High-Performance Liquid Chromatography–Diode Array Detection Combined with Chemometrics for Simultaneous Quantitative Analysis of Five Active Constituents in a Chinese Medicine Formula Wen-Qing-Yin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Chromatographic Instrument and Conditions
2.3. Sample Preparation Procedures
2.4. Theory
2.4.1. Trilinear Component Model
2.4.2. ATLD Algorithm
2.4.3. ATLD-MCR Algorithm
3. Results and Discussion
3.1. General Considerations of the HPLC-DAD Experiment
3.2. Quantification of Five Active Constituents in WQY
3.3. Accuracy and Precision
3.4. Repeatability and Reproducibility
3.5. Analytical Figures of Merit
3.6. Evaluation of Two Methods
3.7. Analysis of the Other WQY Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HPLC-DAD | high performance liquid chromatography-diode array detection |
ATLD | alternating trilinear decomposition |
ATLD-MCR | alternating trilinear decomposition assisted multivariate curve resolution |
WQY | Wen-Qing-Yin |
TCM | traditional Chinese medicine |
RMSEP | relative root mean square error of prediction |
SD | standard deviation |
RSD | relative standard deviation |
SEL | selectivity |
SEN | sensitivity |
LOD | limit of detection |
LOQ | limit of quantitation |
References
- Zhou, F.; Li, J.; He, Y.; Mu, R.; Fu, C. Simultaneous determination of eight components in Siwu decoction by HPLC and analysis of transmitting of the components in water extraction and ethanol precipitation process. Chin. J. Pharm. Anal 2019, 39, 983–991. [Google Scholar]
- Qi, Y.; Zhang, Q.; Zhu, H. Huang-Lian Jie-Du decoction: A review on phytochemical, pharmacological and pharmacokinetic investigations. Chin. Med. 2019, 14, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.F.; Feng, W.; Shen, Q.; Yu, N.N.; Yu, K.; Wang, S.J.; Chen, Z.G.; Shioda, S.; Guo, Y. Rhizoma Coptidis and Berberine as a Natural Drug to Combat Aging and Aging-Related Diseases via Anti-Oxidation and AMPK Activation. Aging Dis. 2017, 8, 760–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdunska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Ski. Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Grzegorczyk-Karolak, I.; Golab, K.; Gburek, J.; Wysokinska, H.; Matkowski, A. Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from Scutellaria alpina L. and S. altissima L. Molecules 2016, 21, 739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Lenon, G.B.; Yang, A.W.H. Phellodendri cortex: A phytochemical, pharmacological, and pharmacokinetic review. Evid. Based Complement. Altern. Med. 2019, 2019, 7621929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Z.W.; Yang, L.H.; Zhang, X.S.; Ji, P.; Hua, Y.L.; Wei, Y.M. Mechanism of Huang-lian-Jie-du decoction and its effective fraction in alleviating acute ulcerative colitis in mice: Regulating arachidonic acid metabolism and glycerophospholipid metabolism. J. Ethnopharmacol. 2020, 259, 112872. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.H.; You, X.R.; Guan, S.Y.; Huang, J.; Wang, L.Y.; Zhang, J.Y.; Wu, J. Poly (ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy. Adv. Funct. Mater. 2019, 29, 1808646. [Google Scholar] [CrossRef]
- Kim, K.S.; Rhee, H.I.; Park, E.K.; Jung, K.; Jeon, H.J.; Kim, J.H.; Yoo, H.; Han, C.K.; Cho, Y.B.; Ryu, C.J.; et al. Anti-inflammatory effects of Radix Gentianae Macrophyllae (Qinjiao), Rhizoma Coptidis (Huanglian) and Citri Unshiu Pericarpium (Wenzhou migan) in animal models. Chin. Med. 2008, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.C.; Wu, Z.F.; Yin, Z.Q.; Lin, L.G.; Wang, R.; Zhang, Q.W. Coptidis rhizoma and its main bioactive components: Recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin. Med. 2018, 13, 1–18. [Google Scholar] [CrossRef]
- Kang, O.H.; Chae, H.S.; Oh, Y.C.; Choi, J.G.; Lee, Y.S.; Jang, H.J.; Kim, J.H.; Kim, Y.C.; Sohn, D.H.; Park, H.; et al. Anti-nociceptive and anti-inflammatory effects of Angelicae dahuricae radix through inhibition of the expression of inducible nitric oxide synthase and NO production. Am. J. Chin. Med. 2008, 36, 913–928. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.F.; Ye, J.; Gao, L.L.; Liu, Y.L. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed. Pharmacother. 2021, 133, 110917. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.J.; Joerger, R.; Wu, C.Q. Study of the chemical composition and antimicrobial activities of ethanolic extracts from roots of Scutellaria baicalensis Georgi. J. Agric. Food Chem. 2011, 59, 10934–10942. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Zhang, J.; Wang, W.; Wang, T.; Liu, M.; Yang, M.; Sun, Z.; Li, X.; Li, Y. Antimicrobial and antibiofilm activities of paeoniflorin against carbapenem-resistant Klebsiella pneumoniae. J. Appl. Microbiol. 2020, 128, 401–413. [Google Scholar] [CrossRef]
- Lin, S.J.; Chen, C.S.; Lin, S.S.; Chou, M.Y.; Shih, H.C.; Lee, I.P.; Kao, C.T.; Ho, C.C.; Chen, F.L.; Ho, Y.C.; et al. In vitro anti-microbial and in vivo cytokine modulating effects of different prepared Chinese herbal medicines. Food Chem. Toxicol. 2006, 44, 2078–2085. [Google Scholar] [CrossRef]
- Wang, H.; Chan, Y.L.; Li, T.L.; Wu, C.J. Improving cachectic symptoms and immune strength of tumour-bearing mice in chemotherapy by a combination of Scutellaria baicalensis and Qing-Shu-Yi-Qi-Tang. Eur. J. Cancer 2012, 48, 1074–1084. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, W.M.; Qin, Z.G.; Liang, X.T.; Tian, G.R. Geniposide exhibits anticancer activity to medulloblastoma cells by downregulating microRNA-373. J. Biochem. Mol. Toxicol. 2020, 34, e22471. [Google Scholar]
- Ma, Z.; Otsuyama, K.; Liu, S.Q.; Abroun, S.; Ishikawa, H.; Tsuyama, N.; Obata, M.; Li, F.J.; Zheng, X.; Maki, Y.; et al. Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood 2005, 105, 3312–3318. [Google Scholar] [CrossRef] [Green Version]
- Koda, A.; Ono, Y.; Nishiyori, T.; Nagai, H.; Matsuura, N.; Mase, A.; Matsuyama, T. Immunopharmacological studies of Wen-Qing-Yin, a chinese blended medicine: Effects of type IV allergic reactions and humoral antibody production. Int. J. Immunopharmacol. 1987, 9, 289–295. [Google Scholar] [CrossRef]
- Zheng, Z.J.; Zhao, X.E.; Zhu, S.Y.; Dang, J.; Qiao, X.G.; Qiu, Z.C.; Tao, Y.D. Simultaneous determination of oleanolic acid and ursolic acid by in vivo microdialysis via UHPLC-MS/MS using magnetic dispersive solid phase extraction coupling with microwave-assisted derivatization and its application to a pharmacokinetic study of Arctiumlappa L. root extract in rats. J. Agric. Food Chem. 2018, 66, 3975–3982. [Google Scholar]
- Liu, Y.K.; Zhou, W.; Mao, Z.K.; Liao, X.Y.; Chen, Z.L. Analysis of six active components in Radix tinosporae by nonaqueous capillary electrophoresis with mass spectrometry. J. Sep. Sci. 2017, 40, 4628–4635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zou, Z.Z.; Chou, G.X. Fast simultaneous detection of three diterpenoids in Herba Siegesbeckiae using solid phase extraction followed by HPLC-UV with a core-shell particle column. Anal. Methods 2018, 10, 1325–1330. [Google Scholar] [CrossRef]
- Li, Y.Y.; Guo, M.Q.; Li, X.M.; Yang, X.W. Simultaneous qualitative and quantitative evaluation of the Coptidis Rhizoma and Euodiae Fructus herbal pair by using UHPLC-ESI-QTOF-MS and UHPLC-DAD. Molecules 2020, 25, 4782. [Google Scholar] [CrossRef]
- Fu, S.; Cheng, R.R.; Xiang, Z.L.; Deng, Z.X.; Liu, T.G. Rapid profiling of chemical constituents in Qingfei Paidu granules using high performance liquid chromatography coupled with Q exactive mass spectrometry. Chromatographia 2021, 84, 1035–1048. [Google Scholar] [CrossRef]
- Committee, N.P. Pharmacopoeia of the People’s Republic of China 2020; China Medical Science Press: Beijing, China, 2020. [Google Scholar]
- Zhang, W.S.; Cui, N.; Su, F.Z.; Wang, Y.Y.; Yang, B.Y.; Sun, Y.P.; Guan, W.; Kuang, H.X.; Wang, Q.H. Comprehensive Metabolomics and Network Pharmacology to Explore the Mechanism of 5-Hydroxymethyl Furfural in the Treatment of Blood Deficiency Syndrome. Front. Pharmacol. 2022, 12, 811331. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Liu, Y.A.; Zhang, C.L. Pharmacokinetics and Bioavailability Enhancement of Baicalin: A Review. Eur J. Drug Metab. Pharmacokinet. 2019, 44, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, Z.; Zhao, H.P.; Ju, D.H.; Chen, Y.J.; Chen, X.Y.; Zhang, J.P. Ferulic acid promotes endothelial cells proliferation through up-regulating cyclin D1 and VEGF. J. Ethnopharmacol. 2011, 137, 992–997. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Varghese, K.; Wang, S.; Liu, Y.; Yu, H.; Booz, G.W.; Roman, R.J.; Liu, R.; Fan, F. Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. J. Cardiovasc. Pharmacol. 2021, 77, 728–734. [Google Scholar] [CrossRef]
- Yeh, C.C.; Huang, S.S.; Liu, P.Y.; Wang, B.C.; Tsai, C.F.; Wang, D.Y.; Cheng, H.F. Simultaneous quantification of six indicator compounds in Wen-Qing-Yin by high-performance liquid chromatography-diode array detection. J. Food Drug Anal. 2019, 27, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.X.; Ge, A.H.; Yu, X.A.; Jiao, X.C.; Li, J.; He, J.; Tian, J.; Liu, W.; Azietaku, J.T.; Zhang, B.L.; et al. Simultaneous determination of four phenolic acids and seven alkaloids in rat plasma after oral administration of traditional Chinese medicinal preparation Jinqi Jiangtang Tablet by LC-ESI–MS/MS. J. Pharm. Biomed. Anal. 2016, 117, 1–10. [Google Scholar] [CrossRef]
- Wu, H.L.; Nie, J.F.; Yu, Y.J.; Yu, R.Q. Multi-way chemometric methodologies and applications: A central summary of our research work. Anal. Chim. Acta 2009, 650, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.L.; Shibukawa, M.; Oguma, K. An alternating trilinear decomposition algorithm with application to calibration of HPLC–DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons. J. Chemom. 1998, 12, 1–26. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.L.; Xia, A.L.; Hu, L.H.; Zou, H.F.; Yu, R.Q. Trilinear decomposition method applied to removal of three-dimensional background drift in comprehensive two-dimensional separation data. J. Chromatogr. A 2007, 1167, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wu, H.L.; Yu, Y.J.; Long, W.J.; Cheng, L.; Chen, A.Q.; Yu, R.Q. A simple method for direct modeling of second-order liquid chromatographic data with retention time shifts and holding the second-order advantage. J. Chromatogr. A 2019, 1605, 360360. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, A.C. Analytical figures of merit: From univariate to multiway calibration. Chem. Rev. 2014, 114, 5358–5378. [Google Scholar] [CrossRef]
HMF | PAE | FER | BAI | BER | |
---|---|---|---|---|---|
ATLD | |||||
r a | 0.9991 | 0.9993 | 0.9996 | 0.9969 | 0.9978 |
AVG ± S.D.% b | 94.7± 2.5 | 91.8 ± 5.0 | 93.9 ± 3.5 | 104.3 ± 9.7 | 112.5 ± 5.1 |
RMSEP (µg mL−1) c | 0.20 | 2.07 | 0.38 | 3.94 | 4.05 |
ATLD-MCR | |||||
r | 0.9992 | 0.9995 | 0.9993 | 0.9985 | 0.9973 |
AVG ± S.D.% | 93.3 ± 1.4 | 92.4 ± 5.7 | 88.6 ± 3.5 | 101.6 ± 9.9 | 96.8 ± 10.3 |
RMSEP (µg mL−1) | 0.30 | 1.85 | 0.69 | 3.04 | 1.53 |
Statistic Parameter | Analytical Compounds | ||||
---|---|---|---|---|---|
HMF | PAE | FER | BAI | BER | |
ATLD | |||||
SEL a | 0.49 | 0.52 | 0.56 | 0.43 | 0.20 |
SEN b/mL µg−1 | 8.46 × 104 | 1.04 × 104 | 1.24 × 105 | 3.00 × 104 | 2.46 × 104 |
LOD c/µg mL−1 | 0.95 | 1.84 | 0.07 | 4.94 | 11.67 |
LOQ d/µg mL−1 | 2.85 | 5.59 | 0.22 | 14.98 | 35.37 |
Intra-day (RSD % n = 3) | 9.65 | 3.24 | 0.67 | 2.12 | 5.22 |
Inter-day (RSD % n = 3) | 12.47 | 2.72 | 4.47 | 3.16 | 40.82 |
ATLD-MCR | |||||
SEL | 0.15 | 0.23 | 0.35 | 0.13 | 0.19 |
SEN/mL µg−1 | 3.09 × 104 | 7.74 × 103 | 7.93 × 104 | 9.11 × 103 | 2.24 × 104 |
LOD/µg mL−1 | 0.22 | 1.12 | 0.17 | 4.53 | 0.84 |
LOQ/µg mL−1 | 0.65 | 3.40 | 0.51 | 13.72 | 2.54 |
Intra-day (RSD % n = 3) | 3.04 | 1.12 | 1.33 | 1.83 | 0.36 |
Inter-day (RSD % n = 3) | 2.90 | 1.64 | 2.65 | 2.14 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-C.; Wu, H.-L.; Wang, T.; Dong, M.-Y.; Chen, Y.; Yu, R.-Q. High-Performance Liquid Chromatography–Diode Array Detection Combined with Chemometrics for Simultaneous Quantitative Analysis of Five Active Constituents in a Chinese Medicine Formula Wen-Qing-Yin. Chemosensors 2022, 10, 238. https://doi.org/10.3390/chemosensors10070238
Chen J-C, Wu H-L, Wang T, Dong M-Y, Chen Y, Yu R-Q. High-Performance Liquid Chromatography–Diode Array Detection Combined with Chemometrics for Simultaneous Quantitative Analysis of Five Active Constituents in a Chinese Medicine Formula Wen-Qing-Yin. Chemosensors. 2022; 10(7):238. https://doi.org/10.3390/chemosensors10070238
Chicago/Turabian StyleChen, Jun-Chen, Hai-Long Wu, Tong Wang, Ming-Yue Dong, Yue Chen, and Ru-Qin Yu. 2022. "High-Performance Liquid Chromatography–Diode Array Detection Combined with Chemometrics for Simultaneous Quantitative Analysis of Five Active Constituents in a Chinese Medicine Formula Wen-Qing-Yin" Chemosensors 10, no. 7: 238. https://doi.org/10.3390/chemosensors10070238
APA StyleChen, J. -C., Wu, H. -L., Wang, T., Dong, M. -Y., Chen, Y., & Yu, R. -Q. (2022). High-Performance Liquid Chromatography–Diode Array Detection Combined with Chemometrics for Simultaneous Quantitative Analysis of Five Active Constituents in a Chinese Medicine Formula Wen-Qing-Yin. Chemosensors, 10(7), 238. https://doi.org/10.3390/chemosensors10070238