Optical Multisensor System Based on Lanthanide(III) Complexes as Near-Infrared Light Sources for Analysis of Milk
Abstract
:1. Introduction
2. Experimental Section
2.1. Complexes
2.2. Samples
2.3. OMS Construction
2.4. Data Analysis
3. Results and Discussion
3.1. Fat Quantification in Milk
3.2. Detection of Urea-Adulterated Milk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bogomolov, A. Developing multisensory approach to the optical spectral analysis. Sensors 2021, 21, 3541. [Google Scholar] [CrossRef] [PubMed]
- Yeh, P.; Yeh, N.; Lee, C.-H.; Ding, T.-J. Applications of LEDs in optical sensors and chemical sensing device for detection of biochemicals, heavy metals, and environmental nutrients. Renew. Sustain. Energ. Rev. 2017, 75, 461–468. [Google Scholar] [CrossRef]
- Kovac, J.; Peternai, L.; Lengyel, O. Advanced light emitting diodes structures for optoelectronic applications. Thin Solid Films 2003, 433, 22–26. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, C.; Tao, T.; Duan, M.; Tan, J.; Wub, J.; Wang, D. Fabrication of a miniaturized capillary waveguide integrated fiber-optic sensor for fluoride determination. Analyst 2016, 10, 3041–3049. [Google Scholar] [CrossRef]
- Sarwar, M.; Leichner, J.; Naja, G.M.; Li, C.-Z. Smart-phone, paper-based fluorescent sensor for ultra-low inorganic phosphate detection in environmental samples. Microsyst. Nanoeng. 2019, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Lastra-Mejias, M.; Villa-Martinez, A.; Izquierdo, M.; Aroca-Santos, R.; Cancilla, J.C.; Torrecilla, J.S. Combination of LEDs and cognitive modeling to quantify sheep cheese whey in watercourses. Talanta 2019, 203, 290–296. [Google Scholar] [CrossRef]
- Gao, F.; Dong, Y.; Xiao, W.; Yin, B.; Yan, C.; He, S. LED-induced fluorescence spectroscopy technique for apple freshness and quality detection. Postharvest Biol. Technol. 2016, 119, 27–32. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Rao, X. An LED-based spectrally tuneable light source for visible and near-infrared spectroscopy analysis: A case study for sugar content estimation of citrus. Biosyst. Eng. 2017, 163, 87–93. [Google Scholar] [CrossRef]
- Gitlina, A.Y.; Surkova, A.; Ivonina, M.V.; Sizov, V.V.; Petrovskii, S.; Legin, A.; Starova, G.L.; Koshevoy, I.O.; Grachova, E.V.; Kirsanov, D.O. Cyclometalated Ir(III) complexes as tuneable multiband light sources for optical multisensor systems: Feasibility study. Dyes Pigm. 2020, 180, 108428. [Google Scholar] [CrossRef]
- Surkova, A.A.; Paderina, A.V.; Legin, A.V.; Grachova, E.V.; Kirsanov, D.O. Cu(I)-based molecular emitters for quantification of fluoride and phosphate in surface waters. Measurement 2021, 184, 109976. [Google Scholar] [CrossRef]
- Bunzli, J.C.G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 2010, 110, 2729–2755. [Google Scholar] [CrossRef] [PubMed]
- Bunzli, J.C.G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077. [Google Scholar] [CrossRef]
- Faulkner, S.; Pope, S.J.A.; Burton-Pye, B.P. Lanthanide complexes for luminescence imaging applications. Appl. Spectrosc. Rev. 2005, 40, 1–31. [Google Scholar] [CrossRef]
- Khistiaeva, V.V.; Melnikov, A.S.; Slavova, S.O.; Sizov, V.V.; Starova, G.L.; Koshevoy, I.O.; Grachova, E.V. Heteroleptic β-diketonate Ln(III) complexes decorated with pyridyl substituted pyridazine ligands: Synthesis, structure and luminescence properties. Inorg. Chem. Front. 2018, 5, 3015. [Google Scholar] [CrossRef]
- Kasture, M.; Jadhav, S.; Fouad, H.; Gosavi, S. Detection of melamine and urea in milk and milk products using graphene/goldnano-composite. Sens. Lett. 2015, 13, 471–474. [Google Scholar] [CrossRef]
- Sjöström, M.; Wold, S.; Lindberg, W.; Martens, H. A multivariate calibration problem in analytical chemistry solved by partial least squares models in latent variables. Anal. Chim. Acta 1983, 150, 61–70. [Google Scholar] [CrossRef]
- Esbensen, K.H. Multivariate Data Analysis—In Practice, 5th ed.; CAMO Process AS: Oslo, Norway, 2001. [Google Scholar]
- Lee, L.C.; Liong, C.Y.; Jemain, A.A. Partial least squares-discriminant analysis (PLS-DA) for classification ofhigh-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef]
- Bunzli, J.C.G.; Eliseeva, S.V. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths 2010, 28, 824–842. [Google Scholar] [CrossRef]
- Ragni, L.; Iaccheri, E.; Cevoli, C.; Berardinelli, A. Spectral-sensitive pulsed photometry to predict the fat content of commercialized milk. J. Food Eng. 2016, 171, 95–101. [Google Scholar] [CrossRef]
- Tsenkova, R.; Atanassova, S.; Itoh, K.; Ozaki, Y.; Toyoda, K. Near-infrared spectroscopy for biomonitoring: Cow milk composition measurement in a spectral region from 1100 to 2400 nanometers. J. Anim. Sci. 2000, 78, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Šašić, S.; Ozaki, Y. Short-wave near-infrared spectroscopy of biological fluids. Quantitative analysis of fat, protein, and lactose in raw milk by partial least-squares regression and band assignment. Anal. Chem. 2001, 73, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Kalinin, A.V.; Krasheninnikov, V.N. Portable milk product quality analyzer based on spectrometry in the near IR range. J. Appl. Spectrosc. 2008, 75, 288–294. [Google Scholar] [CrossRef]
- Aernouts, B.; Polshin, E.; Lammertyn, J.; Saeys, W. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: Reflectance or transmittance. J. Dairy Sci. 2011, 94, 5315–5329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogomolov, A.; Melenteva, A. Scatter-based quantitative spectroscopic analysis of milk fat and total protein in the region 400–1100 nm in the presence of fat globule size variability. Chemom. Intell. Lab. Syst. 2013, 126, 129–139. [Google Scholar] [CrossRef]
- Junsomboon, J.; Jakmunee, J. Flow injection conductometric system with gas diffusion separation for the determination of Kjeldahl nitrogen in milk and chicken meat. Anal. Chim. Acta 2008, 627, 232–238. [Google Scholar] [CrossRef]
- Ezhilan, M.; Gumpu, M.B.; Ramachandra, B.L.; Nesakumar, N.; Babu, K.J.; Krishnan, U.M.; Rayappan, J.B.B. Design and development of electrochemical biosensor for thesimultaneous detection of melamine and urea in adulterated milk samples. Sens. Actuators B Chem. 2017, 238, 1283–1292. [Google Scholar] [CrossRef]
- Trivedi, U.B.; Lakshminarayanaa, D.; Kothari, I.L.; Patel, N.G.; Kapsed, H.N.; Makhija, K.K.; Patel, P.B.; Panchale, C.J. Potentiometric biosensor for urea determination in milk. Sens. Actuators B Chem. 2009, 140, 260–266. [Google Scholar] [CrossRef]
- Bueno, L.; de Araujo, W.R.; Salles, M.O.; Kussuda, M.Y.; Paixão, T.R.L.C. Voltammetric electronic tongue for discrimination of milk adulterated with urea, formaldehyde and melamine. Chemosensors 2014, 2, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Liu, Y.; Zhang, Q. Dielectric behavior of adulterated milk with urea and water. J. Mol. Liq. 2019, 273, 37–44. [Google Scholar] [CrossRef]
- Forchetti, D.A.P.; Poppi, R.J. Use of NIR hyperspectral imaging and multivariate curve resolution (MCR) for detection and quantification of adulterants in milk powder. LWT-Food Sci. Technol. 2017, 76, 337–343. [Google Scholar] [CrossRef]
- Müller-Maatsch, J.; Alewijn, M.; Wijtten, M.; Weesepoel, Y. Detecting fraudulent additions in skimmed milk powder using a portable, hyphenated, optical multi-sensor approach in combination with one-class classification. Food Control 2021, 121, 107744. [Google Scholar] [CrossRef]
- Siesler, H.W.; Kawata, S.; Heise, H.M.; Ozaki, Y. Near-Infrared Spectroscopy: Principles, Instruments, Applications, 1st ed.; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Choudhary, S.; Joshi, A. Development of an embedded system for real-time milk spoilage monitoring and adulteration detection. Int. Dairy J. 2021, 127, 105207. [Google Scholar] [CrossRef]
- Kawasaki, M.; Kawamura, S.; Tsukahara, M.; Morita, S.; Komiya, M.; Natsuga, M. Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot. Comput. Electron. Agric. 2008, 63, 22–27. [Google Scholar] [CrossRef] [Green Version]
Dataset | Wavelength Range (nm) | LV | Calibration | CV | ||
---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |||
PLS | ||||||
F1-series, % a | 850–1100 | 2 | 0.04 | 0.98 | 0.09 | 0.94 |
877, 975, 999, 1021 | 2 | 0.06 | 0.96 | 0.13 | 0.87 | |
U1-series, mg/L b,c | 850–1100 | 1 | 212.21 | 0.91 | 307.56 | 0.84 |
877, 975, 999, 1021 | 1 | 293.01 | 0.81 | 358.53 | 0.79 | |
MLR | ||||||
F1-series, % a | 975, 999 | - | 0.05 | 0.96 | 0.10 | 0.88 |
U1-series, mg/L b,c | 877, 975 | - | 275.65 | 0.84 | 342.65 | 0.75 |
Calibration | CV | ||||
---|---|---|---|---|---|
Spec, % | Sens, % | Ac, % | Spec, % | Sens, % | Ac, % |
100 | 100 | 100 | 88 | 90 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surkova, A.; Bogomolov, A.; Paderina, A.; Khistiaeva, V.; Boichenko, E.; Grachova, E.; Kirsanov, D. Optical Multisensor System Based on Lanthanide(III) Complexes as Near-Infrared Light Sources for Analysis of Milk. Chemosensors 2022, 10, 288. https://doi.org/10.3390/chemosensors10070288
Surkova A, Bogomolov A, Paderina A, Khistiaeva V, Boichenko E, Grachova E, Kirsanov D. Optical Multisensor System Based on Lanthanide(III) Complexes as Near-Infrared Light Sources for Analysis of Milk. Chemosensors. 2022; 10(7):288. https://doi.org/10.3390/chemosensors10070288
Chicago/Turabian StyleSurkova, Anastasiia, Andrey Bogomolov, Aleksandra Paderina, Viktoria Khistiaeva, Ekaterina Boichenko, Elena Grachova, and Dmitry Kirsanov. 2022. "Optical Multisensor System Based on Lanthanide(III) Complexes as Near-Infrared Light Sources for Analysis of Milk" Chemosensors 10, no. 7: 288. https://doi.org/10.3390/chemosensors10070288
APA StyleSurkova, A., Bogomolov, A., Paderina, A., Khistiaeva, V., Boichenko, E., Grachova, E., & Kirsanov, D. (2022). Optical Multisensor System Based on Lanthanide(III) Complexes as Near-Infrared Light Sources for Analysis of Milk. Chemosensors, 10(7), 288. https://doi.org/10.3390/chemosensors10070288