Aminoquinoxaline-Based Dual Colorimetric and Fluorescent Sensors for pH Measurement in Aqueous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Considerations
2.2. Synthesis of Aminoquinoxalines
2.3. UV–vis Absorption and Fluorescence Measurements
2.4. Determination of Protonation Constants
2.5. NMR Studies of Protonation of QC1
2.6. DFT Calculations
3. Results
3.1. Synthesis of Aminoquinoxaline QC1
3.2. Photophysical Studies of Quinoxaline QC1 in Chloroform Solution
3.3. Protonation Studies of Aminoquinoxaline QC1 in Aqueous Media
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.D.S.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: A state of the art review. Eur. J. Med. Chem. 2015, 97, 664–672. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, M.; Chegeni, M. The chemistry and applications of the quinoxaline compounds. Curr. Org. Chem. 2019, 23, 1789–1827. [Google Scholar] [CrossRef]
- Saranya, J.; Lavanya, K.; Kiranmai, M.H.; Subbiah, R.; Zarrouk, A.; Chitra, S. Quinoxaline derivatives as anticorrosion additives for metals. Corros. Rev. 2021, 39, 79–92. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Singh, P.; Quraishi, M.A. Quinoxaline derivatives as efficient corrosion inhibitors: Current status, challenges and future perspectives. J. Mol. Liq. 2020, 320 Part A, 114387. [Google Scholar] [CrossRef]
- Montana, M.; Mathias, F.; Terme, T.; Vanelle, P. Antitumoral activity of quinoxaline derivatives: A systematic review. Eur. J. Med. Chem. 2019, 163, 136–147. [Google Scholar] [CrossRef]
- Montana, M.; Montero, V.; Khoumeri, O.; Vanelle, P. Quinoxaline derivatives as antiviral agents: A systematic review. Molecules 2020, 25, 2784. [Google Scholar] [CrossRef]
- Petronijevic, J.; Jankovic, N.; Bugarcic, Z. Synthesis of quinoxaline-based compounds and their antitumor and antiviral potentials. Mini-Rev. Org. Chem. 2018, 15, 220–226. [Google Scholar] [CrossRef]
- Ajani, O.O.; Nlebemuo, M.T.; Adekoya, J.A.; Ogunniran, K.O.; Siyanbola, T.O.; Ajanaku, C.O. Chemistry and pharmacological diversity of quinoxaline motifs as anticancer agents. Acta Pharm. 2019, 69, 177–196. [Google Scholar] [CrossRef] [Green Version]
- Ledwon, P.; Motyka, R.; Ivaniuk, K.; Pidluzhna, A.; Martyniuk, N.; Stakhira, P.; Baryshnikov, G.; Minaev, B.F.; Ågren, H. The effect of molecular structure on the properties of quinoxaline-based molecules for OLED applications. Dyes Pigm. 2020, 173, 108008. [Google Scholar] [CrossRef]
- Yuan, J.; Ouyang, J.; Cimrová, V.; Leclerc, M.; Najari, A.; Zou, Y. Development of quinoxaline based polymers for photovoltaic applications. J. Mater. Chem. C 2017, 5, 1858–1879. [Google Scholar] [CrossRef]
- Ji, S.-C.; Jiang, S.; Zhao, T.; Meng, L.; Chen, X.-L.; Lu, C.-Z. Efficient yellow and red thermally activated delayed fluorescence materials based on a quinoxaline-derived electron-acceptor. New J. Chem. 2022, 46, 8991–8998. [Google Scholar] [CrossRef]
- Achelle, S.; Baudequin, C.; Plé, N. Luminescent materials incorporating pyrazine or quinoxaline moieties. Dyes Pigm. 2013, 98, 575–600. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.K.; Al Kobaisi, M.; Bhosale, S.V. Functionalized quinoxaline for chromogenic and fluorogenic anion sensing. ChemistryOpen 2018, 7, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, L.C.; Machado, V.G.; Menezes, F.G. Quinoxaline-based chromogenic and fluorogenic chemosensors for the detection of metal cations. Chem. Pap. 2021, 75, 1775–1793. [Google Scholar] [CrossRef]
- Wang, T.; Douglass, E.F.; Fitzgerald, K.J.; Spiegel, D.A. A “Turn-On” fluorescent sensor for methylglyoxal. J. Am. Chem. Soc. 2013, 135, 12429–12433. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kim, D.; Son, S.-H.; Kim, Y.; Lee, T.S. Conjugated poly(fluorene-quinoxaline) for fluorescence imaging and chemical detection of nerve agents with its paper-based strip. ACS Appl. Mater. Interfaces 2014, 6, 1330–1336. [Google Scholar] [CrossRef]
- Singla, P.; Kaur, P.; Singh, K. Discrimination in excimer emission quenching of pyrene by nitroaromatics. Tetrahedron Lett. 2015, 56, 2311–2314. [Google Scholar] [CrossRef]
- Wang, L.; Cui, M.; Tang, H.; Cao, D. Fluorescent nanoaggregates of quinoxaline derivatives for highly efficient and selective sensing of trace picric acid. Dyes Pigm. 2018, 155, 107–113. [Google Scholar] [CrossRef]
- Benzeid, H.; Mothes, E.; Essassi, E.M.; Faller, P.; Pratviel, G. A thienoquinoxaline and a styryl-quinoxaline as new fluorescent probes for amyloid-β fibrils. C. R. Chim. 2012, 15, 79–85. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, T.; Jiang, Q.; Li, Y.; Fu, Y.; Dai, J.; Li, G.; Qi, Q.; Cheng, Y. Synthesis and evaluation of pyrazine and quinoxaline fluorophores for in vivo detection of cerebral tau tangles in Alzheimer’s models. Chem. Commun. 2018, 54, 11558–11561. [Google Scholar] [CrossRef]
- Cui, M.; Ono, M.; Kimura, H.; Liu, B.; Saji, H. Novel quinoxaline derivatives for in vivo imaging of β-amyloid plaques in the brain. Bioorg. Med. Chem. Lett. 2011, 21, 4193–4196. [Google Scholar] [CrossRef] [PubMed]
- Wencel, D.; Abel, T.; McDonagh, C. Optical chemical pH sensors. Anal. Chem. 2014, 86, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Mukherjee, K.; Shoukat, R.; Dong, H. A review on pH sensitive materials for sensors and detection methods. Microsyst. Technol. 2017, 23, 4391–4404. [Google Scholar] [CrossRef]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical Sensing and Imaging of pH values: Spectroscopies, materials, and applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef] [PubMed]
- Isoda, K. Acid-responsive N-heteroacene-based material showing multi-emission colors. ChemistryOpen 2017, 6, 242–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, H.T.; Pelse, I.; Wolfe, R.M.W.; Reynolds, J.R. Halochromism and protonation-induced assembly of a benzo[g]indolo[2, 3-b]quinoxaline derivative. Chem. Commun. 2016, 52, 12877–12880. [Google Scholar] [CrossRef]
- Aggarwal, K.; Khurana, J.M. Indeno–furan based colorimetric and on–off fluorescent pH sensors. J. Photochem. Photobiol. A 2015, 307, 23–29. [Google Scholar] [CrossRef]
- Bag, R.; Sikdar, Y.; Sahu, S.; Maiti, D.K.; Frontera, A.; Bauzá, A.; Drew, M.G.B.; Goswami, S. A versatile quinoxaline derivative serves as a colorimetric sensor for strongly acidic pH. Dalton Trans. 2018, 47, 17077–17085. [Google Scholar] [CrossRef]
- Mazumdar, P.; Maity, S.; Shyamal, M.; Das, D.; Sahoo, G.P.; Misra, A. Proton triggered emission and selective sensing of picric acid by the fluorescent aggregates of 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline. Phys. Chem. Chem. Phys. 2016, 18, 7055–7067. [Google Scholar] [CrossRef]
- Duffy, K.J.; Haltiwanger, R.C.; Freyer, A.J.; Li, F.; Luengo, J.I.; Cheng, H.-Y. Pyrido[1,2-a]quinoxalines: Synthesis, crystal structure determination and pH-dependent fluorescence. J. Chem. Soc. Perkin Trans. 2 2002, 181–185. [Google Scholar] [CrossRef]
- Gupta, S.; Milton, M.D. Design and synthesis of novel V-shaped AIEE active quinoxalines for acidochromic applications. Dyes Pigm. 2019, 165, 474–487. [Google Scholar] [CrossRef]
- Moshkina, T.N.; Nosova, E.V.; Lipunova, G.N.; Valova, M.S.; Charushin, V.N. New 2,3-bis(5-arylthiophen-2-yl)quinoxaline derivatives: Synthesis and photophysical properties. Asian J. Org. Chem. 2018, 7, 1080–1084. [Google Scholar] [CrossRef]
- Singh, P.; Baheti, A.; Thomas, K.R.J. Synthesis and optical properties of acidochromic amine-substituted benzo[a]phenazines. J. Org. Chem. 2011, 76, 6134–6145. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, S.; Song, X.; Liang, Z.; Su, X. Photo-responsive oxidase mimic of conjugated microporous polymer for constructing a pH-sensitive fluorescent sensor for bio-enzyme sensing. Sens. Actuators B 2020, 316, 128157. [Google Scholar] [CrossRef]
- Park, J.S.; Tran, T.T.; Kim, J.; Sessler, J.L. Electrochemical amphotericity and NIR absorption induced via the step-wise protonation of fused quinoxaline-tetrathiafulvalene-pyrroles. Chem. Commun. 2018, 54, 4553–4556. [Google Scholar] [CrossRef]
- More, Y.W.; Padghan, S.D.; Bhosale, R.S.; Pawar, R.P.; Puyad, A.L.; Bhosale, S.V.; Bhosale, S.V. Proton triggered colorimetric and fluorescence response of a novel quinoxaline compromising a donor-acceptor system. Sensors 2018, 18, 3433. [Google Scholar] [CrossRef] [Green Version]
- Safavi, A.; Abdollahi, H. Optical sensor for high pH values. Anal. Chim. Acta 1998, 367, 167–173. [Google Scholar] [CrossRef]
- Tian, M.; Peng, X.; Fan, J.; Wang, J.; Sun, S. A fluorescent sensor for pH based on rhodamine fluorophore. Dyes Pigm. 2012, 95, 112–115. [Google Scholar] [CrossRef]
- Yang, M.; Song, Y.; Zhang, M.; Lin, S.; Hao, Z.; Liang, Y.; Zhang, D.; Chen, P.R. Converting a solvatochromic fluorophore into a protein-based pH indicator for extreme acidity. Angew. Chem. Int. Ed. 2012, 51, 7674–7679. [Google Scholar] [CrossRef]
- Li, H.; Guan, H.; Duan, X.; Hu, J.; Wang, G.; Wang, Q. An acid catalyzed reversible ring-opening/ring-closure reaction involving a cyano-rhodamine spirolactam. Org. Biomol. Chem. 2013, 11, 1805–1809. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Jiang, Z.; Xiao, Y.; Bi, F.-Z.; Miao, J.-Y.; Zhao, B.-X. A new fluorescent pH probe for extremely acidic conditions. Anal. Chim. Acta 2014, 820, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N. Acidification of the world: Natural and anthropogenic. Water Air Soil Pollut. 2001, 130, 17–124. [Google Scholar] [CrossRef]
- Falkenberg, L.J.; Bellerby, R.G.J.; Connell, S.D.; Fleming, L.E.; Maycock, B.; Russell, B.D.; Sullivan, F.J.; Dupont, S. Ocean acidification and human health. Int. J. Environ. Health Res. 2020, 17, 4563. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.H.; Gevorgyan, S.A.; Krebs, F.C. Thermocleavable low band gap polymers and solar cells therefrom with remarkable stability toward oxygen. Macromolecules 2008, 41, 8986–18994. [Google Scholar] [CrossRef]
- Magde, D.; Wong, R.; Seybold, P.G. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochem. Photobiol. 2002, 75, 327–1334. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–11753. [Google Scholar] [CrossRef]
- Granovsky, A.A. Firefly Version 8. Available online: http://classic.chem.msu.su/gran/firefly/index.html (accessed on 20 June 2022).
- Dolg, M.; Stoll, H.; Preuss, H.; Pitzer, R.M. Relativistic and correlation effects for element 105 (hahnium, Ha): A comparative study of M and MO (M = Nb, Ta, Ha) using energy-adjusted ab initio pseudopotentials. J. Phys. Chem. 1993, 97, 5852–5859. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Nepali, K.; Huang, F.-I.; Chang, C.-Y.; Lai, M.-J.; Li, Y.-H.; Huang, H.-L.; Yang, C.-R.; Liou, J.-P. (N-Hydroxycarbonylbenzylamino)quinolines as selective histone deacetylase 6 inhibitors suppress growth of multiple myeloma in vitro and in vivo. J. Med. Chem. 2018, 61, 905–1917. [Google Scholar] [CrossRef]
- Yu, L.; Wu, Z.; Zhong, C.; Xie, G.; Wu, K.; Ma, D.; Yang, C. Tuning the emission from local excited-state to charge-transfer state transition in quinoxaline-based butterfly-shaped molecules: Efficient orange OLEDs based on thermally activated delayed fluorescence emitter. Dyes Pigm. 2017, 141, 325–1332. [Google Scholar] [CrossRef]
- Li, S.-R.; Lee, C.-P.; Liao, C.-W.; Su, W.-L.; Li, C.-T.; Ho, K.-C.; Sun, S.-S. Structural engineering of dipolar organic dyes with an electron-deficient diphenylquinoxaline moiety for efficient dye-sensitized solar cells. Tetrahedron 2014, 70, 6276–16284. [Google Scholar] [CrossRef]
- Lee, P.-I.; Hsu, S.L.-C.; Lin, P. White-light-emitting diodes from single polymer systems based on polyfluorene copolymers with quinoxaline derivatives. Macromolecules 2010, 43, 8051–18057. [Google Scholar] [CrossRef]
- Witulski, B. Palladium-catalyzed synthesis of N-aryl- and N-heteroaryl-aza-crown ethers via cross-coupling reactions of aryl- and heteroaryl bromides with aza-crown ethers. Synlett 1999, 1999, 1223–11226. [Google Scholar] [CrossRef]
- Ranyuk, E.; Douaihy, C.M.; Bessmertnykh, A.; Denat, F.; Averin, A.; Beletskaya, I.; Guilard, R. Diaminoanthraquinone-linked polyazamacrocycles: Efficient and simple colorimetric sensor for lead ion in aqueous solution. Org. Lett. 2009, 11, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Ermakova, E.; Michalak, J.; Meyer, M.; Arslanov, V.; Tsivadze, A.; Guilard, R.; Bessmertnykh-Lemeune, A. Colorimetric Hg2+ sensing in water: From molecules toward low-cost solid devices. Org. Lett. 2013, 15, 662–665. [Google Scholar] [CrossRef]
- Ranyuk, E.; Ermakova, E.V.; Bovigny, L.; Meyer, M.; Bessmertnykh-Lemeune, A.; Guilard, R.; Rousselin, Y.; Tsivadze, A.Y.; Arslanov, V.V. Towards sensory Langmuir monolayers consisting of macrocyclic pentaaminoanthraquinone. New J. Chem. 2014, 38, 317–329. [Google Scholar] [CrossRef]
- Arslanov, V.; Ermakova, E.; Michalak, J.; Bessmertnykh-Lemeune, A.; Meyer, M.; Raitman, O.; Vysotskij, V.; Guilard, R.; Tsivadze, A. Design and evaluation of sensory systems based on amphiphilic anthraquinones molecular receptors. Colloids Surf. A 2015, 483, 193–203. [Google Scholar] [CrossRef]
- Ermakova, E.; Raitman, O.; Shokurov, A.; Kalinina, M.; Selector, S.; Tsivadze, A.; Arslanov, V.; Meyer, M.; Bessmertnykh-Lemeune, A.; Guilard, R. A metal-responsive interdigitated bilayer for selective quantification of mercury(II) traces by surface plasmon resonance. Analyst 2016, 141, 1912–1917. [Google Scholar] [CrossRef]
- Abel, A.S.; Averin, A.D.; Cheprakov, A.V.; Roznyatovsky, V.A.; Denat, F.; Bessmertnykh-Lemeune, A.; Beletskaya, I.P. 6-Polyamino-substituted quinolines: Synthesis and multiple metal (CuII, HgII and ZnII) monitoring in aqueous media. Org. Biomol. Chem. 2019, 17, 4243–4260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beletskaya, I.P.; Bessmertnykh, A.G.; Guilard, R. Palladium-catalyzed synthesis of aryl-substituted polyamine compounds from aryl halides. Tetrahedron Lett. 1997, 38, 2287–2290. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Bessmertnykh, A.G.; Averin, A.D.; Denat, F.; Guilard, R. Palladium-catalyzed arylation of linear and cyclic polyamines. Eur. J. Org. Chem. 2005, 2005, 261–280. [Google Scholar] [CrossRef]
- Ruiz-Castillo, P.; Buchwald, S.L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 2016, 116, 12564–12649. [Google Scholar] [CrossRef] [PubMed]
- Nosova, E.V.; Moshkina, T.N.; Lipunova, G.N.; Kopchuk, D.S.; Slepukhin, P.A.; Baklanova, I.V.; Charushin, V.N. Synthesis and photophysical studies of 2-(thiophen-2-yl)-4-(morpholin-4-yl)quinazoline derivatives. Eur. J. Org. Chem. 2016, 2016, 2876–2881. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, Z.; Jiang, X. Copper-catalyzed aerobic oxidative dicarbonylation of indoles toward solvatochromic fluorescent indole-substituted quinoxalines. Asian J. Org. Chem. 2015, 4, 1370–1374. [Google Scholar] [CrossRef]
- Sawicki, E.; Chastain, B.; Bryant, H.; Carr, A. Ultraviolet-visible absorption spectra of quinoxaline derivatives. J. Org. Chem. 1957, 22, 625–629. [Google Scholar] [CrossRef]
- Justin Thomas, K.R.; Lin, J.T.; Tao, Y.-T.; Chuen, C.-H. Quinoxalines incorporating triarylamines: Potential electroluminescent materials with tunable emission characteristics. Chem. Mater. 2002, 14, 2796–2802. [Google Scholar] [CrossRef]
Entry | L | t, h | Conversion, % 2 | Yield of QC1, % 2 |
---|---|---|---|---|
1 | BINAP 3 | 72 | 0 | 0 |
2 | DavePhos 4 | 72 | 0 | 0 |
3 5 | BINAP | 72 | 0 | 0 |
4 | dppf 6 | 24 | 100 | 21 7,8 |
5 | dppf | 72 | 100 | 12 8 |
6 | dppf | 48 | 100 | 25 8 |
Ligand | λabs, nm (log (ε, cm−1 M−1)) | λem, nm 1 | Φem 2 | Reference |
---|---|---|---|---|
QC1 | 308 (3.76), 420 (3.69) | 472 | 0.244 | this work |
QMe3 | 237 (4.39), 315 (3.84) | [65] | ||
QAr4 | 305 (4.23), 399 (4.33) | 530 | 0.170 | [66] |
QArN3 | 245 (4.37), 265 (4.35) 292(4.41), 407(4.00) | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermakova, E.V.; Cheprakov, A.V.; Bessmertnykh-Lemeune, A. Aminoquinoxaline-Based Dual Colorimetric and Fluorescent Sensors for pH Measurement in Aqueous Media. Chemosensors 2022, 10, 342. https://doi.org/10.3390/chemosensors10080342
Ermakova EV, Cheprakov AV, Bessmertnykh-Lemeune A. Aminoquinoxaline-Based Dual Colorimetric and Fluorescent Sensors for pH Measurement in Aqueous Media. Chemosensors. 2022; 10(8):342. https://doi.org/10.3390/chemosensors10080342
Chicago/Turabian StyleErmakova, Elizaveta V., Andrey V. Cheprakov, and Alla Bessmertnykh-Lemeune. 2022. "Aminoquinoxaline-Based Dual Colorimetric and Fluorescent Sensors for pH Measurement in Aqueous Media" Chemosensors 10, no. 8: 342. https://doi.org/10.3390/chemosensors10080342
APA StyleErmakova, E. V., Cheprakov, A. V., & Bessmertnykh-Lemeune, A. (2022). Aminoquinoxaline-Based Dual Colorimetric and Fluorescent Sensors for pH Measurement in Aqueous Media. Chemosensors, 10(8), 342. https://doi.org/10.3390/chemosensors10080342