Gases in Food Production and Monitoring: Recent Advances in Target Chemiresistive Gas Sensors
Abstract
:1. Introduction
2. Long-Standing and Recent Advances in Gas-Based Food Production
2.1. Gases in Drink Production
2.2. Gases in Anesthesia of Animals
2.3. Gases in Greenhouses
2.4. Gases in Modified Atmospheric Packaging (MAP)
2.5. Gases in Microalgae Cultivation
2.6. Gases in Meat Spoilage
2.7. Gases in Fruit and Vegetable Ripening
3. Recent Advances in Target Gas Sensing
3.1. Recent Advances in C2H4 Gas Sensors
3.2. Recent Advances in NH3 Gas Sensors
3.3. Recent Advances in SO2 Gas Sensors
Materials | Operating Temp. (°C) | SO2 Concentration | Response % | Limit of Detection | Ref. |
---|---|---|---|---|---|
SAC-Ni/H-SnO2 | 250 | 20 ppm | 48 | 100 ppb | [83] |
ZCNb nanohybrids | 150 | 100 ppm | 61.5 | 100 ppb | [84] |
MWCNT/MoS2 | RT | 1.0 ppm | 1.9 | 500 ppb | [88] |
NiO/SnO2 | 250 | 2.0 ppm | 30 | 400 ppb | [85] |
La0.6Ca0.4 FeO3 thin film | 160 | 3.0 ppm | 7.6 | -- | [87] |
Au/La2O3-NPs/ZnO | 260 | 1.0 ppm | 44 | 100 ppb | [86] |
PAN@UiO-66-NH2 | RT | 100 ppm | 225 | 1.0 ppm | [89] |
Ni-MOF/–OH-SWNTs | RT | 1.5 ppm | 28 | 1.0 ppm | [90] |
PVF/TiO2 nanocomposites | 150 | 600 ppm | 83 | 50 ppm | [91] |
3.4. Recent Advances in CO2 Gas Sensors
Materials | Operating Temp. (°C) | CO2 Concentration | Response % | Limit of Detection | Ref. |
---|---|---|---|---|---|
p-Si/MoO3 | 250 | 150 ppm | 12.0 | 50 ppm | [92] |
Sulfonated polyether ether ketone | RT | 5000 ppm | 47 | 500 ppm | [93] |
CuO/rGO hybrid | RT | 500 ppm | 450 | -- | [95] |
SnO2-rGO Hybrid | RT | 500 ppm | 4.5 | 10 ppm | [96] |
rGO/NiO(8)-In2O3 | RT | 50 ppm | 40 | 5 ppm | [97] |
PANI-SnO2-UV | RT | 5000 ppm | 47.4 | 3000 ppm | [98] |
G-LaNiSbWO4 -PPy | RT | 1800 ppm | 120 | 400 ppm | [99] |
MWCNT/PPY | RT | 1000 ppm | 7.2 | 250 ppm | [100] |
PDDA- MWCNTs | RT | 20 ppm | 4.0 | --- | [102] |
Au/PAni nanocomposites | RT | 4000 ppm | 2.0 | -- | [103] |
3.5. Recent Advances in C2H5OH Gas Sensors
4. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cozzolino, A.; Verona, G.; Rothaermel, F.T. Unpacking the Disruption Process: New Technology, Business Models, and Incumbent Adaptation. J. Manag. Stud. 2018, 55, 1166–1202. [Google Scholar] [CrossRef]
- Blanco-Rojo, R.; Sandoval-Insausti, H.; López-Garcia, E.; Graciani, A.; Ordovás, J.M.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Consumption of Ultra-Processed Foods and Mortality: A National Prospective Cohort in Spain. Mayo Clin. Proc. 2019, 94, 2178–2188. [Google Scholar] [CrossRef] [PubMed]
- Rico-Campà, A.; Martínez-González, M.A.; Alvarez-Alvarez, I.; Mendonça, R.D.; de la Fuente-Arrillaga, C.; Gómez-Donoso, C.; Bes-Rastrollo, M. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 2019, 365, l1949. [Google Scholar] [CrossRef]
- Fletcher, B.; Mullane, K.; Platts, P.; Todd, E.; Power, A.; Roberts, J.; Chapman, J.; Cozzolino, D.; Chandra, S. Advances in meat spoilage detection: A short focus on rapid methods and technologies. CYTA–J. Food. 2018, 16, 1037–1044. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Draft WHO Global Strategy for Food Safety 2022–2030. Available online: https://www.who.int/publications/m/item/draft-who-global-strategy-for-food-safety-2022-2030 (accessed on 15 August 2022).
- Google Scholar. h5-index in Food Sceince and Technology. 2022. Available online: https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=bio_foodsciencetechnology (accessed on 15 August 2022).
- Report Overview: Gas Sensor Market Size, Share & Trends Analysis Report by Product, by Type, by Technology, by End Use, by Region, and Segment Forecasts, 2022–2030. 2022. Available online: https://www.grandviewresearch.com/industry-analysis/gas-sensors-market (accessed on 15 August 2022).
- Djenane, D.; Roncalés, P. Carbon monoxide in meat and fish packaging: Advantages and limits. Foods 2018, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.C.; Talasila, P.C.; Joles, D.W. Predicting Film Permeability Needs for Modified-atmosphere Packaging of Lightly Processed Fruits and Vegetables. HortScience 2019, 30, 25–34. [Google Scholar] [CrossRef]
- Odunlami, O.A.; Abatan, O.G.; Busari, A.A.; Alao, G.T.; Elehinafe, F.B.; Emekekwue, C.O. Assessment of hydrogen sulfide emission levels on the floors of some selected bakeries in southwestern Nigeria. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1036, 012067. [Google Scholar] [CrossRef]
- Guido, L.F. Sulfites in beer: Reviewing regulation, analysis and role. Sci. Agric. 2016, 73, 189–197. [Google Scholar] [CrossRef]
- Aissa, K.A.; Zheng, J.L.; Estel, L. Thermal Stability of Epoxidized and Carbonated Vegetable Oils. Org. Process Res. Dev. 2016, 20, 948–953. [Google Scholar] [CrossRef]
- Fernandez, C.M.; Alves, J.; Gaspar, P.D.; Lima, T.M.; Silva, P.D. Innovative processes in smart packaging. A systematic review. J. Sci. Food Agric. 2022. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Naficy, S.; McConchie, R.; Dehghani, F.; Chandrawati, R. Polydiacetylene-based sensors to detect food spoilage at low temperatures. J. Mater. Chem. C 2019, 7, 1919–1926. [Google Scholar] [CrossRef]
- Shaalan, N.M.; Ahmed, F.; Kumar, S.; Melaibari, A.; Hasan, P.M.Z.; Aljaafari, A. Monitoring Food Spoilage Based on a Defect-Induced Multiwall Carbon Nanotube Sensor at Room Temperature: Preventing Food Waste. ACS Omega 2020, 5, 30531–30537. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.Y.; Kuang, J.F.; Qi, X.N.; Ye, Y.J.; Wu, Z.X.; Chen, J.Y.; Lu, W.J. A comprehensive investigation of starch degradation process and identification of a transcriptional activator MabHLH6 during banana fruit ripening. Plant Biotechnol. J. 2018, 16, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, S.; Algers, B.; Pallisera, J.; Velarde, A.; Llonch, P. Animal Welfare and Meat Quality Assessment in Gas Stunning during Commercial Slaughter of Pigs Using Acute Hypercapnia (90 % CO2 in Air). Animals 2020, 12, 2440. [Google Scholar] [CrossRef]
- Ehret, G.; Amediek, A.; Fix, A.; Kiemle, C.; Quatrevalet, M.; Wirth, M.; Wolff, S. Active Remote Sensing of the Greenhouses Gases CO2 and CH4 with CHARM-F on the HALO aircraft. AGU Fall Meeting Abstracts; SAO/NASA: Washington, DC, USA, 2019; p. A51M-2727. [Google Scholar]
- Notarnicola, B.; Tassielli, G.; Alexander, P.; Monforti, F. Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (Life Cycle Assessment) approach. J. Clean. Prod. 2017, 140, 455–469. [Google Scholar] [CrossRef]
- Shaalan, N.M.; Morsy, A.E.A.; Abdel-Rahim, M.A.; Rashad, M. Simple preparation of Ni/CuO nanocomposites with superior sensing activity toward the detection of methane gas. Appl. Phys. A Mater. Sci. Process. 2021, 127, 455. [Google Scholar] [CrossRef]
- Shaalan, N.M.; Saber, O.; Ahmed, F.; Aljaafari, A.; Kumar, S. Growth of defect-induced carbon nanotubes for low-temperature fruit monitoring sensor. Chemosensors 2021, 9, 131. [Google Scholar] [CrossRef]
- Adley, C.C. Past, Present and Future of Sensors in Food Production. Foods 2014, 3, 491–510. [Google Scholar] [CrossRef]
- Zaki, S.A.; Abd-Elrahman, M.I.; Abu-Sehly, A.A.; Almokhtar, M.; Soltan, A.S.; Shaalan, N.M. Solar cell fabrication from semiconducting binary tin sulfide alloy on Si substrate. Sol. Energy 2021, 228, 206–215. [Google Scholar] [CrossRef]
- Shaalan, N.M.; Hamad, D. Low-Temperature Hydrogen Sensor Based on Sputtered Tin Dioxide Nanostructures through Slow Deposition Rate. Appl. Surf. Sci. 2022, 598, 153857. [Google Scholar] [CrossRef]
- Kamble, P.; Jadhav, B.T. Quality Parameters of Wine: A Review in Grams. Int. J. Eng. Appl. Sci. Technol. 2021, 6, 177–182. [Google Scholar]
- Silva, M.M.; Lidon, F.C. Food preservatives—An overview on applications and side effects. Emirates J. Food Agric. 2016, 28, 366–373. [Google Scholar] [CrossRef]
- Black, C.M.; Chu, A.J.; Thomas, G.H.; Routledge, A.; Duhme-Klair, A.-K. Synthesis and antimicrobial activity of an SO2-releasing siderophore conjugate. J. Inorg. Biochem. 2022, 234, 111875. [Google Scholar] [CrossRef] [PubMed]
- Howe, P.A.; Worobo, R.; Sacks, G.L. Conventional Measurements of Sulfur Dioxide (SO2) in Red Wine Overestimate SO2 Antimicrobial Activity. Am. J. Enol. Vitic. 2018, 69, 210–220. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, W.; Fang, F.; Yu, S.; Zhou, J. Elimination of ethyl carbamate in fermented foods. Food Biosci. 2022, 47, 101725. [Google Scholar] [CrossRef]
- Jongman, E.C.; Woodhouse, R.; Rice, M.; Rault, J.L. Pre-slaughter factors linked to variation in responses to carbon dioxide gas stunning in pig abattoirs. Animal 2021, 15, 100134. [Google Scholar] [CrossRef] [PubMed]
- Spizzica, A. Animal production: Anesthesia of pigs and poultry before slaughter. In Gases in Agro-Food Processes; Cachon, R., Girardon, P., Voilley, A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 127–151. [Google Scholar] [CrossRef]
- Bao, J.; Lu, W.-H.; Zhao, J.; Bi, X.T. Greenhouses for CO2 sequestration from atmosphere. Carbon Resour. Convers. 2018, 1, 183–190. [Google Scholar] [CrossRef]
- Goldammer, T. Greenhouse Management: A Guide to Operations and Technology, 1st ed.; Apex Publishing: Clacton-on-Sea, Essex, UK, 2019. [Google Scholar]
- Frantz, J.M. Elevating Carbon Dioxide in a Commercial Greenhouse Reduced Overall Fuel Carbon Consumption and Production Cost When Used in Combination with Cool Temperatures for Lettuce Production. HorTechnology 2011, 21, 647–651. [Google Scholar] [CrossRef]
- Blom, T.J.; Straver, W.A.; Ingratta, F.J.; Khosla, S.S.K.; Brown, W. Carbon Dioxide in Greenhouses, Ontario. 2022. Available online: http://omafra.gov.on.ca/english/crops/facts/00-077.htm (accessed on 2 July 2022).
- Kokila, V.; Prasanna, R.; Kumar, A.; Nishanth, S.; Shukla, J.; Gulia, U.; Nain, L.; Shivay, Y.S.; Singh, A.K. Cyanobacterial inoculation in elevated CO2 environment stimulates soil C enrichment and plant growth of tomato. Environ. Technol. Innov. 2022, 26, 102234. [Google Scholar] [CrossRef]
- Santhanam, N.N.; Ahamed, K.S.V. Greenhouse Gas Sensors Fabricated with New Materials for Climatic Usage: A Review. ChemEngineering 2018, 2, 38. [Google Scholar] [CrossRef]
- Maske, V.R.; Dhulap, V.P. Development of Handy Prototype Gas Sensors Kit for Monitoring of Ambient Green House Gases from Solid Waste Disposal Sites of Solapur City. AIP Conf. Proc. 2018, 1989, 020024. [Google Scholar] [CrossRef]
- Qu, P.; Zhang, M.; Fan, K.; Guo, Z. Microporous modified atmosphere packaging to extend shelf life of fresh foods: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, C.; He, J.; Wu, Z.; Sun, Y.; Pan, D.; Tian, H.; Xia, Q. Combining e-beam irradiation and modified atmosphere packaging as a preservation strategy to improve physicochemical and microbiological properties of sauced duck product. Food Control. 2022, 136, 108889. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Q.; Xu, J.; Sun, F.; Liu, H.; Kong, B. Effects of Modified Atmosphere Packaging with Various CO2 Concentrations on the Bacterial Community and Shelf-Life of Smoked Chicken Legs. Foods 2022, 11, 559. [Google Scholar] [CrossRef]
- McNulty, R.; Kuchi, N.; Xu, E.; Gunja, N. Food-induced methemoglobinemia: A systematic review. J. Food Sci. 2022, 87, 1423–1448. [Google Scholar] [CrossRef]
- Zhao, Q.; Hazarika, A.; Chen, X.; Harvey, S.P.; Larson, B.W.; Teeter, G.R.; Liu, J.; Song, T.; Xiao, C.; Shaw, L.; et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 2019, 10, 2842. [Google Scholar] [CrossRef]
- Aslam, A.; Mughal, T.A. A Review on Microalgae to Achieve Maximal Carbon Dioxide (CO2) Mitigation from Industrial Flue Gases. Int. J. Res. Advent Technol. 2016, 4, 2321–9637. [Google Scholar]
- Iglina, T.; Iglin, P.; Pashchenko, D. Industrial CO2 Capture by Algae: A Review and Recent Advances. Sustainability 2022, 14, 3801. [Google Scholar] [CrossRef]
- Onyeaka, H.; Miri, T.; Obileke, K.; Hart, A.; Anumudu, C.; Al-sharify, Z.T. Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Sci. Technol. 2021, 1, 100007. [Google Scholar] [CrossRef]
- Singh, J.; Dhar, D.W. Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the-Art. Front. Mar. Sci. 2019, 6, 29. [Google Scholar] [CrossRef]
- Nastiti, P.W.; Bintoro, N. Classification of Freshness Levels and Prediction of Changes in Evolution of NH3 and H2S Gases from Chicken Meat during Storage at Room Temperature. J. Agric. Eng. 2022, 11, 90–98. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, L.T. Colorimetric array indicator for NH3 and CO2 detection. Sens. Actuators B Chem. 2018, 255, 3216–3226. [Google Scholar] [CrossRef]
- Edita, R.; Darius, G.; Vinauskienė, R.; Eisinaitė, V.; Balčiūnas, G.; Dobilienė, J.; Tamkutė, L. Rapid evaluation of fresh chicken meat quality by electronic nose. Czech J. Food Sci. 2018, 36, 420–426. [Google Scholar] [CrossRef]
- Matindoust, S.; Farzi, G.; Nejad, M.B.; Shahrokhabadi, M.H. Polymer-based gas sensors to detect meat spoilage: A review, React. Funct. Polym. 2021, 165, 104962. [Google Scholar] [CrossRef]
- Orono, M. Controlled Atmosphere Storage. 2022. Available online: https://extension.umaine.edu/fruit/harvest-and-storage-of-tree-fruits/controlled-atmosphere-storage/ (accessed on 22 May 2022).
- Krupa, T.; Tomala, K. Effect of oxygen and carbon dioxide concentration on the quality of minikiwi fruits after storage. Agronomy 2021, 11, 2251. [Google Scholar] [CrossRef]
- Erkan, M.; Dogan, A. Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce, In Subtropical Fruits: Pomegranates; Academic Press: Amsterdam, The Netherlands, 2020; Chapter 18.11; pp. 477–486. [Google Scholar] [CrossRef]
- Tadiello, A.; Ziosi, V.; Negri, A.S.; Noferini, M.; Fiori, G.; Busatto, N.; Espen, L.; Costa, G.; Trainotti, L. On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening. BMC Plant Biol. 2016, 16, 1–17. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Front. Plant Sci. 2017, 8, 1–19. [Google Scholar] [CrossRef]
- Thompson, A.K. Controlled Atmosphere Storage of Fruits and Vegetables, 2nd ed.; CABI Publishing: Wallington, UK, 2010. [Google Scholar]
- Fong, D.; Luo, S.X.; Andre, R.S.; Swager, T.M. Trace Ethylene Sensing via Wacker Oxidation. ACS Cent. Sci. 2020, 6, 507–512. [Google Scholar] [CrossRef]
- Li, Y.; Hodak, M.; Lu, W.; Bernholc, J. Selective sensing of ethylene and glucose using carbon-nanotube-based sensors: An ab initio investigation. Nanoscale 2017, 9, 1687–1698. [Google Scholar] [CrossRef]
- Kathirvelan, J.; Vijayaraghavan, R. An infrared based sensor system for the detection of ethylene for the discrimination of fruit ripening. Infrared Phys. Technol. 2017, 85, 403–409. [Google Scholar] [CrossRef]
- Zhao, Q.; Duan, Z.; Yuan, Z.; Li, X.; Wang, S.; Liu, B.; Zhang, Y.; Jiang, Y.; Tai, H. High performance ethylene sensor based on palladium-loaded tin oxide: Application in fruit quality detection. Chin. Chem. Lett. 2020, 31, 2045–2049. [Google Scholar] [CrossRef]
- Pattananuwat, P.; Aht-Ong, D. In-Situ Electrochemical Synthesis of Novel Sensitive Layer of Polyaniline/Multiwall Carbon Nanotube/Tin Oxide Hybrid Materials for Ethylene Gas Detection. Polym. Plast. Technol. Eng. 2013, 52, 189–194. [Google Scholar] [CrossRef]
- Li, B.; Li, M.; Meng, F.; Liu, J. Chemical Highly sensitive ethylene sensors using Pd nanoparticles and rGO modified flower-like hierarchical porous α-Fe2O3. Sens. Actuators B 2019, 290, 396–405. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Moon, Y.K.; Kim, T.H.; Park, S.W.; Kim, K.B.; Kang, Y.C.; Lee, J.H. A New Strategy for Detecting Plant Hormone Ethylene Using Oxide Semiconductor Chemiresistors: Exceptional Gas Selectivity and Response Tailored by Nanoscale Cr2O3 Catalytic Overlayer. Adv. Sci. 2020, 7, 1903093. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Gasparotto, A.; Gri, F.; Comini, E.; Maccato, C. Plasma-Assisted Growth of β-MnO2 Nanosystems as Gas Sensors for Safety and Food Industry Applications. Adv. Mater. Interfaces. 2018, 5, 1800792. [Google Scholar] [CrossRef]
- Sholehah, A.; Karmala, K.; Huda, N.; Utari, L.; Septiani, N.L.W.; Yuliarto, B. Structural effect of ZnO-Ag chemoresistive sensor on flexible substrate for ethylene gas detection. Sens. Actuators A Phys. 2021, 331, 112934. [Google Scholar] [CrossRef]
- Food Science Australia. Assessing Meat Quality after Ammonia Leaks; Food Science Australia: Cherrybrook, NSW, Australia, 2002. [Google Scholar]
- Zhang, Y.; Zhang, J.; Jiang, Y.; Duan, Z.; Liu, B.; Zhao, Q.; Wang, S.; Yuan, Z.; Tai, H. Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature. Sens. Actuators B Chem. 2020, 319, 128293. [Google Scholar] [CrossRef]
- Mougkogiannis, P.; Turner, M.; Persaud, K. Amine Detection Using Organic Field Effect Transistor Gas Sensors. Sensors 2021, 21, 13. [Google Scholar] [CrossRef]
- Rahmanudin, A.; Tate, D.J.; Marcial-Hernandez, R.; Bull, N.; Garlapati, S.K.; Zamhuri, A.; Khan, R.U.; Faraji, S.; Gollu, S.R.; Persaud, K.C.; et al. Robust High-Capacitance Polymer Gate Dielectrics for Stable Low-Voltage Organic Field-Effect Transistor Sensors. Adv. Electron. Mater. 2020, 6, 1901127. [Google Scholar] [CrossRef]
- Li, P.; Wang, B.; Qin, C.; Han, C.; Sun, L.; Wang, Y. Band-gap-tunable CeO2 nanoparticles for room-temperature NH3 gas sensors. Ceram. Int. 2020, 46, 19232–19240. [Google Scholar] [CrossRef]
- Andre, R.S.; Shimizu, F.M.; Miyazaki, C.M.; Riul, A.; Manzani, D.; Ribeiro, S.J.L.; Oliveira, O.N.; Mattoso, L.H.C.; Correa, D.S. Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sens. Actuators B Chem. 2017, 238, 795–801. [Google Scholar] [CrossRef]
- Lee, S.H.; Eom, W.; Shin, H.; Ambade, R.B.; Bang, J.H.; Kim, H.W.; Han, T.H. Room-Temperature, Highly Durable Ti3C2Tx MXene/Graphene Hybrid Fibers for NH3 Gas Sensing. ACS Appl. Mater. Interfaces 2020, 12, 10434–10442. [Google Scholar] [CrossRef] [PubMed]
- Goswami, P.; Gupta, G. Recent progress of flexible NO2 and NH3 gas sensors based on transition metal dichalcogenides for room temperature sensing. Mater. Today Chem. 2022, 23, 100726. [Google Scholar] [CrossRef]
- Fernández-Ramos, M.D.; Capitán-Vallvey, L.F.; Pastrana-Martínez, L.M.; Morales-Torres, S.; Maldonado-Hódar, F.J. Chemical Chemoresistive NH3 gas sensor at room temperature based on the carbon. Sens. Actuators B Chem. 2022, 368, 132103. [Google Scholar] [CrossRef]
- Han, D.; Han, X.; Zhang, X.; Wang, W.; Li, D.; Li, H.; Sang, S. Highly sensitive and rapidly responding room-temperature NH3 gas sensor that is based on exfoliated black phosphorus. Sens. Actuators B. Chem. 2022, 367, 132038. [Google Scholar] [CrossRef]
- Wu, K.; Debliquy, M.; Zhang, C. Room temperature gas sensors based on Ce doped TiO2 nanocrystals for highly sensitive NH3 detection. Chem. Eng. J. 2022, 444, 136449. [Google Scholar] [CrossRef]
- Majumder, D.; Roy, S. ScienceDirect Room Temperature Synthesis of TiO2 Nanospheres: Ammonia Sensing Characteristics. Mater. Today Proc. 2018, 5, 9811–9816. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Wang, Y.; Yu, H.; Zhang, R.; Li, J.; Zang, Z.; Li, X. MXene Ti3C2Tx-Derived Nitrogen-Functionalized Heterophase TiO2 Homojunctions for Room-Temperature Trace Ammonia Gas Sensing. ACS Appl. Mater. Interfaces. 2021, 13, 56485–56497. [Google Scholar] [CrossRef]
- Tai, H.; Duan, Z.; He, Z.; Li, X.; Xu, J.; Liu, B.; Jiang, Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens. Actuators B Chem. 2019, 298, 126874. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Cantos-Villar, E. Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends Food Sci. Tech. 2015, 42, 27–43. [Google Scholar] [CrossRef]
- New Jersey Department of Health. Hazardous Substance Fact Sheet: Sulfur Dioxide; New Jersey Department of Health: Clifton, NJ, USA, 2010. [Google Scholar]
- Liu, L.; Zhou, P.; Su, X.; Liu, Y.; Sun, Y.; Yang, H.; Fu, H.; Qu, X.; Liu, S.; Zheng, S. Synergistic Ni single atoms and oxygen vacancies on SnO2 nanorods toward promoting SO2 gas sensing. Sens. Actuators B Chem. 2022, 351, 130983. [Google Scholar] [CrossRef]
- Shinde, R.B.; Padalkar, N.S.; Sadavar, S.V.; Kale, S.B.; Magdum, V.V.; Chitare, Y.M.; Kulkarni, S.P.; Patil, U.M.; Parale, V.G.; Park, H.H.; et al. 2D–2D lattice engineering route for intimately coupled nanohybrids of layered double hydroxide and potassium hexaniobate: Chemiresistive SO2 sensor. J. Hazard. Mater. 2022, 432, 128734. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.-J.; Shi, Z.-H.; Nagarjuna, Y.; Huang, Z.-Y.; Lai, T.-Y.; Wu, S. Double-Layered NiO/SnO2 Sensor for Improved SO2 Gas Sensing with MEMS Microheater Device. ECS J. Solid State Sci. Technol. 2022, 11, 57002. [Google Scholar] [CrossRef]
- Hsueh, T.-J.; Lee, S.-H. A La2O3 Nanoparticle SO2 Gas Sensor that Uses a ZnO Thin Film and Au Adsorption. J. Electrochem. Soc. 2021, 168, 77507. [Google Scholar] [CrossRef]
- Aranthady, C.; Jangid, T.; Gupta, K.; Mishra, A.K.; Kaushik, S.D.; Siruguri, V.; Rao, G.M.; Shanbhag, G.V.; Sundaram, N.G. Selective SO2 detection at low concentration by Ca substituted LaFeO3 chemiresistive gas sensor: A comparative study of LaFeO3 pellet vs thin film. Sens. Actuators B Chem. 2021, 329, 129211. [Google Scholar] [CrossRef]
- Jha, R.K.; Nanda, A.; Bhat, N. Sub-ppm sulfur dioxide detection using MoS2 modified multi-wall carbon nanotubes at room temperature. Nano Sel. 2022, 3, 98–107. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, X.; Wang, J.; Li, H.; Sun, Y.; Hao, X.; Qin, Y.; Niu, B.; Li, C. Washable and flexible gas sensor based on UiO-66-NH2 nanofibers membrane for highly detecting SO2. Chem. Eng. J. 2022, 428, 131720. [Google Scholar] [CrossRef]
- Ingle, N.; Sayyad, P.; Deshmukh, M.; Bodkhe, G.; Mahadik, M.; Al-Gahouari, T.; Shirsat, S.; Shirsat, M.D. A chemiresistive gas sensor for sensitive detection of SO2 employing Ni-MOF modified –OH-SWNTs and –OH-MWNTs. Appl. Phys. A Mater. Sci. Process. 2021, 127, 1–10. [Google Scholar] [CrossRef]
- Thangamani, G.J.; Pasha, S.K.K. Titanium dioxide (TiO2) nanoparticles reinforced polyvinyl formal (PVF) nanocomposites as chemiresistive gas sensor for sulfur dioxide (SO2) monitoring. Chemosphere 2021, 275, 129960. [Google Scholar] [CrossRef]
- Thomas, T.; Kumar, Y.; Alberto, J.; Ram, R.; Sepúlveda, S. Porous silicon/α-MoO3 nanohybrid based fast and highly sensitive CO2 gas sensors. Vacuum 2021, 184, 109983. [Google Scholar] [CrossRef]
- Bag, S.; Pal, K. Chemical Sulfonated poly (ether ether ketone) based carbon dioxide gas sensor: Impact of sulfonation degree on sensing behavior at different humid condition. Sens. Actuators B. Chem. 2020, 303, 127115. [Google Scholar] [CrossRef]
- Bouachma, S.; Ayouz-Chebout, K.; Kechouane, M.; Manseri, A.; Yaddadene, C.; Menari, H.; Gabouze, N. Synthesis of PSi-n-CuO-p-Cu2O-n heterostructure. Appl. Phys. A Mater. Sci. Process. 2022, 128, 69. [Google Scholar] [CrossRef]
- Gupta, M.; Hawari, H.F.; Kumar, P. Copper Oxide/Functionalized Graphene Hybrid Nanostructures for Room Temperature Gas Sensing Applications. Crystals 2022, 12, 264. [Google Scholar] [CrossRef]
- Lee, Z.Y.; Hawari, H.F.; Djaswadi, G.W.; Kamarudin, K. A Highly Sensitive Room Temperature CO2 Gas Sensor Based on SnO2-rGO Hybrid Composite. Materials 2021, 14, 522. [Google Scholar] [CrossRef] [PubMed]
- Amarnath, M.; Gurunathan, K. Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature. J. Alloys Compd. 2021, 857, 157584. [Google Scholar] [CrossRef]
- Nasirian, S. Applied Surface Science Enhanced carbon dioxide sensing performance of polyaniline/tin dioxide nanocomposite by ultraviolet light illumination. Appl. Surf. Sci. 2020, 502, 144302. [Google Scholar] [CrossRef]
- Oh, W.; Liu, Y.; Sagadevan, S.; Fatema, K.N. Polymer bonded Graphene-LaNiSbWO4 sensing performance under normal temperature condition. Inorg. Nano-Metal Chem. 2021, 51, 1803–1812. [Google Scholar] [CrossRef]
- Kumar, U.; Yadav, B.C.; Haldar, T.; Dixit, C.K.; Kumar, P. Synthesis of MWCNT/PPY nanocomposite using oxidation polymerization method and its employment in sensing such as CO2 and humidity. J. Taiwan Inst. Chem. Eng. 2020, 113, 419–427. [Google Scholar] [CrossRef]
- Ghosh, A.; Zhang, C.; Zhang, H.; Shi, S. CO2 Sensing Behavior of Calcium-Doped ZnO Thin Film: A Study to Address the Cross-Sensitivity of CO2 in H2 and CO Environment. Langmuir 2019, 35, 10267–10275. [Google Scholar] [CrossRef]
- Roy, N.; Sinha, R.; Daniel, T.T.; Nemade, H.B.; Mandal, T.K. Highly Sensitive Room Temperature CO Gas Sensor Based on MWCNT-PDDA Composite. IEEE Sens. J. 2020, 20, 13245–13252. [Google Scholar] [CrossRef]
- Nasresfahani, S.; Zargarpour, Z.; Sheikhi, M.H.; Ana, S.F.N. Improvement of the carbon monoxide gas sensing properties of polyaniline in the presence of gold nanoparticles at room temperature. Synth. Met. 2020, 265, 116404. [Google Scholar] [CrossRef]
- SatishBabu, R.; Rentala, S.; Narsu, M.L.; Prameeladevi, Y.; Rao, D.G. Studies on ethanol production from spoiled starch rich vegetables by sequential batch fermentation. Int. J. Biotechnol. Biochem. 2010, 6, 351–358. [Google Scholar]
- Dudley, R. Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integr. Comp. Biol. 2004, 44, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Mishra, V. Utilization of Fruit-Vegetable Waste as Lignocellulosic Feedstocks for Bioethanol Fermentation. In Food Waste to Green Fuel: Trend & Development; Srivastava, N., Malik, M.A., Eds.; Springer Nature: Singapore, 2022; pp. 189–211. [Google Scholar] [CrossRef]
- Shaalan, N.M.; Ahmed, F.; Rashad, M.; Saber, O.; Kumar, S.; Aljaafari, A.; Ashoaibi, A.; Mahmoud, A.Z.; Ezzeldien, M. Low-Temperature Ethanol Sensor via Defective Multiwalled Carbon Nanotubes. Materials 2022, 15, 4439. [Google Scholar] [CrossRef]
- Jiang, B.; Lu, J.; Han, W.; Sun, Y.; Wang, Y.; Cheng, P.; Zhang, H.; Wang, C.; Lu, G. Chemical Hierarchical mesoporous zinc oxide microspheres for ethanol gas sensor. Sens. Actuators B. Chem. 2022, 357, 131333. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Z.; Song, P.; Sun, J.; Wang, Q. MOF-derived In2O3 nanotubes/Cr2O nanoparticles composites for superior ethanol gas-sensing performance at room temperature. Ceram. Int. 2022, 48, 28334–28342. [Google Scholar] [CrossRef]
- Yu, S.; Jia, X.; Yang, J.; Wang, S.; Li, Y.; Song, H. Highly sensitive and low detection limit of ethanol gas sensor based on CeO2 nanodot-decorated ZnSnO3 hollow microspheres. Ceram. Int. 2022, 48, 14865–14875. [Google Scholar] [CrossRef]
- Mehmood, S.; Zhao, X.; Fahad, M.; Ullah, F. MoO2-Ni-graphene ternary nanocomposite for a high-performance room-temperature ethanol gas sensor. Appl. Surf. Sci. 2021, 554, 149595. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Zhang, D. Self-powered ethanol gas sensor based on the piezoelectric Ag/ZnO nanowire arrays at room temperature. J. Mater. Sci. Mater. Electron. 2021, 32, 7739–7750. [Google Scholar] [CrossRef]
- Raghu, A.V.; Karuppanan, K.K.; Nampoothiri, J.; Pullithadathil, B. Wearable, Flexible Ethanol Gas Sensor Based on TiO2 Nanoparticles-Grafted 2D-Titanium Carbide Nanosheets. ACS Appl. Nano Mater. 2019, 2, 1152–1163. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, T.; Dong, Y.; Wang, X. A room temperature VOCs gas sensor based on a layer by layer multi-walled carbon nanotubes/poly-ethylene glycol composite. Sensors 2018, 18, 3113. [Google Scholar] [CrossRef] [PubMed]
- Shooshtari, M.; Sacco, L.N.; van Ginkel, J.; Vollebregt, S.; Salehi, A. Enhancement of Room Temperature Ethanol Sensing by Optimizing the Density of Vertically Aligned Carbon Nanofibers Decorated with Gold Nanoparticles. Materials 2022, 15, 1383. [Google Scholar] [CrossRef] [PubMed]
- Young, S.J.; Lin, Z.D. Ethanol gas sensors based on multi-wall carbon nanotubes on oxidized Si substrate. Microsyst. Technol. 2018, 24, 55–58. [Google Scholar] [CrossRef]
Materials | Operating Temp. (°C) | C2H4 Concentration | Response % | Limit of Detection | Ref. |
---|---|---|---|---|---|
Defective-CNTs | RT | 300 ppb | ~2.7 | 130 ppb | [15,21] |
TiO2-WO3 | 250 | 100 ppm | 1.2 | 8.0 ppm | [60] |
Pd-SnO2 | 250 | 100 ppm | 11.1 | 50 ppb | [61] |
PANI/MWCNTs/SnO2 | RT | 100 ppm | 1.2 | 10 ppm | [62] |
Pd/rGO/α-Fe2O | 250 | 1000 ppm | 160 | 10 ppb | [63] |
SnO2 | 375 | 2.5 ppm | 15 | --- | [64] |
Cr2O3-SnO2 | 350 | 2.5 ppm | 17 | --- | |
β-MnO2 | 250 | 25 ppm | 10.0 | 10 ppm | [65] |
ZnO-Ag0.6 | RT | 30 ppm | 5.6 | -- | [66] |
Materials | Operating Temp. (°C) | NH3 Concentration | Response % | Limit of Detection | Ref. |
---|---|---|---|---|---|
PANI/SrGe4O2 | RT | 200 ppb | 16.0 | 250 ppt | [68] |
DPPT-TT-based OFETs-based sensors | RT | 2 ppm 21 ppb | ~8.0 ~22 | 500 ppb 2.17 ppb | [69,70] |
CeO2 | RT | 500 ppm | 25 | 500 ppb | [71] |
PANI/GO/PANI/ZnO | RT | 100 ppm | 38.3 | 23 ppm | [72] |
MXene/rGO | RT | 100 ppm | 7.0 | --- | [73] |
Carbon doped-TiO2 | RT | 100 ppm | 18 | --- | [75] |
Black phosphorus (BP) | RT | 100 ppm | 1.2 | 100 ppb | [76] |
Ce-TiO2 | RT | 20 ppm | 23.9 | 140 ppb | [77] |
TiO2 Nanospheres | 250 | 300 ppm | 2.1 | -- | [78] |
N-TiO2 | RT | 3 ppm | 1.2 | 1.0 ppm | [79] |
TiO2/Ti3C2Tx | RT | 10 ppm | 1.03 | 500 ppb | [80] |
Sensor | Operating Temp. (°C) | C2H5OH Concentration | Response % | Limit of Detection | Ref. |
---|---|---|---|---|---|
MWCNTs | RT | 50 ppm | 8.8 | 5 ppm | [107] |
ZnO microspheres | 250 | 100 ppm | 58.4 | 1.17 ppb | [108] |
CeO2/ZnSnO3 | 200 | 100 ppm | 219 | 0.5 ppm | [110] |
In2O3/Cr2O3 | RT | 50 ppm | 15.6 | 5 ppm | [109] |
MoO2-Ni-Graphene | RT | 1000 ppm | 105 | 15 ppm | [111] |
Ag/ZnO nano-generator | RT | 800 ppm | 88 | 10 ppm | [112] |
TiO2@2D-TiC | RT | 60 ppm | 390 | 10 ppm | [113] |
PEG/MWCNTs | RT | 50 ppm | 2.9 | -- | [114] |
Au-CNFs | RT | 100 ppm | 6.3 | 50 ppm | [115] |
High-density CNTs | RT | 50 ppm | 0.18 | -- | [116] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaalan, N.M.; Ahmed, F.; Saber, O.; Kumar, S. Gases in Food Production and Monitoring: Recent Advances in Target Chemiresistive Gas Sensors. Chemosensors 2022, 10, 338. https://doi.org/10.3390/chemosensors10080338
Shaalan NM, Ahmed F, Saber O, Kumar S. Gases in Food Production and Monitoring: Recent Advances in Target Chemiresistive Gas Sensors. Chemosensors. 2022; 10(8):338. https://doi.org/10.3390/chemosensors10080338
Chicago/Turabian StyleShaalan, Nagih M., Faheem Ahmed, Osama Saber, and Shalendra Kumar. 2022. "Gases in Food Production and Monitoring: Recent Advances in Target Chemiresistive Gas Sensors" Chemosensors 10, no. 8: 338. https://doi.org/10.3390/chemosensors10080338
APA StyleShaalan, N. M., Ahmed, F., Saber, O., & Kumar, S. (2022). Gases in Food Production and Monitoring: Recent Advances in Target Chemiresistive Gas Sensors. Chemosensors, 10(8), 338. https://doi.org/10.3390/chemosensors10080338