42, 145113. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.R.; Melnik, R. Thermopiezoelectric effects on optoelectronic properties of CdTe/ZnTe quantum wires. Phys. Status Solidi (A) 2009, 206, 960–964. [Google Scholar] [CrossRef]
- Patil, S.R.; Melnik, R. Defects-enhanced flexoelectricity in nanostructures. Procedia Eng. 2009, 1, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Bahrami-Samani, M.; Patil, S.R.; Melnik, R. Higher-order nonlinear electromechanical effects in wurtzite GaN/AlN quantum dots. J. Phys. Condens. Matter 2010, 22, 495301. [Google Scholar] [CrossRef] [Green Version]
- Krishnaswamy, J.A.; Buroni, F.C.; Melnik, R.; Rodriguez-Tembleque, L.; Saez, A. Advanced modeling of lead-free piezocomposites: The role of nonlocal and nonlinear effects. Compos. Struct. 2020, 238, 111967. [Google Scholar] [CrossRef]
- Chae, I.; Jeong, C.K.; Ounaies, Z.; Kim, S.H. Review on electromechanical coupling properties of biomaterials. ACS Appl. Bio Mater. 2018, 1, 936–953. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J.B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 2017, 11, 4507–4513. [Google Scholar] [CrossRef]
- Shi, J.X.; Lei, X.W.; Natsuki, T. Review on carbon nanomaterials-based nano-mass and nano-force sensors by theoretical analysis of vibration behavior. Sensors 2021, 21, 1907. [Google Scholar] [CrossRef]
- Fallahpour, R.; Melnik, R. Nonlinear vibration analysis of nanowire resonators for ultra-high resolution mass sensing. Measurement 2021, 175, 109136. [Google Scholar] [CrossRef]
- Fallahpour, R.; Melnik, R. A molecular dynamics study of nanowire resonator bio-object detection. J. Mech. Med. Biol. 2021, 22, 2250003. [Google Scholar] [CrossRef]
- Deshwal, D.; Narwal, A.K. An extensive review of nanotubes-based mass sensors. J. Micro Nano-Manuf. 2021, 9, 020801. [Google Scholar] [CrossRef]
- Wächtler, C.W.; Celestino, A.; Croy, A.; Eisfeld, A. Nanoelectromechanical rotary current rectifier. Phys. Rev. Res. 2021, 3, L032020. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, H.; Li, G.; Aluru, N. Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures. Phys. Rev. B 2006, 74, 064110. [Google Scholar] [CrossRef] [Green Version]
- Nag, A.; Alahi, M.; Eshrat, E.; Mukhopadhyay, S.C.; Liu, Z. Multi-walled carbon nanotubes-based sensors for strain sensing applications. Sensors 2021, 21, 1261. [Google Scholar] [CrossRef]
- Tang, Z.H.; Li, Y.Q.; Huang, P.; Wang, H.; Hu, N.; Fu, S.Y. Comprehensive evaluation of the piezoresistive behavior of carbon nanotube-based composite strain sensors. Compos. Sci. Technol. 2021, 208, 108761. [Google Scholar] [CrossRef]
- Chung, D. A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. J. Mater. Sci. 2020, 55, 15367–15396. [Google Scholar] [CrossRef]
- Korkusinski, M.; Hawrylak, P. Quantum strain sensor with a topological insulator HgTe quantum dot. Sci. Rep. 2014, 4, 4903. [Google Scholar] [CrossRef] [Green Version]
- Lassen, B.; Melnik, R.; Willatzen, M. Spurious solutions in the multiband effective mass theory applied to low dimensional nanostructures. Commun. Comput. Phys. 2009, 6, 699. [Google Scholar] [CrossRef]
- Ma, X.; Li, K.; Zhang, Z.; Jiang, Y.; Xu, Y.; Song, G. Stable finite element method of eight-band k· p model without spurious solutions and numerical study of interfaces in heterostructures. J. Appl. Phys. 2014, 116, 235702. [Google Scholar] [CrossRef]
- Barettin, D.; Pecchia, A.; der Maur, M.A.; Di Carlo, A.; Lassen, B.; Willatzen, M. Electromechanical field effects in InAs/GaAs quantum dots based on continuum kp and atomistic tight-binding methods. Comput. Mater. Sci. 2021, 197, 110678. [Google Scholar] [CrossRef]
- Prabhakar, S.; Melnik, R. Influence of electromechanical effects and wetting layers on band structures of AlN/GaN quantum dots and spin control. J. Appl. Phys. 2010, 108, 064330. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, S.; Melnik, R.V.; Bonilla, L.L. The influence of anisotropic gate potentials on the phonon induced spin-flip rate in GaAs quantum dots. Appl. Phys. Lett. 2012, 100, 023108. [Google Scholar] [CrossRef] [Green Version]
- Alvaro, M.; Bonilla, L.; Carretero, M.; Melnik, R.; Prabhakar, S. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models. J. Phys. Condens. Matter 2013, 25, 335301. [Google Scholar] [CrossRef]
- Prabhakar, S.; Melnik, R.; Bonilla, L.L. Spin transition rates in nanowire superlattices: Rashba spin–orbit coupling effects. J. Phys. D Appl. Phys. 2013, 46, 265302. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, S.; Melnik, R.; Bonilla, L.L.; Raynolds, J.E. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices. Appl. Phys. Lett. 2013, 103, 233112. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, S.; Melnik, R. Relaxation of electron–hole spins in strained graphene nanoribbons. J. Phys. Condens. Matter 2015, 27, 435801. [Google Scholar] [CrossRef]
- Prabhakar, S.; Melnik, R.; Bonilla, L. Pseudospin lifetime in relaxed-shape armchair graphene nanoribbons due to in-plane phonon modes. Phys. Rev. B 2016, 93, 115417. [Google Scholar] [CrossRef] [Green Version]
- Fuji, Y.; Higashi, Y.; Kaji, S.; Masunishi, K.; Nagata, T.; Yuzawa, A.; Okamoto, K.; Baba, S.; Ono, T.; Hara, M. Highly sensitive spintronic strain-gauge sensor and Spin-MEMS microphone. Jpn. J. Appl. Phys. 2019, 58, SD0802. [Google Scholar] [CrossRef] [Green Version]
- Qin, M.S.; Ye, X.G.; Zhu, P.F.; Xu, W.Z.; Liang, J.; Liu, K.; Liao, Z.M. Strain-dependent resistance and giant gauge factor in monolayer WSe2. Chin. Phys. B 2021, 30, 097203. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Wang, Z.; Liu, Y.; Wang, B. Topological insulator GMR straintronics for low-power strain sensors. ACS Appl. Mater. Interfaces 2018, 10, 28789–28795. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Mi, W. Mechanically tunable magnetic and electronic transport properties of flexible magnetic films and their heterostructures for spintronics. J. Mater. Chem. C 2021, 9, 9400–9430. [Google Scholar] [CrossRef]
- Ku, P.; Chang-Hasnain, C.; Chuang, S. Slow light in semiconductor heterostructures. J. Phys. D Appl. Phys. 2007, 40, R93. [Google Scholar] [CrossRef]
- Ito, H.; Kusunoki, Y.; Maeda, J.; Akiyama, D.; Kodama, N.; Abe, H.; Tetsuya, R.; Baba, T. Wide beam steering by slow-light waveguide gratings and a prism lens. Optica 2020, 7, 47–52. [Google Scholar] [CrossRef]
- Car, R.; Angelis, F.D.; Giannozzi, P.; Marzari, N. First-principles molecular dynamics. In Handbook of Materials Modeling; Springer: Dordrecht, The Netherlands, 2005; pp. 59–76. [Google Scholar]
- Markland, T.E.; Ceriotti, M. Nuclear quantum effects enter the mainstream. Nat. Rev. Chem. 2018, 2, 0109. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Voth, G.A. Using machine learning to greatly accelerate path integral ab initio molecular dynamics. J. Chem. Theory Comput. 2022, 18, 599–604. [Google Scholar] [CrossRef]
- Prabhakar, S.; Melnik, R.V.; Neittaanmäki, P.; Tiihonen, T. Coupled electromechanical effects in wurtzite quantum dots with wetting layers in gate controlled electric fields: The multiband case. Phys. E Low-Dimens. Syst. Nanostruct. 2012, 46, 97–104. [Google Scholar] [CrossRef]
- Prabhakar, S.; Melnik, R.; Sebetci, A. Rashba spin-orbit coupling effects in armchair graphene nanoribbons. In AIP Conference Proceedings; AIP Publishing LLC.: Fethiye, Turkey, 2015; Volume 1653, p. 020088. [Google Scholar]
- Prabhakar, S.; Melnik, R.V.; Bonilla, L. Modeling and analysis of spin splitting in strained graphene nanoribbons. In Proceedings of the 30th European Conference on Modelling and Simulation (ECMS-2016), Germany; 2016; pp. 388–392. [Google Scholar]
- Prabhakar, S.; Melnik, R.; Bonilla, L. Band diagram of strained graphene nanoribbons. In Nanophotonics VI; SPIE: Brussels, Belgium, 2016; Volume 9884, pp. 60–65. [Google Scholar]
- Prabhakar, S.; Melnik, R. Ripples in graphene sheets and nanoribbons. Adv. Sci. Technol. 2017, 100, 87–92. [Google Scholar]
- Prabhakar, S.; Melnik, R.; Bonilla, L. Strain engineering of graphene nanoribbons: Pseudomagnetic versus external magnetic fields. Eur. Phys. J. B 2017, 90, 92. [Google Scholar] [CrossRef]
- Prabhakar, S.; Melnik, R. Ab initio calculations of strain induced relaxed shape armchair graphene nanoribbon. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 114, 113648. [Google Scholar] [CrossRef] [Green Version]
- Lassen, B.; Melnik, R.; Willatzen, M.; Voon, L.L.Y. Non-linear strain theory for low-dimensional semiconductor structures. Nonlinear Anal. Theory, Methods Appl. 2005, 63, e1607–e1617. [Google Scholar] [CrossRef]
- Melnik, R.; Lassen, B.; Voon, L.L.Y.; Willatzen, M.; Galeriu, C. Nonlinear strain models in the analysis of quantum dot molecules. Nonlinear Anal. Theory, Methods Appl. 2005, 63, e2165–e2176. [Google Scholar] [CrossRef]
- Melnik, R.; Lassen, B.; Voon, L.L.Y.; Willatzen, M.; Galeriu, C. Accounting for nonlinearities in mathematical modelling of quantum dot molecules. In Conference Publications; American Institute of Mathematical Sciences: Pomona, CA, USA, 2005; Volume 2005, p. 642. [Google Scholar]
- Lassen, B.; Willatzen, M.; Melnik, R.; Yan Voon, L.L. A general treatment of deformation effects in Hamiltonians for inhomogeneous crystalline materials. J. Math. Phys. 2005, 46, 112102. [Google Scholar] [CrossRef]
- Lassen, B.; Willatzen, M.; Melnik, R. Inclusion of nonlinear strain effects in the Hamiltonian for nanoscale semiconductor structures. J. Comput. Theor. Nanosci. 2006, 3, 588–597. [Google Scholar] [CrossRef]
- Melnik, R.; Mahapatra, R. Coupled effects in quantum dot nanostructures with nonlinear strain and bridging modelling scales. Comput. Struct. 2007, 85, 698–711. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Melnik, R.V. Nonlinear dynamics of shape memory alloy oscillators in tuning structural vibration frequencies. Mechatronics 2012, 22, 1085–1096. [Google Scholar] [CrossRef]
- He, X.; Tong, Z.; Du, H.; Wang, D.; Wang, L.; Melnik, R. Modeling microstructure evolution in shape memory alloy rods via Legendre wavelets collocation method. J. Mater. Sci. 2019, 54, 14400–14413. [Google Scholar] [CrossRef] [Green Version]
- Dhote, R.P.; Fabrizio, M.; Melnik, R.; Zu, J. Hysteresis phenomena in shape memory alloys by non-isothermal Ginzburg–Landau models. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2549–2561. [Google Scholar] [CrossRef]
- Dhote, R.; Fabrizio, M.; Melnik, R.; Zu, J. A three-dimensional non-isothermal Ginzburg–Landau phase-field model for shape memory alloys. Model. Simul. Mater. Sci. Eng. 2014, 22, 085011. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, D.R.; Melnik, R. Finite element modelling and simulation of phase transformations in shape memory alloy thin films. Int. J. Multiscale Comput. Eng. 2007, 5, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; He, X.; Wang, L.; Melnik, R. Analysis of shape memory alloy vibrator using harmonic balance method. Appl. Phys. A 2020, 126, 568. [Google Scholar] [CrossRef]
- Dhote, R.; Gomez, H.; Melnik, R.; Zu, J. Isogeometric analysis of a dynamic thermo-mechanical phase-field model applied to shape memory alloys. Comput. Mech. 2014, 53, 1235–1250. [Google Scholar] [CrossRef]
- Dhote, R.; Gomez, H.; Melnik, R.; Zu, J. 3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis. Comput. Struct. 2015, 154, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Melnik, R.; Roberts, A.; Thomas, K. Computing dynamics of copper-based SMA via centre manifold reduction of 3D models. Comput. Mater. Sci. 2000, 18, 255–268. [Google Scholar] [CrossRef]
- Melnik, R.V.; Roberts, A. Modelling nonlinear dynamics of shape-memory-alloys with approximate models of coupled thermoelasticity. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Und Mech. Appl. Math. Mech. 2003, 83, 93–104. [Google Scholar] [CrossRef]
- Melnik, R.V.; Roberts, A.H. Computational models for multi-scale coupled dynamic problems. Future Gener. Comput. Syst. 2004, 20, 453–464. [Google Scholar] [CrossRef]
- Paliy, M.; Melnik, R.; Shapiro, B.A. Molecular dynamics study of the RNA ring nanostructure: A phenomenon of self-stabilization. Phys. Biol. 2009, 6, 046003. [Google Scholar] [CrossRef] [Green Version]
- Paliy, M.; Melnik, R.; Shapiro, B.A. Coarse-graining RNA nanostructures for molecular dynamics simulations. Phys. Biol. 2010, 7, 036001. [Google Scholar] [CrossRef] [Green Version]
- Badu, S.; Melnik, R.; Paliy, M.; Prabhakar, S.; Sebetci, A.; Shapiro, B. Modeling of RNA nanotubes using molecular dynamics simulation. Eur. Biophys. J. 2014, 43, 555–564. [Google Scholar] [CrossRef]
- Badu, S.; Melnik, R.; Prabhakar, S. Studying properties of RNA nanotubes via molecular dynamics. In Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2015; SPIE: Philadelphia, PA, USA, 2015; Volume 9434, pp. 66–71. [Google Scholar]
- Badu, S.; Prabhakar, S.; Melnik, R. Coarse-grained models of RNA nanotubes for large time scale studies in biomedical applications. Biomedicines 2020, 8, 195. [Google Scholar] [CrossRef] [PubMed]
- Badu, S.; Melnik, R.; Singh, S. Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments. Mol. Simul. 2020, 46, 1094–1115. [Google Scholar] [CrossRef]
- Tîlmaciu, C.M.; Morris, M.C. Carbon nanotube biosensors. Front. Chem. 2015, 3, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D. Application of nanotechnology in the COVID-19 pandemic. Int. J. Nanomed. 2021, 16, 623. [Google Scholar] [CrossRef] [PubMed]
- Pinals, R.L.; Ledesma, F.; Yang, D.; Navarro, N.; Jeong, S.; Pak, J.E.; Kuo, L.; Chuang, Y.C.; Cheng, Y.W.; Sun, H.Y. Rapid SARS-CoV-2 spike protein detection by carbon nanotube-based near-infrared nanosensors. Nano Lett. 2021, 21, 2272–2280. [Google Scholar] [CrossRef]
- Bardhan, N.M.; Jansen, P.; Belcher, A.M. Graphene, carbon nanotube and plasmonic nanosensors for detection of viral pathogens: Opportunities for rapid testing in pandemics like COVID-19. Front. Nanotechnol. 2021, 64. [Google Scholar] [CrossRef]
- Taleghani, N.; Taghipour, F. Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. Biosens. Bioelectron. 2021, 174, 112830. [Google Scholar] [CrossRef]
- Li, C.; Soleyman, R.; Kohandel, M.; Cappellaro, P. SARS-CoV-2 quantum sensor based on nitrogen-vacancy centers in diamond. Nano Lett. 2021, 22, 43–49. [Google Scholar] [CrossRef]
- Sharma, S.; Saini, S.; Khangembam, M.; Singh, V. Nanomaterials-based biosensors for COVID-19 detection—A review. IEEE Sens. J. 2020, 21, 5598–5611. [Google Scholar] [CrossRef]
- Ozkan, U.S.; Ozkan, C. Handbook of Graphene, Volume 5: Energy, Healthcare, and Environmental Applications; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Palys, B. Handbook of Graphene, Volume 6: Biosensors and Advanced Sensors; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Sinha, N.; Mahapatra, D.R.; Yeowa, J.; Melnik, R.; Jaffray, D. Characterization of self-assembly and evolution in carbon nanotube thin film field emitter. In Proceedings of the 2006 Sixth IEEE Conference on Nanotechnology, Cincinnati, OH, USA, 17–20 July 2006; Volume 2, pp. 673–676. [Google Scholar]
- Sinha, N.; Mahapatra, D.R.; Yeow, J.; Melnik, R. Multi-mode phonon controlled field emission from carbon nanotubes: Modeling and experiments. In Proceedings of the 2007 7th IEEE Conference on Nanotechnology (IEEE NANO), Hong Kong, China, 2–5 August 2007; pp. 961–964. [Google Scholar]
- Sinha, N.; Mahapatra, D.R.; Yeow, J.; Melnik, R. Modeling the field emission current fluctuation in carbon nanotube thin films. arXiv 2007, arXiv:0704.1682. [Google Scholar]
- Sinha, N.; Mahapatra, D.R.; Yeow, J.; Melnik, R.; Jaffray, D. Carbon nanotube thin film field emitting diode: Understanding the system response based on multiphysics modeling. J. Comput. Theor. Nanosci. 2007, 4, 535–549. [Google Scholar] [CrossRef]
- Mahapatra, R.D.; Sinha, N.; Melnik, R.; Yeow, J. Field emission properties of carbon nanotube arrays with defects and impurities. In Proceedings of the 11th Annual NSTI Nanotech Conference, Boston, MA, USA, 1–5 June 2008; pp. 729–732. [Google Scholar]
- Mahapatra, R.D.; Sinha, N.; Anand, S.; Krishnan, R.; Vikram, N.; Melnik, R.; Yeow, J. Design optimization of field emission from a stacked carbon nanotube array. In Proceedings of the NSTI Nanotech Conference; CRC Press-Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 55–58. [Google Scholar]
- Mahapatra, D.R.; Sinha, N.; Yeow, J.; Melnik, R. Field emission from strained carbon nanotubes on cathode substrate. Appl. Surf. Sci. 2008, 255, 1959–1966. [Google Scholar] [CrossRef]
- Sinha, N.; Mahapatra, D.R.; Sun, Y.; Yeow, J.; Melnik, R.; Jaffray, D. Electromechanical interactions in a carbon nanotube based thin film field emitting diode. Nanotechnology 2007, 19, 025701. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, D.R.; Anand, S.; Sinha, N.; Melnik, R. Stabilizing a pulsed field emission from an array of carbon nanotubes. In Carbon Nanotubes, Graphene, and Associated Devices II; SPIE: Philadelphia, PA, USA, 2009; Volume 7399, pp. 74–83. [Google Scholar]
- Mahapatra, D.R.; Anand, S.; Sinha, N.; Melnik, R. High resolution surface imaging using a carbon nanotube array with pointed height distribution. In Proceedings of the 12th Annual NSTI Nanotech Conference Nanotech Conference & Expo 2009 Technical Proceedings—Nanotechnology 2009; Taylor and Francis: New York, NY, USA, 2009; pp. 310–313. [Google Scholar]
- Roy Mahapatra, D.; Anand, S.; Sinha, N.; Melnik, R. Enhancing field emission from a carbon nanotube array by lateral control of electrodynamic force field. Mol. Simul. 2009, 35, 512–519. [Google Scholar] [CrossRef]
- Mahapatra, D.R.; Sinha, N.; Melnik, R. Degradation and failure of field emitting carbon nanotube arrays. J. Nanosci. Nanotechnol. 2011, 11, 3911–3915. [Google Scholar] [CrossRef]
- Anand, S.V.; Roy Mahapatra, D.; Sinha, N.; Yeow, J.; Melnik, R. Field emission efficiency of a carbon nanotube array under parasitic nonlinearities. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, New York, NY, USA, 15 June 2010; Volume 44472, pp. 609–618. [Google Scholar]
- Hendler-Neumark, A.; Bisker, G. Fluorescent single-walled carbon nanotubes for protein detection. Sensors 2019, 19, 5403. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Yang, F.; Lu, W.; Chen, W.; Huang, S.; Li, N. A highly stretchable and breathable polyurethane fibrous membrane sensor for human motion monitoring and voice signal recognition. Sens. Actuators A Phys. 2021, 331, 112974. [Google Scholar] [CrossRef]
- Arash, B.; Wang, Q. Detection of gas atoms with carbon nanotubes. Sci. Rep. 2013, 3, 1782. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Zhang, Y.; Jin, W.; Hu, Y.; Cui, Y. Carbon nanotube field-effect transistor-based chemical and biological sensors. Sensors 2021, 21, 995. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Fischer, A.; Goodwin, Z.A.; Mostofi, A.A.; Lischner, J.; Kennes, D.M.; Klebl, L. Unconventional superconductivity in magic-angle twisted trilayer graphene. NPJ Quantum Mater. 2022, 7, 5. [Google Scholar] [CrossRef]
- Seifert, P.; Lu, X.; Stepanov, P.; Duran Retamal, J.R.; Moore, J.N.; Fong, K.C.; Principi, A.; Efetov, D.K. Magic-Angle bilayer graphene nanocalorimeters: Toward broadband, energy-resolving single photon detection. Nano Lett. 2020, 20, 3459–3464. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.P.; Sabu, C.; Swamy, N.K.; Anto, A.; Gangadharappa, H.; Pramod, K. Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing. Biosens. Bioelectron. 2021, 184, 113245. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yin, S.; Huang, Y.; Zhang, X.; Zhang, W.; Jiang, G.; Zhu, H.; Wan, C.; Fu, W. Graphene oxide/hexylamine superlattice field-effect biochemical sensors. Adv. Funct. Mater. 2021, 31, 2010563. [Google Scholar] [CrossRef]
- Wiraja, C.; Yeo, D.C.; Lio, D.C.S.; Zheng, M.; Xu, C. Functional imaging with nucleic-acid-based sensors: Technology, application and future healthcare prospects. ChemBioChem 2019, 20, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Badu, S.; Prabhakar, S.; Melnik, R.; Singh, S. Atomistic to continuum model for studying mechanical properties of RNA nanotubes. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 396–407. [Google Scholar] [CrossRef]
- Puster, M.; Rodríguez-Manzo, J.A.; Balan, A.; Drndic, M. Toward sensitive graphene nanoribbon–nanopore devices by preventing electron beam-induced damage. ACS Nano 2013, 7, 11283–11289. [Google Scholar] [CrossRef]
- Wang, T.H. Micro and nanotechnologies enhanced biomolecular sensing. Biosensors 2013, 3, 283–285. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Li, H.; Liang, H.; Qiang, W.; Xu, D. Disposable electrochemical aptasensor array by using in situ DNA hybridization inducing silver nanoparticles aggregate for signal amplification. Anal. Chem. 2014, 86, 2775–2783. [Google Scholar] [CrossRef]
- Medintz, I.L.; Konnert, J.; Clapp, A.; Stanish, I.; Twigg, M.; Mattoussi, H.; Mauro, J.M.; Deschamps, J. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl. Acad. Sci. USA 2004, 101, 9612–9617. [Google Scholar] [CrossRef] [Green Version]
- Evanko, D. Bioluminescent quantum dots. Nat. Methods 2006, 3, 240. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Duan, H.; Mohs, A.M.; Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 2008, 60, 1226–1240. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.Y.; Yeh, H.C.; Kuroki, M.T.; Wang, T.H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 2005, 4, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.y.; Hu, J. Single quantum dot-based nanosensor for multiple DNA detection. Anal. Chem. 2010, 82, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Kawai, T. DNA electronics. Phys. E Low-Dimens. Syst. Nanostruct. 2006, 33, 1–12. [Google Scholar] [CrossRef]
- Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nanosci. Technol. Collect. Rev. Nat. J. 2010, 174–184. [Google Scholar] [CrossRef]
- Das, S.; Ohno, Y.; Kawarada, H. Special issue on carbon-based electronics. Carbon 2021, 182, 856. [Google Scholar] [CrossRef]
- Yeh, I.C.; Hummer, G. Nucleic acid transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. USA 2004, 101, 12177–12182. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.; Maragakis, P.; Papaloukas, C.; Kaxiras, E. DNA nucleoside interaction and identification with carbon nanotubes. Nano Lett. 2007, 7, 45–50. [Google Scholar] [CrossRef]
- Ghosh, S.; Chen, Y.; Sebastian, J.; George, A.; Dutta, M.; Stroscio, M.A. A study on the response of FRET based DNA aptasensors in intracellular environment. Sci. Rep. 2020, 10, 13250. [Google Scholar] [CrossRef]
- Munir, A.; Bozal-Palabiyik, B.; Eren, G.; Shah, A.; Ali, S.; Uddin, N.; Uslu, B. Electrochemical biosensor design with multi-walled carbon nanotube to display DNA-Schiff base interaction. Electroanalysis 2021, 33, 1761–1770. [Google Scholar] [CrossRef]
- Monferrer, A.; Zhang, D.; Lushnikov, A.J.; Hermann, T. Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules. Nat. Commun. 2019, 10, 608. [Google Scholar] [CrossRef] [PubMed]
- Badu, S.; Melnik, R.; Prabhakar, S. RNA nanostructures in physiological solutions: Multiscale modeling and applications. Phys. Liq. Matter Mod. Probl. 2015, 171, 337–355. [Google Scholar]
- Zheng, X.T.; Tan, Y.N. Recent development of nucleic acid nanosensors to detect sequence-specific binding interactions: From metal ions, small molecules to proteins and pathogens. Sens. Int. 2020, 1, 100034. [Google Scholar] [CrossRef] [PubMed]
- Yeo, D.C.; Wiraja, C.; Paller, A.S.; Mirkin, C.A.; Xu, C. Abnormal scar identification with spherical-nucleic-acid technology. Nat. Biomed. Eng. 2018, 2, 227–238. [Google Scholar] [CrossRef]
- Wong, I.Y.; Almquist, B.D.; Melosh, N.A. Dynamic actuation using nano-bio interfaces. Mater. Today 2010, 13, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.; Willner, B.; Willner, I. Biomolecule–nanoparticle hybrids as functional units for nanobiotechnology. Chem. Commun. 2007, 4, 323–332. [Google Scholar] [CrossRef]
- Guo, S.; Dong, S. Biomolecule-nanoparticle hybrids for electrochemical biosensors. TrAC Trends Anal. Chem. 2009, 28, 96–109. [Google Scholar] [CrossRef]
- Yang, X.D.; Mahapatra, D.R.; Melnik, R.V. Simulation of RNA silencing pathway for time-dependent transgene transcription rate. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2007; Volume 952, pp. 229–237. [Google Scholar]
- Rao, A.; Renumadhavi, C.; Chandra, M.G.; Srinivasan, R. Compressed sensing methods for DNA microarrays, RNA interference, and metagenomics. J. Comput. Biol. 2015, 22, 145–158. [Google Scholar] [CrossRef]
- Chen, A.A.; Derfus, A.M.; Khetani, S.R.; Bhatia, S.N. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res. 2005, 33, e190. [Google Scholar] [CrossRef] [Green Version]
- Klotsa, D.; Römer, R.A.; Turner, M.S. Electronic transport in DNA. Biophys. J. 2005, 89, 2187–2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagerqvist, J.; Zwolak, M.; Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 2006, 6, 779–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, E.; Lyra, M.; de Moura, F. Electronic transport in DNA sequences: The role of correlations and inter-strand coupling. Phys. A Stat. Mech. Its Appl. 2006, 370, 625–631. [Google Scholar] [CrossRef]
- Kundu, S.; Karmakar, S. Graphene nanopore devices for DNA sequencing: A tight-binding model study. Phys. B Condens. Matter 2021, 623, 413334. [Google Scholar] [CrossRef]
- Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52. [Google Scholar] [CrossRef]
- Lu, C.H.; Willner, B.; Willner, I. DNA nanotechnology: From sensing and DNA machines to drug-delivery systems. ACS Nano 2013, 7, 8320–8332. [Google Scholar] [CrossRef]
- Göpfrich, K.; Keyser, U.F. DNA nanotechnology for building sensors, nanopores and ion-channels. Biol. Bio-Inspired Nanomater. 2019, 1174, 331–370. [Google Scholar]
- Hoiles, W.; Krishnamurthy, V.; Cornell, B. Dynamics of Engineered Artificial Membranes and Biosensors; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Osaki, T.; Takeuchi, S. Artificial cell membrane systems for biosensing applications. Anal. Chem. 2017, 89, 216–231. [Google Scholar] [CrossRef]
- Klostranec, J.M.; Chan, W.C. Quantum dots in biological and biomedical research: Recent progress and present challenges. Adv. Mater. 2006, 18, 1953–1964. [Google Scholar] [CrossRef]
- Şahin, S.; Ünlü, C.; Trabzon, L. Affinity biosensors developed with quantum dots in microfluidic systems. Emergent Mater. 2021, 4, 187–209. [Google Scholar] [CrossRef]
- O’Brien, G.A.; Quinn, A.J.; Tanner, D.A.; Redmond, G. A single polymer nanowire photodetector. Adv. Mater. 2006, 18, 2379–2383. [Google Scholar] [CrossRef]
- Xu, M.; Melnik, R.V.; Borup, U. Modeling anti-islanding protection devices for photovoltaic systems. Renew. Energy 2004, 29, 2195–2216. [Google Scholar] [CrossRef]
- Mishu, M.K.; Rokonuzzaman, M.; Pasupuleti, J.; Shakeri, M.; Rahman, K.S.; Binzaid, S.; Tiong, S.K.; Amin, N. An adaptive TE-PV hybrid energy harvesting system for self-powered iot sensor applications. Sensors 2021, 21, 2604. [Google Scholar] [CrossRef] [PubMed]
- Mishchenko, A.; Tu, J.; Cao, Y.; Gorbachev, R.V.; Wallbank, J.; Greenaway, M.; Morozov, V.; Morozov, S.; Zhu, M.; Wong, S. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 2014, 9, 808–813. [Google Scholar] [CrossRef]
- Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R.I.; Liu, H. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: A review. Chem. Soc. Rev. 2014, 43, 6920–6937. [Google Scholar] [CrossRef] [PubMed]
- Luong, H.M.; Pham, M.T.; Guin, T.; Madhogaria, R.P.; Phan, M.H.; Larsen, G.K.; Nguyen, T.D. Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. Nat. Commun. 2021, 12, 2414. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 2004, 16, R829. [Google Scholar] [CrossRef]
- Wen, Z.; Shen, Q.; Sun, X. Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 2017, 9, 45. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Jönsson, P.G.; Zhao, Z. Optimization of high-quality vertically aligned ZnO rod arrays by the response surface methodology. J. Alloys Compd. 2015, 626, 180–188. [Google Scholar] [CrossRef]
- Vittal, R.; Ho, K.C. Zinc oxide based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017, 70, 920–935. [Google Scholar] [CrossRef]
- Guo, J.; Wen, B.; Melnik, R. Molecular dynamics study on ZnO nanowires mechanical properties: Strain rate, temperature and size dependent effects. J. Comput. Theor. Nanosci. 2012, 9, 2138–2143. [Google Scholar] [CrossRef]
- Beard, M.C.; Luther, J.M.; Nozik, A.J. The promise and challenge of nanostructured solar cells. Nat. Nanotechnol. 2014, 9, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zhu, J.; He, Q.; Cao, X.; Tan, C.; Chen, H.; Yan, Q.; Zhang, H. Graphene-based materials for solar cell applications. Adv. Energy Mater. 2014, 4, 1300574. [Google Scholar] [CrossRef]
- Duić, N.; Urbaniec, K.; Huisingh, D. Components and structures of the pillars of sustainability. J. Clean. Prod. 2015, 88, 1–12. [Google Scholar] [CrossRef]
- Urbaniec, K.; Mikulčić, H.; Rosen, M.A.; Duić, N. A holistic approach to sustainable development of energy, water and environment systems. J. Clean. Prod. 2017, 155, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Yoon, J.; Kim, Y.; Kim, D.M.; Kim, D.H.; Choi, S.J. Humidity effects according to the type of carbon nanotubes. IEEE Access 2020, 9, 6810–6816. [Google Scholar] [CrossRef]
- Dăscălescu, D.; Apetrei, C. Nanomaterials based electrochemical sensors for serotonin detection: A review. Chemosensors 2021, 9, 14. [Google Scholar] [CrossRef]
- Qian, L.; Durairaj, S.; Prins, S.; Chen, A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens. Bioelectron. 2021, 175, 112836. [Google Scholar] [CrossRef]
- Choi, Y.; Zheng, X.T.; Tan, Y.N. Bioinspired carbon dots (biodots): Emerging fluorophores with tailored multiple functionalities for biomedical, agricultural and environmental applications. Mol. Syst. Des. Eng. 2020, 5, 67–90. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, G.; Zhang, X.; Chen, Z.; Cai, Y.; Yu, W.; Liu, H.; Shan, J.; Li, R.; Liu, Y. Bioimaging application and growth-promoting behavior of carbon dots from pollen on hydroponically cultivated Rome lettuce. ACS Omega 2017, 2, 3958–3965. [Google Scholar] [CrossRef] [Green Version]
- Song, T.; Zhu, X.; Zhou, S.; Yang, G.; Gan, W.; Yuan, Q. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution. Appl. Surf. Sci. 2015, 347, 505–513. [Google Scholar] [CrossRef]
- Chang, M.M.F.; Ginjom, I.R.; Ng, S.M. Single-shot ‘turn-off’optical probe for rapid detection of paraoxon-ethyl pesticide on vegetable utilising fluorescence carbon dots. Sens. Actuators B Chem. 2017, 242, 1050–1056. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, L.; Wang, Z.; Sun, Y.; Liu, Q.; Dong, W.; Hao, A. Fluorescent carbon dots based sensing system for detection of enrofloxacin in water solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Campos, B.; Abellán, C.; Zougagh, M.; Jimenez-Jimenez, J.; Rodríguez-Castellón, E.; da Silva, J.E.; Ríos, A.; Algarra, M. Fluorescent chemosensor for pyridine based on N-doped carbon dots. J. Colloid Interface Sci. 2015, 458, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Amali, R.; Lim, H.; Ibrahim, I.; Huang, N.; Zainal, Z.; Ahmad, S. Significance of nanomaterials in electrochemical sensors for nitrate detection: A review. Trends Environ. Anal. Chem. 2021, 31, e00135. [Google Scholar] [CrossRef]
- Yan, T.; Wu, Y.; Yi, W.; Pan, Z. Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors. Sens. Actuators A Phys. 2021, 327, 112755. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Cui, Z.; Zhang, X.; Chen, S.; Zhang, K.; Wang, X. Carbon nanotube-based flexible metamaterials for THz sensing. Opt. Mater. Express 2021, 11, 1470–1483. [Google Scholar] [CrossRef]
- SS dos Santos, P.; MMM de Almeida, J.; Pastoriza-Santos, I.; CC Coelho, L. Advances in plasmonic sensing at the NIR—A review. Sensors 2021, 21, 2111. [Google Scholar] [CrossRef]
- Becker, J.; Trügler, A.; Jakab, A.; Hohenester, U.; Sönnichsen, C. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 2010, 5, 161–167. [Google Scholar] [CrossRef]
- Schulz, F.; Pavelka, O.; Lehmkühler, F.; Westermeier, F.; Okamura, Y.; Mueller, N.S.; Reich, S.; Lange, H. Structural order in plasmonic superlattices. Nat. Commun. 2020, 11, 3821. [Google Scholar] [CrossRef]
- Nair, R.V.; Vijaya, R. Photonic crystal sensors: An overview. Prog. Quantum Electron. 2010, 34, 89–134. [Google Scholar] [CrossRef]
- Pitruzzello, G.; Krauss, T.F. Photonic crystal resonances for sensing and imaging. J. Opt. 2018, 20, 073004. [Google Scholar] [CrossRef]
- Sirbuly, D.J.; Tao, A.; Law, M.; Fan, R.; Yang, P. Multifunctional nanowire evanescent wave optical sensors. Adv. Mater. 2007, 19, 61–66. [Google Scholar] [CrossRef]
- Englund, D.; Vučković, J. A direct analysis of photonic nanostructures. Opt. Express 2006, 14, 3472–3483. [Google Scholar] [CrossRef] [Green Version]
- Hajshahvaladi, L.; Kaatuzian, H.; Danaie, M. Design of a hybrid photonic-plasmonic crystal refractive index sensor for highly sensitive and high-resolution sensing applications. Phys. Lett. A 2021, 420, 127754. [Google Scholar] [CrossRef]
- Melnik, R.; Melnik, K. Modelling dynamics of piezoelectric solids in the two-dimensional case. Appl. Math. Model. 2000, 24, 147–163. [Google Scholar] [CrossRef]
- Melnik, R.V. Generalised solutions, discrete models and energy estimates for a 2D problem of coupled field theory. Appl. Math. Comput. 2000, 107, 27–55. [Google Scholar] [CrossRef]
- Melnik, R.V. Computational analysis of coupled physical fields in piezothermoelastic media. Comput. Phys. Commun. 2001, 142, 231–237. [Google Scholar] [CrossRef]
- Melnik, R.V. Numerical analysis of dynamic characteristics of coupled piezoelectric systems in acoustic media. Math. Comput. Simul. 2003, 61, 497–507. [Google Scholar] [CrossRef]
- Melnik, R. Modelling coupled dynamics: Piezoelectric elements under changing temperature conditions. Int. Commun. Heat Mass Transf. 2003, 30, 83–92. [Google Scholar] [CrossRef]
- Krishnaswamy, J.A.; Buroni, F.C.; Garcia-Sanchez, F.; Melnik, R.; Rodriguez-Tembleque, L.; Saez, A. Improving the performance of lead-free piezoelectric composites by using polycrystalline inclusions and tuning the dielectric matrix environment. Smart Mater. Struct. 2019, 28, 075032. [Google Scholar] [CrossRef]
- Krishnaswamy, J.A.; Buroni, F.C.; Melnik, R.; Rodriguez-Tembleque, L.; Saez, A. Design of polymeric auxetic matrices for improved mechanical coupling in lead-free piezocomposites. Smart Mater. Struct. 2020, 29, 054002. [Google Scholar] [CrossRef]
- Krishnaswamy, J.A.; Rodriguez-Tembleque, L.; Melnik, R.; Buroni, F.C.; Saez, A. Size dependent electro-elastic enhancement in geometrically anisotropic lead-free piezocomposites. Int. J. Mech. Sci. 2020, 182, 105745. [Google Scholar] [CrossRef]
- Buroni, J.L.; Buroni, F.C.; Cisilino, A.P.; Melnik, R.; Rodríguez-Tembleque, L.; Sáez, A. Analytical expressions to estimate the effective piezoelectric tensor of a textured polycrystal for any crystal symmetry. Mech. Mater. 2020, 151, 103604. [Google Scholar] [CrossRef]
- Krishnaswamy, J.A.; Buroni, F.C.; García-Macías, E.; Melnik, R.; Rodriguez-Tembleque, L.; Saez, A. Design of lead-free PVDF/CNT/BaTiO3 piezocomposites for sensing and energy harvesting: The role of polycrystallinity, nanoadditives, and anisotropy. Smart Mater. Struct. 2019, 29, 015021. [Google Scholar] [CrossRef]
- Krishnaswamy, J.A.; Buroni, F.C.; Melnik, R.; Rodriguez-Tembleque, L.; Saez, A. Multiscale design of nanoengineered matrices for lead-free piezocomposites: Improved performance via controlling auxeticity and anisotropy. Compos. Struct. 2021, 255, 112909. [Google Scholar] [CrossRef]
- Krishnaswamy, J.A.; Buroni, F.C.; Garcia-Sanchez, F.; Melnik, R.; Rodriguez-Tembleque, L.; Saez, A. Lead-free piezocomposites with CNT-modified matrices: Accounting for agglomerations and molecular defects. Compos. Struct. 2019, 224, 111033. [Google Scholar] [CrossRef]
- Krishnaswamy, J.A.; Buroni, F.C.; García-Macías, E.; Melnik, R.; Rodriguez-Tembleque, L.; Saez, A. Design of nano-modified PVDF matrices for lead-free piezocomposites: Graphene vs carbon nanotube nano-additions. Mech. Mater. 2020, 142, 103275. [Google Scholar] [CrossRef]
- Melnik, R.; Jenkins, D.R. On computational control of flow in airblast atomisers for pulmonary drug delivery. Int. J. Pharm. 2002, 239, 23–35. [Google Scholar] [CrossRef]
- Kaur, J.; Melnik, R.; Tiwari, A.K. Forced convection heat transfer study of a blunt-headed cylinder in non-Newtonian power-law fluids. Int. J. Chem. React. Eng. 2021, 19, 673–688. [Google Scholar] [CrossRef]
- Chhantyal, K.; Viumdal, H.; Mylvaganam, S. Soft sensing of non-Newtonian fluid flow in open Venturi channel using an array of ultrasonic level sensors—AI models and their validations. Sensors 2017, 17, 2458. [Google Scholar] [CrossRef] [PubMed]
- Kamath, H.; Willatzen, M.; Melnik, R.V. Vibration of piezoelectric elements surrounded by fluid media. Ultrasonics 2006, 44, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Shavrina, E.; Nguyen, V.T.; Yan, Z.; Khoo, B.C. Fluid-solid interaction simulation methodology for coriolis flowmeter operation analysis. Sensors 2021, 21, 8105. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R. Exploring the potential of nanosensors: A brief overview. Sens. Int. 2021, 2, 100130. [Google Scholar] [CrossRef]
- Son, K.; Liu, Y.; Ruden, P.; Xic, J.; Biyikli, N.; Moon, Y.; Onojima, N.; Morkoç, H. GaN-Based Micro Pressure Sensor for Extreme Environments; IEEE: Piscataway, NJ, USA, 2005. [Google Scholar]
- Pearton, S.; Kang, B.; Kim, S.; Ren, F.; Gila, B.; Abernathy, C.; Lin, J.; Chu, S. GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J. Phys. Condens. Matter 2004, 16, R961. [Google Scholar] [CrossRef]
- Pal, P.; Pratap, Y.; Gupta, M.; Kabra, S. Open gate AlGaN/GaN HEMT biosensor: Sensitivity analysis and optimization. Superlattices Microstruct. 2021, 156, 106968. [Google Scholar] [CrossRef]
- Gao, J.; He, S.; Nag, A.; Wong, J.W.C. A review of the use of carbon nanotubes and graphene-based sensors for the detection of aflatoxin M1 compounds in milk. Sensors 2021, 21, 3602. [Google Scholar] [CrossRef]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Wang, H.; Chen, M.; Yang, M. Recent advances in graphene-based nanomaterials: Properties, toxicity and applications in chemistry, biology and medicine. Microchim. Acta 2019, 186, 395. [Google Scholar] [CrossRef]
- Dumas, E.M.; Ozenne, V.; Mielke, R.E.; Nadeau, J.L. Toxicity of CdTe quantum dots in bacterial strains. IEEE Trans. Nanobiosci. 2009, 8, 58–64. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Saei, A.A.; Walker, E.D.; Conley, B.; Omidi, Y.; Lee, K.B.; Mahmoudi, M. Nanotechnology for targeted detection and removal of bacteria: Opportunities and challenges. Adv. Sci. 2021, 8, 2100556. [Google Scholar] [CrossRef]
- Pelley, J.L.; Daar, A.S.; Saner, M.A. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol. Sci. 2009, 112, 276–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raja, I.S.; Lee, J.H.; Hong, S.W.; Shin, D.M.; Lee, J.H.; Han, D.W. A critical review on genotoxicity potential of low dimensional nanomaterials. J. Hazard. Mater. 2021, 409, 124915. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lai, T.; Teng, F.; Liu, C.; Li, A. Highly stretchable and sensitive strain sensor based on silver nanowires/carbon nanotubes on hair band for human motion detection. Prog. Nat. Sci. Mater. Int. 2021, 31, 379–386. [Google Scholar] [CrossRef]
- Chen, X.; Shehzad, K.; Gao, L.; Long, M.; Guo, H.; Qin, S.; Wang, X.; Wang, F.; Shi, Y.; Hu, W. Graphene hybrid structures for integrated and flexible optoelectronics. Adv. Mater. 2020, 32, 1902039. [Google Scholar] [CrossRef]
- Hood, L.; Heath, J.R.; Phelps, M.E.; Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science 2004, 306, 640–643. [Google Scholar] [CrossRef] [Green Version]
- Tyler, J.; Choi, S.W.; Tewari, M. Real-time, personalized medicine through wearable sensors and dynamic predictive modeling: A new paradigm for clinical medicine. Curr. Opin. Syst. Biol. 2020, 20, 17–25. [Google Scholar] [CrossRef] [PubMed]
- McGrath, M.J.; Scanaill, C.N. Regulations and standards: Considerations for sensor technologies. In Sensor Technologies; Springer: Berlin/Heidelberg, Germany, 2013; pp. 115–135. [Google Scholar]
- Comini, E. Achievements and challenges in sensor devices. Front. Sens. 2021, 7. [Google Scholar] [CrossRef]
- Molley, A.; Beaumont, K.; Kirimi, T.; Alyami, A.; Hoare, D.; Mirzai, N.; Heidari, H.; Mitra, S.; Neale, S.L.; Mercer, J.R. Challenges to the development of the next generation of self-reporting cardiovascular implantable medical devices. IEEE Rev. Biomed. Eng. 2021, 15, 260–272. [Google Scholar] [CrossRef]
- Izmailova, E.S.; Wagner, J.A.; Perakslis, E.D. Wearable devices in clinical trials: Hype and hypothesis. Clin. Pharmacol. Ther. 2018, 104, 42–52. [Google Scholar] [CrossRef]
- Ravizza, A.; De Maria, C.; Di Pietro, L.; Sternini, F.; Audenino, A.L.; Bignardi, C. Comprehensive review on current and future regulatory requirements on wearable sensors in preclinical and clinical testing. Front. Bioeng. Biotechnol. 2019, 7, 313. [Google Scholar] [CrossRef]
- Walton, M.; Cappelleri, J.; Byrom, B.; Goldsack, J.; Eremenco, S.; Harris, D.; Potero, E.; Patel, N.; Flood, E.; Daumer, M. Considerations for development of an evidence dossier to support the use of mobile sensor technology for clinical outcome assessments in clinical trials. Contemp. Clin. Trials 2020, 91, 105962. [Google Scholar] [CrossRef]
- Brönneke, J.B.; Müller, J.; Mouratis, K.; Hagen, J.; Stern, A.D. Regulatory, legal, and market aspects of smart wearables for cardiac monitoring. Sensors 2021, 21, 4937. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.A.; Zoha, A.; Zhang, L.; Abbasi, Q.H. Grand challenges in IoT and sensor networks. Front. Commun. Netw. 2020, 1, 7. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Ali, K.; Abbasi, Q.H.; Imran, M.A.; Ur-Rehman, M. Challenges, applications and future of wireless sensors in Internet of Things: A review. IEEE Sens. J. 2022, 22, 5482–5494. [Google Scholar] [CrossRef]
- Cao, M.; Su, J.; Fan, S.; Qiu, H.; Su, D.; Li, L. Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 2021, 406, 126777. [Google Scholar] [CrossRef]
- Li, Q.; van de Groep, J.; Wang, Y.; Kik, P.G.; Brongersma, M.L. Transparent multispectral photodetectors mimicking the human visual system. Nat. Commun. 2019, 10, 4982. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Melnik, R. Coupled Multiphysics Modelling of Sensors for Chemical, Biomedical, and Environmental Applications with Focus on Smart Materials and Low-Dimensional Nanostructures. Chemosensors 2022, 10, 157. https://doi.org/10.3390/chemosensors10050157
Singh S, Melnik R. Coupled Multiphysics Modelling of Sensors for Chemical, Biomedical, and Environmental Applications with Focus on Smart Materials and Low-Dimensional Nanostructures. Chemosensors. 2022; 10(5):157. https://doi.org/10.3390/chemosensors10050157
Chicago/Turabian StyleSingh, Sundeep, and Roderick Melnik. 2022. "Coupled Multiphysics Modelling of Sensors for Chemical, Biomedical, and Environmental Applications with Focus on Smart Materials and Low-Dimensional Nanostructures" Chemosensors 10, no. 5: 157. https://doi.org/10.3390/chemosensors10050157
APA StyleSingh, S., & Melnik, R. (2022). Coupled Multiphysics Modelling of Sensors for Chemical, Biomedical, and Environmental Applications with Focus on Smart Materials and Low-Dimensional Nanostructures. Chemosensors, 10(5), 157. https://doi.org/10.3390/chemosensors10050157