In Vitro and In Silico Evaluation of Indole-Bearing Squaraine Dyes as Potential Human Serum Albumin Fluorescent Probes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Methods
2.2. Squaraines’ Synthesis
2.2.1. 2-{2-[Bis(2-hydroxyethyl)amino]-3-(1-hexyl-3,3-dimethyl-3H-indolin-2-ylidenemethyl)-4-oxocyclobut-2-enylidenemethyl}-1-hexyl-3,3-dimethylindol-1-ium iodide (11a)
2.2.2. 2-{2-[Bis(2-hydroxyethyl)amino]-3-(3-hexyl-1,1-dimethyl-2H-benzo[e]indol-2-ylidenemethyl)-4-oxocyclobut-2-enylidenemethyl}-3-hexyl-1,1-dimethyl-1H-benzo[e]indol-3-ium iodide (11b)
2.2.3. 1-Hexyl-2-[3-(1-hexyl-3,3-dimethyl-3H-indolin-2-ylidenemethyl)-4-oxo-2-(pyridin-2-ylmethylamino)cyclobut-2-enylidenemethyl]-3,3-dimethylindol-1-ium iodide (12a)
2.2.4. 2-[2-Bis(pyridin-2-ylmethyl)amino-3-(1-hexyl-3,3-dimethyl-3H-indolin-2-ylidenemethyl)-4-oxocyclobut-2-enylidenemethyl]-1-hexyl-3,3-dimethylindol-1-ium iodide (13a)
2.3. Fluorescence Measurements
2.3.1. Relative Fluorescence Quantum Yields Calculations
2.3.2. Squaraine–Protein Interaction Evaluation
Detection and Quantification Limits Calculation
2.4. Computational Studies
3. Results
3.1. Chemistry
3.2. Photophysical Properties
3.3. Squaraine–Protein Interaction Studies
3.4. In Silico Studies
3.4.1. Interaction with Sudlow Site I
3.4.2. Interaction with Sudlow Site II
3.4.3. Docking with the Full Protein
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volkova, K.D.; Kovalska, V.B.; Losytskyy, M.Y.; Bento, A.; Reis, L.V.; Santos, P.F.; Almeida, P.; Yarmoluk, S.M. Studies of Benzothiazole and Benzoselenazole Squaraines as Fluorescent Probes for Albumins Detection. J. Fluoresc. 2008, 18, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Barbero, N.; Butnarasu, C.; Visentin, S.; Barolo, C. Squaraine Dyes: Interaction with Bovine Serum Albumin to Investigate Supramolecular Adducts with Aggregation-Induced Emission (AIE) Properties. Chem. Asian J. 2019, 14, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; Yang, Q.-F.; Du, H.-Y.; Tang, Y.-L.; Xu, G.-Z.; Yan, W.-P. Spectroscopic Investigation on the Interaction of a Cyanine Dye with Serum Albumins. Chin. J. Chem. 2008, 26, 397–401. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Panahi-Azar, V. Interaction of Glutathione with Bovine Serum Albumin: Spectroscopy and Molecular Docking. Food Chem. 2016, 202, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Jurek, K.; Kabatc, J.; Kostrzewska, K. Fluorescent Amino-substituted Squaraine Probes for Bovine Serum Albumin. Coloration Technol. 2017, 133, 170–177. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, B.; Zhu, K.; Huang, Y.; Pan, C.; Wang, B.; Wang, L. An Environment-Sensitive Fluorescent Probe for Quantification of Human Serum Albumin: Design, Sensing Mechanism, and Its Application in Clinical Diagnosis of Hypoalbuminemia. Dye. Pigm. 2018, 152, 60–66. [Google Scholar] [CrossRef]
- Hou, X.; Tong, X.; Dong, W.; Dong, C.; Shuang, S. Synchronous Fluorescence Determination of Human Serum Albumin with Methyl Blue as a Fluorescence Probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 66, 552–556. [Google Scholar] [CrossRef]
- Levitt, D.; Levitt, M. Human Serum Albumin Homeostasis: A New Look at the Roles of Synthesis, Catabolism, Renal and Gastrointestinal Excretion, and the Clinical Value of Serum Albumin Measurements. Int. J. Gen. Med. 2016, 9, 229–255. [Google Scholar] [CrossRef]
- Volkova, K.D.; Kovalska, V.B.; Losytskyy, M.Y.; Reis, L.V.; Santos, P.F.; Almeida, P.; Lynch, D.E.; Yarmoluk, S.M. Aza-Substituted Squaraines for the Fluorescent Detection of Albumins. Dye. Pigm. 2011, 90, 41–47. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Zhang, S.; Xu, L.; Wang, G.; Cui, J. An Ultrasensitive Rapid-Response Fluorescent Probe for Highly Selective Detection of HSA. Tetrahedron Lett. 2018, 59, 1390–1393. [Google Scholar] [CrossRef]
- Xiong, J.; Cao, X.; Yang, S.; Mo, Z.; Wang, W.; Zeng, W. Fluorescent Probes for Detection of Protein: From Bench to Bed. Protein Pept. Lett. 2018, 25, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Xin, C.; Li, Z.; Zhang, G.; Bai, L.; Gong, Q.; Xu, C.; Han, X.; Yu, C.; Li, L.; et al. A Reversible Fluorescent Probe for Directly Monitoring Protein-Small Molecules Interaction Utilizing Vibration-Induced Emission. Dye. Pigm. 2019, 163, 425–432. [Google Scholar] [CrossRef]
- Sargazi, S.; Fatima, I.; Hassan Kiani, M.; Mohammadzadeh, V.; Arshad, R.; Bilal, M.; Rahdar, A.; Díez-Pascual, A.M.; Behzadmehr, R. Fluorescent-Based Nanosensors for Selective Detection of a Wide Range of Biological Macromolecules: A Comprehensive Review. Int. J. Biol. Macromol. 2022, 206, 115–147. [Google Scholar] [CrossRef]
- Camarca, A.; Varriale, A.; Capo, A.; Pennacchio, A.; Calabrese, A.; Giannattasio, C.; Murillo Almuzara, C.; D’Auria, S.; Staiano, M. Emergent Biosensing Technologies Based on Fluorescence Spectroscopy and Surface Plasmon Resonance. Sensors 2021, 21, 906. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yao, Q.; Fan, J.; Du, J.; Wang, J.; Peng, X. An NIR Fluorescent Probe of Uric HSA for Renal Diseases Warning. Dye. Pigm. 2016, 133, 79–85. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, E.; Jung, W.; Kim, M.K.; Chong, Y. A Near-Infrared Turn-on Fluorescent Sensor for Sensitive and Specific Detection of Albumin from Urine Samples. Sensors 2020, 20, 1232. [Google Scholar] [CrossRef]
- Aristova, D.; Volynets, G.; Chernii, S.; Losytskyy, M.; Balanda, A.; Slominskii, Y.; Mokhir, A.; Yarmoluk, S.; Kovalska, V. Far-Red Pentamethine Cyanine Dyes as Fluorescent Probes for the Detection of Serum Albumins. R. Soc. Open Sci. 2020, 7, 200453. [Google Scholar] [CrossRef]
- Xu, Y.; Li, B.; Li, W.; Zhao, J.; Sun, S.; Pang, Y. “ICT-Not-Quenching” near Infrared Ratiometric Fluorescent Detection of Picric Acid in Aqueous Media. Chem. Commun. 2013, 49, 4764–4766. [Google Scholar] [CrossRef]
- Ananda Rao, B.; Kim, H.; Son, Y.-A. Synthesis of Near-Infrared Absorbing Pyrylium-Squaraine Dye for Selective Detection of Hg2+. Sens. Actuators B Chem. 2013, 188, 847–856. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, Y.; Nie, L.; Xie, C.; Yan, Z. Colorimetric Detection of Trace Hg2+ with Near-Infrared Absorbing Squaraine Functionalized by Dibenzo-18-Crown-6 and Its Mechanism. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 104, 87–91. [Google Scholar] [CrossRef]
- Wang, W.; Fu, A.; Lan, J.; Gao, G.; You, J.; Chen, L. Rational Design of Fluorescent Bioimaging Probes by Controlling the Aggregation Behavior of Squaraines: A Special Effect of Ionic Liquid Pendants. Chem. Eur. J. 2010, 16, 5129–5137. [Google Scholar] [CrossRef] [PubMed]
- Wallace, K.J.; Gray, M.; Zhong, Z.; Lynch, V.M.; Anslyn, E.V. An Artificial Siderophore for the Detection of Iron(III). Dalton Trans. 2005, 14, 2436–2441. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Fu, A.; You, J.; Gao, G.; Lan, J.; Chen, L. Squaraine-Based Colorimetric and Fluorescent Sensors for Cu2+-Specific Detection and Fluorescence Imaging in Living Cells. Tetrahedron 2010, 66, 3695–3701. [Google Scholar] [CrossRef]
- Sanna, E.; Martínez, L.; Rotger, C.; Blasco, S.; González, J.; García-España, E.; Costa, A. Squaramide-Based Reagent for Selective Chromogenic Sensing of Cu(II) through a Zwitterion Radical. Org. Lett. 2010, 12, 3840–3843. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, Q.; Wu, J.; Fu, N. Design and Synthesis of a Squaraine Based Near-Infrared Fluorescent Probe for the Ratiometric Detection of Zn2+ Ions. Dye. Pigm. 2013, 99, 699–704. [Google Scholar] [CrossRef]
- Jiang, J.-Q.; Sun, C.-L.; Shi, Z.-F.; Xu, Z.-G.; Zhang, H.-L. A Ppb Level Turn-on Fluorescence Chemosensor for the Detection of Zn2+. Sens. Actuators B Chem. 2015, 220, 659–664. [Google Scholar] [CrossRef]
- Basheer, M.C.; Alex, S.; George Thomas, K.; Suresh, C.H.; Das, S. A Squaraine-Based Chemosensor for Hg2+ and Pb2+. Tetrahedron 2006, 62, 605–610. [Google Scholar] [CrossRef]
- Hsueh, S.-Y.; Lai, C.-C.; Liu, Y.-H.; Wang, Y.; Peng, S.-M.; Chiu, S.-H. Protecting a Squaraine Near-IR Dye through Its Incorporation in a Slippage-Derived [2]Rotaxane. Org. Lett. 2007, 9, 4523–4526. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, D.; Li, H.; Sun, S.; Xu, Y. A BSA-Squaraine Hybrid System for Selectively Detecting Ag+ in Absolute PBS and Sequential Construction of Logic Functions. Sens. Actuators B Chem. 2017, 245, 290–296. [Google Scholar] [CrossRef]
- Arunkumar, E.; Ajayaghosh, A.; Daub, J. Selective Calcium Ion Sensing with a Bichromophoric Squaraine Foldamer. J. Am. Chem. Soc. 2005, 127, 3156–3164. [Google Scholar] [CrossRef]
- Gassensmith, J.J.; Matthys, S.; Lee, J.-J.; Wojcik, A.; Kamat, P.V.; Smith, B.D. Squaraine Rotaxane as a Reversible Optical Chloride Sensor. Chem. Eur. J. 2010, 16, 2916–2921. [Google Scholar] [CrossRef] [PubMed]
- Elmes, R.B.P.; Turner, P.; Jolliffe, K.A. Colorimetric and Luminescent Sensors for Chloride: Hydrogen Bonding vs Deprotonation. Org. Lett. 2013, 15, 5638–5641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, H.; Wang, X. Cytidine-Stabilized Gold Nanocluster as a Fluorescence Turn-on and Turn-off Probe for Dual Functional Detection of Ag+ and Hg2+. Anal. Chim. Acta 2015, 870, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ji, C.; Yang, W.; Yin, M. PH Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Solution Sensors. Analyst 2013, 138, 7289–7293. [Google Scholar] [CrossRef] [PubMed]
- Hovor, I.V.; Kolosova, O.S.; Sanin, E.V.; Obukhova, O.M.; Tatarets, A.L.; Terpetschnig, E.A.; Patsenker, L.D. Water-Soluble Norsquaraine Dyes for Protein Labeling and PH-Sensing Applications. Dye. Pigm. 2019, 170, 107567. [Google Scholar] [CrossRef]
- Butnarasu, C.; Barbero, N.; Barolo, C.; Visentin, S. Squaraine Dyes as Fluorescent Turn-on Sensors for the Detection of Porcine Gastric Mucin: A Spectroscopic and Kinetic Study. J. Photochem. Photobiol. B Biol. 2020, 205, 111838. [Google Scholar] [CrossRef]
- Butnarasu, C.; Barbero, N.; Barolo, C.; Visentin, S. Interaction of Squaraine Dyes with Proteins: Looking for More Efficient Fluorescent Turn-on Probes. Dye. Pigm. 2021, 184, 108873. [Google Scholar] [CrossRef]
- Xu, Y.; Li, B.; Han, P.; Sun, S.; Pang, Y. Near-Infrared Fluorescent Detection of Glutathione via Reaction-Promoted Assembly of Squaraine-Analyte Adducts. Analyst 2013, 138, 1004–1007. [Google Scholar] [CrossRef]
- Zheng, Z.; Huyan, Y.; Li, H.; Sun, S.; Xu, Y. A Lysosome-Targetable near Infrared Fluorescent Probe for Glutathione Sensing and Live-Cell Imaging. Sens. Actuators B Chem. 2019, 301, 127065. [Google Scholar] [CrossRef]
- Liu, T.; Huo, F.; Yin, C.; Li, J.; Niu, L. A Highly Selective Fluorescence Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. RSC Adv. 2015, 5, 28713–28716. [Google Scholar] [CrossRef]
- Shahrokhian, S. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Anal. Chem. 2001, 73, 5972–5978. [Google Scholar] [CrossRef] [PubMed]
- Refsum, H.; Smith, A.D.; Ueland, P.M.; Nexo, E.; Clarke, R.; McPartlin, J.; Johnston, C.; Engbaek, F.; Schneede, J.; McPartlin, C.; et al. Facts and Recommendations about Total Homocysteine Determinations: An Expert Opinion. Clin. Chem. 2004, 50, 3–32. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.; Barroso, A.G.; Sousa, M.A.; Ferreira, O.; Boto, R.E.; Fernandes, J.R.; Almeida, P.; Silvestre, S.M.; Santos, A.O.; Reis, L.V. Picolylamine-Functionalized Benz[e]Indole Squaraine Dyes: Synthetic Approach, Characterization and in Vitro Efficacy as Potential Anticancer Phototherapeutic Agents. Eur. J. Med. Chem. 2022, 229, 114071. [Google Scholar] [CrossRef]
- Ogunsipe, A.; Maree, D.; Nyokong, T. Solvent Effects on the Photochemical and Fluorescence Properties of Zinc Phthalocyanine Derivatives. J. Mol. Struct. 2003, 650, 131–140. [Google Scholar] [CrossRef]
- Lister, A.S. 7 Validation of HPLC Methods in Pharmaceutical Analysis. In Separation Science and Technology; Elsevier: Amsterdam, The Netherlands, 2005; Volume 6, pp. 191–217. ISBN 978-0-12-088547-3. [Google Scholar]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Lima, E.; Ferreira, O.; Gomes, V.S.D.; Santos, A.O.; Boto, R.E.; Fernandes, J.R.; Almeida, P.; Silvestre, S.M.; Reis, L.V. Synthesis and in Vitro Evaluation of the Antitumoral Phototherapeutic Potential of Squaraine Cyanine Dyes Derived from Indolenine. Dye. Pigm. 2019, 167, 98–108. [Google Scholar] [CrossRef]
- Lima, E.; Ferreira, O.; Silva, J.F.; Santos, A.O.; Boto, R.E.; Fernandes, J.R.; Almeida, P.; Silvestre, S.M.; Reis, L.V. Photodynamic Activity of Indolenine-Based Aminosquaraine Cyanine Dyes: Synthesis and in Vitro Photobiological Evaluation. Dye. Pigm. 2020, 174, 108024. [Google Scholar] [CrossRef]
- Lima, E.; Boto, R.E.; Ferreira, D.; Fernandes, J.R.; Almeida, P.; Ferreira, L.F.V.; Souto, E.B.; Silva, A.M.; Reis, L.V. Quinoline- and Benzoselenazole-Derived Unsymmetrical Squaraine Cyanine Dyes: Design, Synthesis, Photophysicochemical Features and Light-Triggerable Antiproliferative Effects against Breast Cancer Cell Lines. Materials 2020, 13, 2646. [Google Scholar] [CrossRef]
- Reis, L.; Serrano, J.; Almeida, P.; Santos, P. The Synthesis and Characterization of Novel, Aza-Substituted Squarylium Cyanine Dyes. Dye. Pigm. 2009, 81, 197–202. [Google Scholar] [CrossRef]
- Reis, L.V.; Serrano, J.P.; Almeida, P.; Santos, P.F. New Synthetic Approach to Aminosquarylium Cyanine Dyes. Synlett 2002, 10, 1617–1620. [Google Scholar] [CrossRef]
- Oushiki, D.; Kojima, H.; Takahashi, Y.; Komatsu, T.; Terai, T.; Hanaoka, K.; Nishikawa, M.; Takakura, Y.; Nagano, T. Near-Infrared Fluorescence Probes for Enzymes Based on Binding Affinity Modulation of Squarylium Dye Scaffold. Anal. Chem. 2012, 84, 4404–4410. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31278-1. [Google Scholar]
- Zhang, Y.; Yue, X.; Kim, B.; Yao, S.; Bondar, M.V.; Belfield, K.D. Bovine Serum Albumin Nanoparticles with Fluorogenic Near-IR-Emitting Squaraine Dyes. ACS Appl. Mater. Interfaces 2013, 5, 8710–8717. [Google Scholar] [CrossRef] [PubMed]
- McKerrow, A.J.; Buncel, E.; Kazmaier, P.M. Aggregation of Squaraine Dyes: Structure–Property Relationships and Solvent Effects. Can. J. Chem. 1995, 73, 1605–1615. [Google Scholar] [CrossRef]
- Fernandes, T.C.D.; Lima, E.; Boto, R.E.; Ferreira, D.; Fernandes, J.R.; Almeida, P.; Ferreira, L.F.V.; Silva, A.M.; Reis, L.V. In Vitro Phototherapeutic Effects of Indolenine-Based Mono- and Dithiosquaraine Cyanine Dyes against Caco-2 and HepG2 Human Cancer Cell Lines. Photodiagnosis Photodyn. Ther. 2020, 31, 101844. [Google Scholar] [CrossRef]
- Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K. Crystal Structure of Human Serum Albumin at 2.5 Å Resolution. Protein Eng. Des. Sel. 1999, 12, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural Basis of the Drug-Binding Specificity of Human Serum Albumin. J. Mol. Biol. 2005, 353, 38–52. [Google Scholar] [CrossRef]
- Wzorek, J.; Bednarek, R.; Watala, C.; Boncler, M. Efficacy of a Combined Antiplatelet Therapy Is Not Affected by a Simultaneous Binding of Cangrelor and PSB 0777 to Albumin. Front. Pharmacol. 2021, 12, 638257. [Google Scholar] [CrossRef]
- Al-Harthi, S.; Lachowicz, J.I.; Nowakowski, M.E.; Jaremko, M.; Jaremko, Ł. Towards the Functional High-Resolution Coordination Chemistry of Blood Plasma Human Serum Albumin. J. Inorg. Biochem. 2019, 198, 110716. [Google Scholar] [CrossRef]
- Gomes, V.S.D.; Ferreira, J.C.C.; Boto, R.E.F.; Almeida, P.; Fernandes, J.R.; Sousa, M.J.; Gonçalves, M.S.T.; Reis, L.V. Squaraine Dyes Derived from Indolenine and Benzo[e]Indole as Potential Fluorescent Probes for HSA Detection and Antifungal Agents. Photochem. Photobiol. 2022, php.13624. [Google Scholar] [CrossRef]
- Gomes, V.S.D.; Boto, R.E.F.; Almeida, P.; Coutinho, P.J.G.; Pereira, M.R.; Gonçalves, M.S.T.; Reis, L.V. Squaraine Dyes as Serum Albumins Probes: Synthesis, Photophysical Experiments and Molecular Docking Studies. Bioorg. Chem. 2021, 115, 105221. [Google Scholar] [CrossRef]
- Gomes, V.S.D.; Gonçalves, H.M.R.; Boto, R.E.F.; Almeida, P.; Reis, L.V. Barbiturate Squaraine Dyes as Fluorescent Probes for Serum Albumins Detection. J. Photochem. Photobiol. A Chem. 2020, 400, 112710. [Google Scholar] [CrossRef]
Squaraine Dye | Excitation Wavelength (nm) | Excitation/Emission Slits (nm) |
---|---|---|
5a | 590 | 5/10 |
11a | 630 | 10/10 |
11b | 670 | 10/10 |
12a | 595 | 10/10 |
13a | 620 | 10/10 |
Squaraine Dyes | ||||||
---|---|---|---|---|---|---|
Solvent | 5a | 11a | 11b | 12a | 13a | |
DMF | λabs | 642 | 670 | 703 | 656 | 665 |
λem | 655 | 687 | 718 | 671 | 677 | |
ΔS | 309 | 369 | 297 | 341 | 267 | |
ΦF | 21.1 ± 0.3 | 3.6 ± 0.2 | 1.7 ± 0.3 | 5.5 ± 0.4 | 5.4 ± 0.4 | |
DMSO | λabs | 645 | 673 | 707 | 660 | 668 |
λem | 658 | 685 | 725 | 674 | 680 | |
ΔS | 306 | 260 | 351 | 315 | 264 | |
ΦF | 58.9 ± 2.7 | 4.1 ± 0.3 | 2.3 ± 0.4 | 8.3 ± 0.6 | 7.1 ± 0.1 | |
CFM | λabs | 636 | 667 | 702 | 657 | 664 |
ε | 3.98 | 1.94 | 1.67 | 3.02 | 1.48 | |
λem | 650 | 681 | 715 | 671 | 675 | |
ΔS | 339 | 308 | 259 | 317 | 245 | |
ΦF | 116.1 ± 10.4 | 2.7 ± 0.1 | 2.3 ± 0.3 | 10.7 ± 0.9 | 1.9 ± 0.1 |
Squaraine Dye | HSA Absence | HSA Presence | |||||||
---|---|---|---|---|---|---|---|---|---|
λabs | λem | ΔS | ε | ΦF | λabs | λem | ΔS | ΦF | |
5a | 640 | 649 | 217 | 0.81 | 1.0 ± 0.1 | 640 | 648 | 193 | 27.3 ± 0.3 |
11a | 670 | 680 | 219 | 0.48 | 4.7 ± 0.9 | 667 | 682 | 330 | 80.1 ± 7.7 |
11b | 705 | 715 | 198 | 0.44 | 1.9 ± 0.5 | 707 | 714 | 108 | 28.8 ± 6.3 |
12a | 657 | 665 | 182 | 0.71 | 3.5 ± 1.0 | 656 | 665 | 206 | 74.9 ± 3.0 |
13a | 665 | 675 | 223 | 0.23 | 19.4 ± 3.3 | 663 | 677 | 312 | 93.2 ± 22.0 |
Squaraine Dye | WS | F0 (a.u.) | Squaraine-Protein Complex Fluorescence Properties | ||||
---|---|---|---|---|---|---|---|
F (a.u.) | F/F0 | S (nM) | QL (nM) | DL (nM) | |||
5a | −5.91 | 9 | 363 | 41 | 1.0 × 105 | 1047 | 314 |
11a | −4.75 | 19 | 564 | 31 | 2.0 × 105 | 635 | 190 |
11b | −3.54 | 8 | 166 | 21 | 5.5 × 105 | 560 | 168 |
12a | −4.99 | 29 | 968 | 36 | 3.0 × 105 | 692 | 208 |
13a | −4.52 | 38 | 463 | 12 | 1.0 × 105 | 1172 | 352 |
Ligand | Estimated Free Binding Energy (Kcal/mol) | ||||||
---|---|---|---|---|---|---|---|
Warfarin | Ibuprofen | 5a | 11a | 11b | 12a | 13a | |
Protein 2BXD Sudlow Site I | −8.80 | – | −12.08 | −11.07 | −12.15 | −13.12 | −12.34 |
Protein 2BXG Sudlow Site II | – | −7.42 | −8.36 | −8.83 | −10.21 | −8.87 | −9.41 |
Protein 2BXG Full Protein | – | – | −9.09 | −6.84 | −9.67 | −8.66 | −9.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, M.A.; Lima, E.; Ferreira, O.; Boto, R.E.; Almeida, P.; Reis, L.V. In Vitro and In Silico Evaluation of Indole-Bearing Squaraine Dyes as Potential Human Serum Albumin Fluorescent Probes. Chemosensors 2022, 10, 314. https://doi.org/10.3390/chemosensors10080314
Sousa MA, Lima E, Ferreira O, Boto RE, Almeida P, Reis LV. In Vitro and In Silico Evaluation of Indole-Bearing Squaraine Dyes as Potential Human Serum Albumin Fluorescent Probes. Chemosensors. 2022; 10(8):314. https://doi.org/10.3390/chemosensors10080314
Chicago/Turabian StyleSousa, Margarida A., Eurico Lima, Octávio Ferreira, Renato E. Boto, Paulo Almeida, and Lucinda V. Reis. 2022. "In Vitro and In Silico Evaluation of Indole-Bearing Squaraine Dyes as Potential Human Serum Albumin Fluorescent Probes" Chemosensors 10, no. 8: 314. https://doi.org/10.3390/chemosensors10080314
APA StyleSousa, M. A., Lima, E., Ferreira, O., Boto, R. E., Almeida, P., & Reis, L. V. (2022). In Vitro and In Silico Evaluation of Indole-Bearing Squaraine Dyes as Potential Human Serum Albumin Fluorescent Probes. Chemosensors, 10(8), 314. https://doi.org/10.3390/chemosensors10080314