A Study on Regenerative Quartz Crystal Microbalance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ring-Down Method
2.2. Regenerative Ring-Down Method
2.3. Regenerative Ring-Down QCM
3. Results
3.1. Natural Ring-Down of the QCM Sensor
3.2. Regenerative Ring-Down of the QCM Sensor
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bottom, V.E. A History of the Quartz Crystal Industry in the USA. In Proceedings of the 35th Annual Frequency Control Symposium, Abilene, TX, USA, 27–29 May 1981; pp. 3–12. [Google Scholar]
- Marrison, W.A. The Evolution of the Quartz Crystal Clock. Bell Syst. Technol. J. 1948, 27, 510–588. [Google Scholar] [CrossRef]
- Kinsman, R.G. A History of Crystal Filters. In Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No.98CH36165), Pasadena, CA, USA, 27 May 1998; pp. 563–570. [Google Scholar] [CrossRef]
- Pérez, R.L.; Ayala, C.E.; Park, J.-Y.; Choi, J.-W.; Warner, I.M. Coating-Based Quartz Crystal Microbalance Detection Methods of Environmentally Relevant Volatile Organic Compounds. Chemosensors 2021, 9, 153. [Google Scholar] [CrossRef]
- Na Songkhla, S.; Nakamoto, T. Overview of Quartz Crystal Microbalance Behavior Analysis and Measurement. Chemosensors 2021, 9, 350. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G., II. The oscillation frequency of a quartz resonator in contact with a liquid. Anal. Chim. Acta 1985, 175, 99–105. [Google Scholar] [CrossRef]
- Arnau, A. A review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids. Sensors 2008, 8, 370–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S. Research on Patent Litigation between Lee de Forest and Edwin H. Armstrong over the Regenerating Audion. J. Hist. Korean Sci. 2006, 28, 255–550. [Google Scholar]
- Armstrong, E.H. Some Recent Developments in the Audion Receiver. Proc. Inst. Radio Eng. 1915, 3, 215–238. [Google Scholar] [CrossRef]
- Rodahl, M.; Höök, F.; Krozer, A.; Brzezinski, P.; Kasemo, B. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 1995, 66, 3924–3930. [Google Scholar] [CrossRef] [Green Version]
- Rodahl, M.; Kasemo, B. A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Rev. Sci. Instrum. 1996, 67, 3238–3241. [Google Scholar] [CrossRef] [Green Version]
- QSense Pro. Available online: https://www.biolinscientific.com/qsense/instruments/qsense-pro (accessed on 6 February 2022).
- Biotechnology and Madical Devices. Available online: https://www.biolinscientific.com/industries/biotechnology-medical-devices (accessed on 6 February 2022).
- Wessendorf, K.O. The Active-Bridge Oscillator for Use with Liquid Loaded QCM Sensors. In Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition, Seattle, WA, USA, 8 June 2001; pp. 400–407. [Google Scholar]
- Wu, K.; Wu, B.; Feng, C.-Q.; Du, X.; Huang, H.; Yin, Z. Simple dissipative quartz crystal microbalance and methods for determining dissipation decay constants. Rev. Sci. Instrum. 2006, 77, 036102. [Google Scholar] [CrossRef]
- Santiviparat, K.; Sriyudthsak, M. Simple QCM-D Measuring Circuit for Aqueous Applications. In Proceedings of the 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 27–30 June 2017; pp. 278–281. [Google Scholar] [CrossRef]
- Tumurbaatar, B.; Kim, M.J.; Park, C.H.; Kim, C.S. A portable and computer-simulation analysis for the real-time measurement of the QCMD systems for the biomedical application. Sens. Bio-Sens. Res. 2018, 21, 75–81. [Google Scholar] [CrossRef]
- Dixon, M.C. Quartz crystal microbalance with dissipation monitoring: Enabling real-time characterization of biological materials and their interactions. J. Biomol. Technol. 2008, 19, 151–158. [Google Scholar]
- Tarnapolsky, A.; Freger, V. Modeling QCM-D Response to Deposition and Attachment of Microparticles and Living Cells. Anal. Chem. 2018, 90, 13960–13968. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, S. On a Null Method of Testing Vibration Galvanometers. Proc. Phys. Soc. Lond. 1913, 26, 264. [Google Scholar] [CrossRef] [Green Version]
- Van Dyke, K.S. The Piezo-Electric Resonator and Its Equivalent Network. Proc. Inst. Radio Eng. 1928, 16, 742–764. [Google Scholar] [CrossRef]
- Johannsmann, D. Studies of Viscoelasticity with the QCM. In Piezoelectric Sensors; Springer: Berlin/Heidelberg, Germany, 2007; pp. 49–109. [Google Scholar]
- Swartzel, K.D., Jr. Summing Amplifier. U.S. Patent 2,401,779, 1 May 1941. Available online: https://patents.google.com/patent/US2401779A/en (accessed on 24 May 2022).
- Ragazzini, J.R.; Randall, R.H.; Russell, F.A. Analysis of Problems in Dynamics by Electronic Circuits. Proc. Inst. Radio Eng. 1947, 35, 444–452. [Google Scholar] [CrossRef]
- Fort, A.; Panzardi, E.; Vignoli, V.; Tani, M.; Landi, E.; Mugnaini, M.; Vaccarella, P. An Adaptive Measurement System for the Simultaneous Evaluation of Frequency Shift and Series Resistance of QCM in Liquid. Sensors 2021, 21, 678. [Google Scholar] [CrossRef]
- Antoniou, A. Improved Negative Impedance Converter and Related Synthesis Procedures. Ph.D. Thesis, University of Surrey, Guildford, UK, 1966. Available online: https://openresearch.surrey.ac.uk/esploro/outputs/doctoral/Improved-negative-impedance-converters-and-related/99513125402346#file-0 (accessed on 24 May 2022).
- Analod Discovery 2 Reference Manual. Available online: https://digilent.com/reference/test-and-measurement/analog-discovery-2/reference-manual (accessed on 11 January 2022).
- Burda, I. Quartz Crystal Microbalance with Impedance Analysis Based on Virtual Instruments: Experimental Study. Sensors 2022, 22, 1506. [Google Scholar] [CrossRef]
- Ojarand, J.; Min, M.; Koel, A. Multichannel Electrical Impedance Spectroscopy Analyzer with Microfluidic Sensors. Sensors 2019, 19, 1891. [Google Scholar] [CrossRef] [Green Version]
- Burda, I. Advanced Impedance Spectroscopy for QCM Sensor in Liquid Medium. Sensors 2022, 22, 2337. [Google Scholar] [CrossRef]
- Julian, T.; Hidayat, S.N.; Rianjanu, A.; Dharmawan, A.B.; Wasisto, H.S.; Triyana, K. Intelligent Mobile Electronic Nose System Comprising a Hybrid Polymer-Functionalized Quartz Crystal Microbalance Sensor Array. ACS Omega 2020, 5, 29492–29503. [Google Scholar] [CrossRef] [PubMed]
- Fukada, K.; Shiratori, S. Viscosity sensing by adjusting the interface of a small liquid droplet/silica composite layer on quartz crystal microbalance. RSC Adv. 2016, 6, 38475–38480. [Google Scholar] [CrossRef] [Green Version]
- Arnau, A.; Ferrari, V.; Soares, D.; Perrot, H. Piezoelectric Transducers and Applications, 2nd ed.; Arnau, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Wessendorf, K.O. The Lever Oscillator for Use in High Resistance Resonator Applications. In Proceedings of the 1993 IEEE International Frequency Control Symposium, Salt Lake City, UT, USA, 2–4 June 1993; pp. 711–717. [Google Scholar]
- Martin, S.J.; Spates, J.J.; Wessendorf, K.O.; Schneider, T.W.; Huber, R.J. Resonator/oscillator response to liquid loading. Anal. Chem. 1997, 69, 2050–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessendorf, K.O. Oscillator Circuit for Use with High Loss Quartz Resonator Sensors. U.S. Patent No. 5,416,448, 16 May 1995. Available online: https://patents.google.com/patent/US5416448A/en (accessed on 24 May 2022).
- Wessendorf, K.O. The Active Bridge Oscillator. In Proceeding of IEEE International Frequency Control Symposium, Pasadena, CA, USA, 29 May 1998; pp. 361–369. [Google Scholar]
- Wessendorf, K.O. Active Bridge Oscillator. U.S. Patent No. 6,169,459, 19 May 1999. Available online: https://patents.google.com/patent/US6169459B1/en (accessed on 10 May 2022).
- Meacham, L.A. The bridge stabilized oscillator. Bell Syst. Technol. J. 1938, 17, 574–591. [Google Scholar] [CrossRef]
Q Factor | ||
---|---|---|
9,998,665.00 | 19.3863 | 28,486.22 |
9,989,875.02 | 19.0517 | 28,861.07 |
9,990,033.38 | 10.0526 | 54,696.82 |
9,990,343.96 | 4.8643 | 113,033.46 |
9,990,428.74 | 2.0516 | 267,995.78 |
9,990,250.09 | 0.9887 | 556,123.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burda, I. A Study on Regenerative Quartz Crystal Microbalance. Chemosensors 2022, 10, 262. https://doi.org/10.3390/chemosensors10070262
Burda I. A Study on Regenerative Quartz Crystal Microbalance. Chemosensors. 2022; 10(7):262. https://doi.org/10.3390/chemosensors10070262
Chicago/Turabian StyleBurda, Ioan. 2022. "A Study on Regenerative Quartz Crystal Microbalance" Chemosensors 10, no. 7: 262. https://doi.org/10.3390/chemosensors10070262
APA StyleBurda, I. (2022). A Study on Regenerative Quartz Crystal Microbalance. Chemosensors, 10(7), 262. https://doi.org/10.3390/chemosensors10070262