Non-Invasive Rapid Detection of Lung Cancer Biomarker Toluene with a Cataluminescence Sensor Based on the Two-Dimensional Nanocomposite Pt/Ti3C2Tx-CNT
Abstract
:1. Introduction
2. Experiment
2.1. Reagents and Instruments
2.2. Preparation of Pt/Ti3C2Tx-CNT Catalysts
2.2.1. Preparation of Ti3C2Tx
2.2.2. Preparation of CTAB-CNT
2.2.3. Preparation of Pt/Ti3C2Tx-CNT
2.3. Characterization
2.4. Cataluminescence Sensing Measurement
3. Results and Discussions
3.1. Characterization of Pt/Ti3C2Tx-CNT
3.2. CTL Response of Toluene on Pt/Ti3C2Tx-CNT
3.3. Optimization of CTL Sensor
3.4. Analytical Characteristics
3.5. Selectivity and Stability of the Pt/Ti3C2Tx-CNT for Toluene
3.6. The Advantages of Pt/Ti3C2Tx-CNT Sensor
3.7. Possible Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, K.H.; Jahan, S.A.; Kabir, E. A review of breath analysis for diagnosis of human health. TrAC Trends Anal. Chem. 2012, 33, 1–8. [Google Scholar] [CrossRef]
- Amann, A.; Corradi, M.; Mazzone, P.; Mutti, A. Lung cancer biomarkers in exhaled breath. Expert Rev. Mol. Diagn. 2011, 11, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Konvalina, G.; Haick, H. Sensors for breath testing: From nanomaterials to comprehensive disease detection. Acc. Chem. Res. 2014, 47, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, L.; Wen, Z.; Ye, Z. Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor. Sens. Actuators B Chem. 2017, 238, 1052–1059. [Google Scholar] [CrossRef]
- Qin, W.; Yuan, Z.; Shen, Y.; Zhang, R.; Meng, F. Phosphorus-doped porous perovskite LaFe1-xPxO3-δ nanosheets with rich surface oxygen vacancies for ppb level acetone sensing at low temperature. Chem. Eng. J. 2022, 431, 134280. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhu, Z.; Ding, D.; Lu, W.; Xue, Q. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor. Appl. Surf. Sci. 2018, 443, 114–121. [Google Scholar] [CrossRef]
- David, S.S.; Veeralakshmi, S.; Sandhya, J.; Nehru, S.; Kalaiselvam, S. Room temperature operatable high sensitive toluene gas sensor using chemiresistive Ag/Bi2O3 nanocomposite. Sens. Actuators B Chem. 2020, 320, 128410. [Google Scholar] [CrossRef]
- Healy, R.M.; Wang, J.M.; Karellas, N.S.; Todd, A.; Sofowote, U.; Su, Y.; Munoz, A. Assessment of a passive sampling method and two on-line gas chromatographs for the measurement of benzene, toluene, ethylbenzene and xylenes in ambient air at a highway site. Atmos. Pollut. Res. 2019, 10, 1123–1127. [Google Scholar] [CrossRef]
- Douberly, G.E.; Ricks, A.M.; Schleyer PV, R.; Duncan, M.A. Infrared spectroscopy of gas phase benzenium ions: Protonated benzene and protonated toluene, from 750 to 3400 cm−1. J. Phys. Chem. A 2008, 112, 4869–4874. [Google Scholar] [CrossRef]
- Ji, J.; Deng, C.; Shen, W.; Zhang, X. Field analysis of benzene, toluene, ethylbenzene and xylene in water by portable gas chromatography-microflame ionization detector combined with headspace solid-phase microextraction. Talanta 2006, 69, 894–899. [Google Scholar] [CrossRef]
- Lin, H.; Jang, M.; Suslick, K.S. Preoxidation for colorimetric sensor array detection of VOCs. J. Am. Chem. Soc. 2011, 133, 16786. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, T.; Covington, J.A.; Udrea, F.; Gardner, J.W. Identification and quantification of different vapours using a single polymer chemoresistor and the novel dual transient temperature modulation technique. Sens. Actuators B Chem. 2009, 141, 370–380. [Google Scholar] [CrossRef]
- Breysse, M.; Claudel, B.; Faure, L.; Guenin, M.; Williams, R.J.; Wolkenstein, T. Chemiluminescense during the catalysis of carbon monoxide oxidation on a thoria surface. J. Catal. 1976, 45, 137–144. [Google Scholar] [CrossRef]
- Zhou, K.; Xu, J.; Gu, C.; Liu, B.; Peng, Z. Identification and determination of formaldehyde, benzene and ammonia in air based on cross sensitivity of cataluminescence on single catalyst. Sens. Actuators B Chem. 2017, 246, 703–709. [Google Scholar] [CrossRef]
- Almasian, M.R.; Na, N.; Wen, F.; Zhang, S.; Zhang, X. Development of a plasma-assisted cataluminescence system for benzene, toluene, ethylbenzene, and xylenes analysis. Anal. Chem. 2010, 82, 3457. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Cao, X.; Pan, C.; Yang, L.; Lai, G.; Chen, J.; Wu, C. Studies of the Cataluminescence of Benzene Homologues on Nanosized γ-Al2O3/Eu2O3 and the Development of a Gas Sensorfor Benzene Homologue Vapors. Sensors 2006, 6, 1827–1836. [Google Scholar] [CrossRef]
- Zeng, B.; Zhang, L.; Wan, X.; Song, H.; Lv, Y. Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sens. Actuators B Chem. 2015, 211, 370–376. [Google Scholar] [CrossRef]
- Leghrib, R.; Felten, A.; Demoisson, F.; Reniers, F.; Pireaux, J.J.; Llobet, E. Room-temperature, selective detection of benzene at trace levels using plasma-treated metal-decorated multiwalled carbon nanotubes. Carbon 2010, 48, 3477–3484. [Google Scholar] [CrossRef]
- Wang, N.J.; Cao, X.A.; He, R.W.; Liu, Y.H.; Huang, Y.J. A cataluminescence-based sensor for detecting benzene, toluene and xylene vapors utilizing the catalytic reduction on the surface of nanosized Al2O3/Pt. Adv. Mat. Res. 2013, 663, 335–342. [Google Scholar]
- Shi, Z.; Li, G.; Hu, Y. Cataluminescence sensor based on Pt/NU-901 nanocomposite for rapid capture, catalysis and detection of acetone in exhaled breath. Anal. Chim. Acta 2022, 1206, 339787. [Google Scholar] [CrossRef]
- Zhang, R.K.; Wang, D.; Wu, Y.J.; Hu, Y.H.; Chen, J.Y.; He, J.C.; Wang, J.X. A Cataluminescence Sensor Based on NiO Nanoparticles for Sensitive Detection of Acetaldehyde. Molecules 2020, 25, 1097. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Sun, B.; Jin, Z.; Liu, J.; Li, M. Synthesis of SiO2/Fe3O4 nanomaterial and its application as cataluminescence gas sensor material for ether. Sens. Actuators B Chem. 2012, 171–172, 699–704. [Google Scholar] [CrossRef]
- Rushi, A.D.; Datta, K.P.; Ghosh, P.; Mulchandani, A.; Shirsat, M.D. Exercising substituents in porphyrins for real time selective sensing of volatile organic com pounds. Sens. Actuators B Chem. 2018, 257, 389–397. [Google Scholar] [CrossRef]
- Bao, Y.; Xu, P.; Cai, S.; Yu, H.; Li, X. Detection of volatile-organic-compounds (VOCs) in solution using cantilever-based gas sensors. Talanta 2018, 182, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, G.; Hu, Y. Simple and excellent selective chemiluminescence based CS2 on line detection system for rapid analysis of sulfur-containing com pounds in complex samples. Anal. Chem. 2015, 87, 5649–5655. [Google Scholar] [CrossRef]
- Xu, M.; Liang, L.; Qi, J.; Wu, T.; Zhou, D.; Xiao, Z. Intralayered Ostwald Ripening-Induced Self-Catalyzed Growth of CNTs on MXene for Robust Lithium–Sulfur Batteries. Small 2021, 17, 2007446. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.; Yu, L.; Chen, Y.; Shi, J. Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Lett. 2017, 17, 384–391. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Tao, Q.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M.W.; Persson, P.O.; et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 2017, 8, 14949. [Google Scholar] [CrossRef]
- Zhou, J.; Zha, X.; Zhou, X.; Chen, F.; Gao, G.; Wang, S.; Shen, C.; Chen, T.; Zhi, C.; Eklund, P.; et al. Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. ACS Nano 2017, 11, 3841–3850. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Y.; Xie, G.; Du, X.; Tai, H. Gas sensors based on multiple-walled carbon nanotubes-polyethylene oxide films for toluene vapor detection. Sens. Actuators B Chem. 2014, 191, 24–30. [Google Scholar] [CrossRef]
- Crescitelli, A.; Consales, M.; Penza, M.; Aversa, P.; Giordano, M.; Cusano, A. Toluene detection in aqueous phase by optical fiber sensors integrated with single-walled carbon nanotubes. Open Environ. Biol. J. 2008, 1, 26–32. [Google Scholar]
- Firouzjaei, M.D.; Karimiziarani, M.; Moradkhani, H.; Elliott, M.; Anasori, B. MXenes: The two-dimensional influencers. Mater. Today Adv. 2022, 13, 100202. [Google Scholar] [CrossRef]
- Yu, L.; Li, N. Noble Metal Nanoparticles-Based Colorimetric Biosensor for Visual Quantification: A Mini Review. Chemosensors 2019, 7, 53. [Google Scholar] [CrossRef]
- Kim, H.W.; Lee, J.W. GeO2 nanostructures fabricated by heating of Ge powders: Pt-catalyzed growth, structure, and photoluminescence. Phys. E Low-Dimens. Syst. Nanostruct. 2008, 40, 2499–2503. [Google Scholar] [CrossRef]
- Shi, Z.; Xia, L.; Li, G.; Hu, Y. Pt/Au Nanoparticles@Co3O4 Cataluminescence Sensor for Rapid Analysis of Methyl Sec-Butyl Ether Impurity in Methyl Tert-Butyl Ether Gasoline Additive. Chemosensors 2022, 10, 260. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Mathis, T.S.; Sarycheva, A.; Hatter, C.B.; Uzun, S.; Levitt, A.; Gogotsi, Y. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Edit. 2018, 57, 5444–5448. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, M.Q.; Anasori, B.; Maleski, K.; Ren, C.E.; Li, J.; Byles, B.W.; Pomerantseva, E.; Wang, G.; Gogotsi, Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513–523. [Google Scholar] [CrossRef]
- Xu, C.; Fan, C.; Zhang, X.; Chen, H.; Liu, X.; Fu, Z.; Wang, R.; Hong, T.; Cheng, J. MXene (Ti3C2Tx) and carbon nanotube hybrid-supported platinum catalysts for the high-performance oxygen reduction reaction in PEMFC. ACS Appl. Mater. Interfaces 2020, 12, 19539–19546. [Google Scholar] [CrossRef]
- Meng, F.; Qi, T.; Zhang, J.; Zhu, H.; Yuan, Z.; Liu, C.; Qin, W.; Ding, M. MoS2-Templated Porous Hollow MoO3 Microspheres for Highly Selective Ammonia Sensing via a Lewis Acid-Base Interaction. IEEE Trans. Ind. Electron. 2022, 69, 960–970. [Google Scholar] [CrossRef]
- Wu, M.; Park, H.; Cho, K.M.; Kim, J.Y.; Kim, S.J.; Choi, S.; Kang, Y.; Kim, J.; Jung, H.T. Formation of toroidal Li2O2 in non-aqueous Li–O2 batteries with Mo2CTx MXene/CNT composite. RSC Adv. 2019, 9, 41120–41125. [Google Scholar] [CrossRef]
- Sha, W.; Ni, S.; Zheng, C. Development of cataluminescence sensor system for benzene and toluene determination. Sens. Actuators B Chem. 2015, 209, 297–305. [Google Scholar] [CrossRef]
- Sun, Y.; Cao, X.; Liu, Y.; Wang, N.; He, R. Research on benzene, toluene and dimethylbenzene detection based on a cataluminescence sensor. Luminescence 2014, 29, 122–126. [Google Scholar] [CrossRef]
- Sharma, C.S.; Katepalli, H.; Sharma, A.; Madou, M. Fabrication and electrical conductivity of suspended carbon nanofiber arrays. Carbon 2011, 49, 1727–1732. [Google Scholar] [CrossRef]
- Huang, X.; Song, H.; Zhang, L.; Deng, D.; Lv, Y. ZnO Nanoparticle-Decorated CeO2 Nanospheres for Cataluminescence Sensing of H2S. ACS Appl. Nano Mater. 2021, 4, 9557–9565. [Google Scholar] [CrossRef]
- Minot, C.; Gallezot, P. Competitive hydrogenation of benzene and toluene: The oretical study of their adsorption on ruthenium, rhodium, and palladium. J. Catal. 1990, 123, 341–348. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Na, H.G.; Kang, S.Y.; Choi, S.W.; Kim, S.S.; Kim, H.W. Selective detection of low concentration toluene gas using Pt-decorated carbon nanotubes sensors. Sens. Actuators B Chem. 2016, 227, 157–168. [Google Scholar] [CrossRef]
- Orozco, J.M.; Webb, G. The adsorption and hydrogenation of benzene and toluene on alumina-and silica- supported palladium and platinum catalysts. Appl. Catal. 1983, 6, 67–84. [Google Scholar] [CrossRef]
- Qin, W.; Yuan, Z.; Gao, H.; Zhang, R.; Meng, F. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sens. Actuators B Chem. 2021, 341, 130015. [Google Scholar] [CrossRef]
- Meng, F.; Li, X.; Yuan, Z.; Lei, Y.; Qi, T.; Li, J. Ppb-Level Xylene Gas Sensors based on Co3O4 Nanoparticles coated Reduced Graphene Oxide(rGO) Nanosheets Operating at Low Temperature. IEEE Trans. Instrum. Meas. 2021, 70, 9511510. [Google Scholar] [CrossRef]
- Yu, K.; Hu, J.; Li, X.; Zhang, L.; Lv, Y. Camellia-like NiO: A novel cataluminescence sensing material for H2S. Sens. Actuators B Chem. 2019, 288, 243–250. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, Z.; Zhang, X. A novel gaseous acetaldehyde sensor utilizing cataluminescence on nanosized BaCO3. Sens. Actuators B Chem. 2004, 99, 30–35. [Google Scholar] [CrossRef]
- Ye, Q.; Gao, Q.; Zhang, X.R.; Xu, B.Q. Cataluminescence and catalytic reactions of ethanol oxidation over nanosized Ce1−xZrxO2 (0 ≤ x ≤ 1) catalysts. Catal. Commun. 2006, 7, 589–592. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, Z.; Zhang, L.; Lin, Y.; Lu, C. Recent advances in cataluminescence-based optical sensing systems. Analyst 2017, 142, 1415–1428. [Google Scholar] [CrossRef]
Elements | Weight% | Atomic% |
---|---|---|
C | 9.76 | 93.83 |
O | 0.75 | 5.39 |
Ti | 0.18 | 0.44 |
Pt | 0.59 | 0.34 |
Totals | 11.28 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Shi, X.; Liu, F.; Duan, T.; Sun, B. Non-Invasive Rapid Detection of Lung Cancer Biomarker Toluene with a Cataluminescence Sensor Based on the Two-Dimensional Nanocomposite Pt/Ti3C2Tx-CNT. Chemosensors 2022, 10, 333. https://doi.org/10.3390/chemosensors10080333
Wang H, Shi X, Liu F, Duan T, Sun B. Non-Invasive Rapid Detection of Lung Cancer Biomarker Toluene with a Cataluminescence Sensor Based on the Two-Dimensional Nanocomposite Pt/Ti3C2Tx-CNT. Chemosensors. 2022; 10(8):333. https://doi.org/10.3390/chemosensors10080333
Chicago/Turabian StyleWang, Hongyan, Xiaoqi Shi, Fei Liu, Tingmei Duan, and Bai Sun. 2022. "Non-Invasive Rapid Detection of Lung Cancer Biomarker Toluene with a Cataluminescence Sensor Based on the Two-Dimensional Nanocomposite Pt/Ti3C2Tx-CNT" Chemosensors 10, no. 8: 333. https://doi.org/10.3390/chemosensors10080333
APA StyleWang, H., Shi, X., Liu, F., Duan, T., & Sun, B. (2022). Non-Invasive Rapid Detection of Lung Cancer Biomarker Toluene with a Cataluminescence Sensor Based on the Two-Dimensional Nanocomposite Pt/Ti3C2Tx-CNT. Chemosensors, 10(8), 333. https://doi.org/10.3390/chemosensors10080333