Spinel Magnesium Ferrite (MgFe2O4): A Glycine-Assisted Colloidal Combustion and Its Potentiality in Gas-Sensing Application
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials Used
2.2. Synthesis Protocol
2.3. Characterization Techniques
2.4. Sensor Design and Measurement
3. Results and Discussion
3.1. Crystallographic Properties of the Prepared Ferrite Materials
3.2. Surface Morphological Analyses by FE-SEM
3.3. Elemental Analyses by EDS
3.4. Gas-Sensing Properties
3.4.1. Gas-Sensing Mechanism in Spinel Ferrites
3.4.2. Gas-Sensing Mechanism in n-Type Spinel Ferrites, MgFe2O4
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chansin, G.; Pugh, D. Environmental Gas Sensors 2017–2027: Technologies, Manufacturers, Forecasts. Scientific Report. 2017. Available online: www.idtechex.com/research/reports/environmental-gas-sensors-2017-2027-000500.asp (accessed on 1 August 2022).
- Deng, L.; Bao, L.; Xu, J.; Wang, D.; Wang, X. Highly sensitive acetone gas sensor based on ultra-low content bimetallic PtCu modified WO3_H2O hollow sphere. Chin. Chem. Lett. 2020, 31, 2041–2044. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Liu, F.; Zhang, G.; Song, X.; Tian, J.; Cui, H. Fabrication of porous Zn2TiO4–ZnO microtubes and analysis of their acetone gas sensing properties. Rare Met. 2021, 40, 1528–1535. [Google Scholar] [CrossRef]
- Wu, K.; Xu, J.; Debliquy, M.; Zhang, C. Synthesis and NH3/TMA sensing properties of CuFe2O4 hollow microspheres at low working temperature. Rare Met. 2021, 40, 1768–1777. [Google Scholar] [CrossRef]
- Nagarajan, V.; Thayumanavan, A. CdFe2O4 films for electroresistive detection of ethanol and formaldehyde vapors. Microchim. Acta 2018, 185, 319–328. [Google Scholar] [CrossRef]
- Alharthy, R.D.; Saleh, A. A Novel trace-level ammonia gas sensing based on flexible pani-CoFe2O4 nanocomposite film at room temperature. J. Polym. Sci. 2021, 13, 3077–3097. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, C.; Wang, Q.; Kong, Q.; Chen, G.; Guan, H.; Dong, C. MOFs-derived porous NiFe2O4 nano-octahedrons with hollow interiors for an excellent toluene gas sensor. J. Nanomater. 2019, 9, 1059–1073. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, J.; Li, M.; Li, Z.; Yuan, Y.; Yang, X.; Guo, L. Highly efficient toluene gas sensor based on spinel structured hollow urchin-like core-shell ZnFe2O4 spheres. Sens. Actuators B 2021, 349, 130734. [Google Scholar] [CrossRef]
- Deivatamil, D.; Mark, J.A.M.; Raghavan, T.; Jesuraj, J.P. Fabrication of MnFe2O4 and Ni: MnFe2O4 nanoparticles for ammonia gas sensor application. Inorg. Chem. Commun. 2021, 123, 108355–108362. [Google Scholar]
- Patil, J.Y.; Nadargi, D.Y.; Mulla, I.S.; Suryavanshi, S.S. Cerium doped MgFe2O4 nanocomposites: Highly sensitive and fast response-recoverable acetone gas sensor. Heliyon 2019, 5, e01489. [Google Scholar] [CrossRef]
- Mkwae, P.; Kortidis, I.; Kroon, R.E.; Leshabane, N.; Jozela, M.; Swart, H.C.; Nkosi, S.S. Insightful acetone gas sensing behaviour of Ce substituted MgFe2O4 spinel nano-ferrites. J. Mater. Res. Technol. 2020, 9, 16252–16269. [Google Scholar] [CrossRef]
- Sumangala, T.P.; Pasquet, I.; Presmanes, L.; Thimont, Y.; Bonningue, C.; Venkataramani, N.; Prasad, S.; Baco-Carles, V.; Tailhades, P.; Barnabé, A. Effect of synthesis method and morphology on the enhanced CO2 sensing properties of magnesium ferrite MgFe2O4. Ceram. Int. 2018, 44, 18578–18584. [Google Scholar]
- Karuppasamy, K.; Sharma, B.; Vikraman, D.; Jo, E.B.; Sivakumar, P.; Kim, H.S. Switchable p-n gas response for 3D-hierarchical NiFe2O4 porous microspheres for highly selective and sensitive toluene gas sensors. J. Alloys Compd. 2021, 886, 161281–161290. [Google Scholar] [CrossRef]
- Godbole, R.V.; Rao, P.; Alegaonkar, P.S.; Bhagwat, S. Influence of fuel to oxidizer ratio on LPG sensing performance of MgFe2O4 nanoparticles. Mat. Chem. Phy. 2015, 161, 135–141. [Google Scholar] [CrossRef]
- Patil, J.Y.; Nadargi, D.Y.; Gurav, J.L.; Mulla, I.S.; Suryavanshi, S.S. Synthesis of glycine combusted NiFe2O4 spinel ferrite: A highly versatile gas sensor. Mat. Lett. 2014, 214, 144–147. [Google Scholar] [CrossRef]
- Dalt, S.D.; Takimi, A.S.; Sousa, V.C.; Bergmann, C.P. Magnetic and structural characterization of nanostructured MgFe2O4 synthesized by combustion reaction. Part. Sci. Technol. 2009, 27, 519–527. [Google Scholar] [CrossRef]
- Ahmadipour, M.; Rao, K.V.; Rajendar, V. Formation of nanoscale Mg(x)Fe(1−x)O4 (x = 0.1, 0.2, 0.4) structure by solution combustion: Effect of fuel to oxidizer ratio. J. Nanomat. 2012, 2012, 163909. [Google Scholar] [CrossRef]
- Deraz, N.M.; Alarifi, A. Novel preparation and properties of magnesioferrite nanoparticles. J. Anal. Appl. Pyrolysis 2012, 97, 55–61. [Google Scholar] [CrossRef]
- Bangale, S.V.; Bamane, S.R. Nanostructured MgFe2O4 thick film resistors as ethanol gas sensors operable at room temperature. Sens. Transd. J. 2012, 137, 176–188. [Google Scholar]
- Patil, J.Y.; Khandekar, M.S.; Mulla, I.S.; Suryavanshi, S.S. Combustion synthesis of magnesium ferrite as liquid petroleum gas (LPG) sensor: Effect of sintering temperature. Curr. Appl. Phys. 2012, 12, 319–324. [Google Scholar] [CrossRef]
- Lin, S.; Guo, Y.; Li, X.; Liu, Y. Glycine acid-assisted green hydrothermal synthesis and controlled growth of WO3 nanowires. Mater. Lett. 2015, 152, 102–104. [Google Scholar] [CrossRef]
- Yin, M.; Yu, L.; Liu, S. Synthesis of thickness-controlled cuboid WO3 nanosheets and their exposed facets-dependent acetone sensing properties. J. Alloys Compd. 2017, 696, 490–497. [Google Scholar] [CrossRef]
- Mehta, S.; Nadargi, D.; Tamboli, M.; Patil, V.; Mulla, I.; Suryavanshi, S. Macroporous WO3: Tunable morphology as a function of glycine concentration and its excellent acetone sensing performance. Ceram. Int. 2019, 45, 409–414. [Google Scholar] [CrossRef]
- Bamzai, K.K.; Kour, G.; Kaur, B.; Kulkarni, D. Preparation and structural and magnetic properties of Ca substituted magnesium ferrite with composition MgCaxFe2−xO4 (x = 0.00, 0.01, 0.03, 0.05, 0.07). J. Mat. 2014, 2014, 184340. [Google Scholar] [CrossRef] [Green Version]
- Eltabey, M.M.; Massoud, A.M.; Radu, C. microstructure and superparamagnetic properties of Mg-Ni-Cd ferrites nanoparticles. J. Nanomat. 2014, 2014, 492832. [Google Scholar] [CrossRef]
- Sun, Y.F.; Liu, S.B.; Meng, F.L.; Liu, J.Y.; Jin, Z.; Kong, L.T.; Liu, J.H. Metal oxide nanostructures and their gas sensing properties: A review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef] [PubMed]
- Koops, C.G. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 1951, 83, 121–124. [Google Scholar] [CrossRef]
- Al-Hashem, M.; Sheikh, A.; Morris, P. Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review. Sens. Actuators B Chem. 2019, 301, 126845–126855. [Google Scholar] [CrossRef]
- Wu, J.; Gao, D.; Sun, T.; Bi, J.; Zhao, Y.; Ning, Z.; Fan, G.; Xie, Z. Highly selective gas sensing properties of partially inversed spinel zinc ferrite towards H2S. Sens. Actuators B Chem. 2016, 235, 258–262. [Google Scholar] [CrossRef]
- Yamazoe, N. New approaches for improving semiconductor gas sensors. Sens. Actuators B Chem. 1991, 5, 7–19. [Google Scholar] [CrossRef]
- Sutka, A.; Mezinskis, G.; Lusis, A.; Jakovlevs, D. Influence of iron non-stoichiometry on spinel zinc ferrite gas sensing properties. Sens. Actuators B Chem. 2012, 172, 204–209. [Google Scholar] [CrossRef]
- Sutka, A.; Mezinskis, G.; Zamovskis, M.; Jakovlevs, D.; Pavlovska, I. Monophasic ZnFe2O4 synthesis from a xerogel layer by auto combustion. Ceram. Int. 2013, 39, 8499–8502. [Google Scholar] [CrossRef]
- Ayyappan, S.; Raja, S.P.; Venkateswaran, C.; Philip, J.; Raj, B. Room temperature ferromagnetism in vacuum annealed ZnFe2O4 nanoparticles. Appl. Phys. Lett. 2010, 96, 143106–143110. [Google Scholar] [CrossRef]
- Sutka, A.; Parna, R.; Kleperis, J.; Kambre, T.; Pavlovska, I.; Korsaks, V.; Malnieks, K.; Grinberga, L.; Kisand, V. Photocatalytic activity of non-stoichiometric ZnFe2O4 under visible light irradiation. Phys. Scr. 2014, 89, 044011–044020. [Google Scholar] [CrossRef]
- Munindra, P.; Reddy, M.B.; Rani, B.G.; Jayarambabu, N.; Kailasa, S.; Rao, P.S.; Rao, K.V. A high-performance low-temperature LPG detection by MgFe2O4/BiVO4 chemiresistive sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 2370–2377. [Google Scholar] [CrossRef]
- Priya, R.S.; Chaudhary, P.; Kumar, E.R.; Balamurugan, A.; Srinivas, C.; Prasad, G.; Yadav, B.C.; Sastry, D.L. Evaluation of structural, dielectric and electrical humidity sensor behaviour of MgFe2O4 ferrite nanoparticles. Ceram. Int. 2021, 47, 15995–16008. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Zhang, Z.; Cao, J. Highly sensitive acetone gas sensor based on g-C3N4 decorated MgFe2O4 porous microspheres composites. J. Sens. 2018, 18, 2211–2223. [Google Scholar] [CrossRef] [PubMed]
- Kotnala, R.K.; Shah, J.; Mathpal, M.C.; Verma, K.C.; Singh, S.; Lovkush. Influence of annealing on humidity response of RF sputtered nanocrystalline MgFe2O4. Thin Solid Films 2011, 519, 6135–6139. [Google Scholar] [CrossRef]
Sample ID | Crystallite Size (nm) | Lattice Parameter of Heat-Treated Sample “a” | |
---|---|---|---|
As-Prepared | Heat-Treated | ||
MgFe2O4 | 30 | 36 | 8.36 |
MgFe1.95O4-δ | 34 | 41 | 8.38 |
MgFe1.9O4-δ | 35 | 40 | 8.39 |
Element | MgFe2-xO4-δ (x = 0) | MgFe2-xO4-δ (x = 0.05) | MgFe2-xO4-δ (x = 0.1) | |||
---|---|---|---|---|---|---|
Wt% | At% | Wt% | At% | Wt% | At% | |
O | 18.02 | 39.54 | 19.43 | 41.03 | 53.71 | 68.09 |
Mg | 10.94 | 15.80 | 13.01 | 18.08 | 37.08 | 30.95 |
Fe | 71.03 | 44.65 | 67.55 | 40.88 | 9.19 | 0.95 |
Test Gas | MgFe2-xO4-δ (x = 0) | MgFe2-xO4-δ (x = 0.05) | MgFe2-xO4-δ (x = 0.1) | |||
---|---|---|---|---|---|---|
Response Time (s) | Recovery Time (s) | Response Time (s) | Recovery Time (s) | Response Time (s) | Recovery Time (s) | |
LPG | 32 | 45 | 15 | 23 | 23 | 41 |
Acetone | 15 | 33 | 9 | 19 | 15 | 32 |
Ethanol | 18 | 30 | 13 | 21 | 18 | 35 |
Ammonia | 6 | 14 | 7 | 9 | 8 | 17 |
Materials | Test Gas | Sensitivity (%) | Concentration (ppm) | Response Time (s) | Recovery Time (s) | Operating Temp (°C) | Method | Ref. |
---|---|---|---|---|---|---|---|---|
MgFe2O4 | CO2 | 36 | 5000 | 120 | 240 | 450 | Co-precipitation | [12] |
MgCexFe2-xO4 | Acetone | 500 | 100 | 1.8 | 249 | 225 | Glyco-thermal technique | [11] |
MgFe2O4/BiVO4 | LPG | 58 | 500 | 37 | 42 | 50 | Combustion and hydrothermal methods | [30] |
MgFe2O4 | Humidity | 10–95% RH | - | 18 | 26 | 27 | Green synthesis | [31] |
MgFe2O4/g-C3N4 | Acetone | 25 | 500 | 49 | 29 | 25 | Solvothermal method | [32] |
MgFe2O4 | Humidity | 10–90% RH | - | 4 | 6 | 25 | RF sputtering | [33] |
MgFe2O4 | Acetone | 80 | 500 | 9 | 19 | 375 | Glycine combustion method | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadargi, D.; Umar, A.; Nadargi, J.; Patil, J.; Mulla, I.; Akbar, S.; Suryavanshi, S. Spinel Magnesium Ferrite (MgFe2O4): A Glycine-Assisted Colloidal Combustion and Its Potentiality in Gas-Sensing Application. Chemosensors 2022, 10, 361. https://doi.org/10.3390/chemosensors10090361
Nadargi D, Umar A, Nadargi J, Patil J, Mulla I, Akbar S, Suryavanshi S. Spinel Magnesium Ferrite (MgFe2O4): A Glycine-Assisted Colloidal Combustion and Its Potentiality in Gas-Sensing Application. Chemosensors. 2022; 10(9):361. https://doi.org/10.3390/chemosensors10090361
Chicago/Turabian StyleNadargi, Digambar, Ahmad Umar, Jyoti Nadargi, Jayvant Patil, Imtiaz Mulla, Sheikh Akbar, and Sharad Suryavanshi. 2022. "Spinel Magnesium Ferrite (MgFe2O4): A Glycine-Assisted Colloidal Combustion and Its Potentiality in Gas-Sensing Application" Chemosensors 10, no. 9: 361. https://doi.org/10.3390/chemosensors10090361
APA StyleNadargi, D., Umar, A., Nadargi, J., Patil, J., Mulla, I., Akbar, S., & Suryavanshi, S. (2022). Spinel Magnesium Ferrite (MgFe2O4): A Glycine-Assisted Colloidal Combustion and Its Potentiality in Gas-Sensing Application. Chemosensors, 10(9), 361. https://doi.org/10.3390/chemosensors10090361