Characteristics and Applicability Analysis of Nanomorphological Structures for Chemosensors: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Nanomaterials
3.1. Nanoparticles
3.2. Nanowire
3.3. Nanoplates
3.4. Nanorolls
3.4.1. SWCNTs and Their Composites
3.4.2. DWCNTs and Their Composites
3.4.3. MWCNTs and Their Composites
4. Summary and Future Prospects
- Current status
- The main obstacles to be overcome
- Future perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moaser, A.G.; Afkham, A.G.; Khoshnavazi, R.; Rostamnia, S. Nickel substituted polyoxometalates in layered double hydroxides as metal-based nanomaterial of POM–LDH for green catalysis effects. Sci. Rep. 2023, 13, 4114. [Google Scholar] [CrossRef]
- Lee, D.; Huntoon, K.; Lux, J.; Kim, B.Y.S.; Jiang, W. Engineering nanomaterial physical characteristics for cancer immunotherapy. Nat. Rev. Bioeng. 2023, 1, 499–517. [Google Scholar] [CrossRef]
- Engel, M.; Farmer, D.B.; Azpiroz, J.T.; Seo, J.-W.T.; Kang, J.; Avouris, P.; Hersam, M.C.; Krupke, R.; Steiner, M. Graphene-enabled and directed nanomaterial placement from solution for large-scale device integration. Nat. Commun. 2018, 9, 4095. [Google Scholar] [CrossRef] [PubMed]
- Falinski, M.M.; Plata, D.L.; Chopra, S.S.; Theis, T.L.; Gilbertson, L.M.; Zimmerman, J.B. A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations. Nat. Nanotechnol. 2018, 13, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Cong, Y.; Liu, F.-L.; Sun, J.; Zhang, J.; Cao, G.; Zhou, L.; Yang, W.; Song, Q.; Wang, F.; et al. A nanomaterial targeting the spike protein captures SARS-CoV-2 variants and promotes viral elimination. Nat. Nanotechnol. 2022, 17, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Abbas, N.; Shatanawi, W.; Shatnawi, T.A.M. Transportation of nanomaterial Maxwell fluid flow with thermal slip under the effect of Soret–Dufour and second-order slips: Nonlinear stretching. Sci. Rep. 2023, 13, 2182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, G.; Dong, B.; Wang, F.; Tang, J.; Stadler, F.J.; Yang, G.; Hong, S.; Xing, F. Interfacial jamming reinforced Pickering emulgel for arbitrary architected nanocomposite with connected nanomaterial matrix. Nat. Commun. 2021, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Sedykh, A.; Wang, W.; Yan, B.; Zhu, H. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations. Nat. Commun. 2020, 11, 2519. [Google Scholar] [CrossRef] [PubMed]
- Aubert, T.; Huang, J.-Y.; Ma, K.; Hanrath, T.; Wiesner, U. Porous cage-derived nanomaterial inks for direct and internal three-dimensional printing. Nat. Commun. 2020, 11, 4695. [Google Scholar] [CrossRef] [PubMed]
- Nazir, U.; Sohail, M.; Kumam, P.; Elmasry, Y.; Sitthithakerngkiet, K.; Ali, M.R.; Khan, M.J.; Galal, A.M. Thermal and solute aspects among two viscosity models in synovial fluid inserting suspension of tri and hybrid nanomaterial using finite element procedure. Sci. Rep. 2022, 12, 21577. [Google Scholar] [CrossRef]
- Wei, Y.; Tang, T.; Pang, H.-B. Cellular internalization of bystander nanomaterial induced by TAT-nanoparticles and regulated by extracellular cysteine. Nat. Commun. 2019, 10, 3646. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.; Jafaryar, M.; Sheikholeslami, M.; Kumam, P. Heat transfer intensification of nanomaterial with involve of swirl flow device concerning entropy generation. Sci. Rep. 2021, 11, 12504. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Thi, Q.A.N.; Le, N.H.; Nguyen, N.H. Synthesis of a novel porous Ag2O nanomaterial on ion exchange resin and its application for COD determination of high salinity water. Sci. Rep. 2021, 11, 11487. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, R.; Kim, J.; Jo, C.; Han, S.W.; Kim, J.-C.; Park, H.; Han, J.; Shin, H.S.; Shin, J.W. Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 2020, 585, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, W.; Gonzalez-Munoz, S.; Forcieri, L.; Wells, C.; Jarvis, S.P.; Wu, F.; Young, R.; Dey, A.; Isaacs, M.; et al. Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy. Nat. Commun. 2023, 14, 1321. [Google Scholar] [CrossRef] [PubMed]
- Malm, A.V.; Corbett, J.C.W. Improved Dynamic Light Scattering using an adaptive and statistically driven time resolved treatment of correlation data. Sci. Rep. 2019, 9, 13519. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, C.M.; Ilavsky, J.; Martel, A.; Hinrichs, S.; Meyer, A.; Pedersen, J.S.; Sokolova, A.V.; Svergun, D.I. Small-angle X-ray and neutron scattering. Nat. Rev. Methods Prim. 2021, 1, 70. [Google Scholar] [CrossRef]
- Dalton, K.M.; Greisman, J.B.; Hekstra, D.R. A unifying Bayesian framework for merging X-ray diffraction data. Nat. Commun. 2022, 13, 7764. [Google Scholar] [CrossRef]
- Wu, L.; Bak, S.; Shin, Y.; Chu, Y.S.; Yoo, S.; Robinson, I.K.; Huang, X. Resolution-enhanced X-ray fluorescence microscopy via deep residual networks. npj Comput. Mater. 2023, 9, 43. [Google Scholar] [CrossRef]
- Dehghani, M.; Gulvin, S.M.; Flax, J.; Gaborski, T.R. Systematic Evaluation of PKH Labelling on Extracellular Vesicle Size by Nanoparticle Tracking Analysis. Sci. Rep. 2020, 10, 9533. [Google Scholar] [CrossRef]
- di Polidoro, A.C.; Baghbantarghdari, Z.; De Gregorio, V.; Silvestri, S.; Netti, P.A.; Torino, E. Insulin Activation Mediated by Uptake Mechanisms: A Comparison of the Behavior between Polymer Nanoparticles and Extracellular Vesicles in 3D Liver Tissues. Biomacromolecules 2023, 24, 2203–2212. [Google Scholar] [CrossRef]
- Cheddah, S.; Xia, Z.; Wang, Y.; Yan, C. Effect of Hydrophobic Moieties on the Assembly of Silica Particles into Colloidal Crystals. Langmuir 2023, 39, 5655–5669. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-F.; Shiau, F.-J. Enhanced and Extended Ophthalmic Drug Delivery by pH-Triggered Drug-Eluting Contact Lenses with Large-Pore Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces 2023, 15, 18630–18638. [Google Scholar] [CrossRef] [PubMed]
- Karnwal, A.; Kumar, G.; Pant, G.; Hossain, K.; Ahmad, A.; Alshammari, M.B. Perspectives on Usage of Functional Nanomaterials in Antimicrobial Therapy for Antibiotic-Resistant Bacterial Infections. ACS Omega 2023, 8, 13492–13508. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Dong, F.; Wang, M.; Li, T.; Wang, Y.; Dai, W.; Zhang, J.; Jiao, C.; Song, Z.; Shen, J.; et al. Particulate Standard Establishment for Absolute Quantification of Nanoparticles by LA-ICP-MS. Anal. Chem. 2023, 95, 6391–6398. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Huang, W.; Jia, R.; Bian, Y.; Pan, M.-H.; Ye, X. Correlation between Protein Features and the Properties of pH-Driven-Assembled Nanoparticles: Control of Particle Size. J. Agric. Food Chem. 2023, 71, 5686–5699. [Google Scholar] [CrossRef] [PubMed]
- Nicoletta, F.P.; Iemma, F. Nanomaterials for Drug Delivery and Cancer Therapy. Nanomaterials 2023, 13, 207. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhang, J.; Liu, S.; You, Z.; Zhang, Z.; Zhao, T.; Zhang, X.; Wu, R. Developing Mg-Gd-Dy-Ag-Zn-Zr Alloy with High Strength via Nano-Precipitation. Nanomaterials 2023, 13, 1219. [Google Scholar] [CrossRef]
- Sarasati, A.; Syahruddin, M.H.; Nuryanti, A.; Ana, I.D.; Barlian, A.; Wijaya, C.H.; Ratnadewi, D.; Wungu, T.D.K.; Takemori, H. Plant-Derived Exosome-like Nanoparticles for Biomedical Applications and Regenerative Therapy. Biomedicines 2023, 11, 1053. [Google Scholar] [CrossRef]
- El-Geassy, A.A.; Halim, K.S.A.; Alghamdi, A.S. A Novel Hydro-Thermal Synthesis of Nano-Structured Molybdenum-Iron Intermetallic Alloys at Relatively Low Temperatures. Materials 2023, 16, 2736. [Google Scholar] [CrossRef]
- Abbas, S.F.; Bukhari, M.A.; Raza, M.A.S.; Abbasi, G.H.; Ahmad, Z.; Alqahtani, M.D.; Almutairi, K.F.; Abd_Allah, E.F.; Iqbal, M.A. Enhancing Drought Tolerance in Wheat Cultivars through Nano-ZnO Priming by Improving Leaf Pigments and Antioxidant Activity. Sustainability 2023, 15, 5835. [Google Scholar] [CrossRef]
- Yan, L.; Tang, J.; Qiao, Q.-A.; Cai, H.; Dong, Y.; Jin, J.; Xu, Y.; Gao, H. Construction and Enhanced Efficiency of Bi2MoO6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance. Nanomaterials 2023, 13, 214. [Google Scholar] [CrossRef]
- Sasaki, M.; Wu, H.; Kawakami, D.; Takaishi, S.; Kajiwara, T.; Miyasaka, H.; Breedlove, B.K.; Yamashita, M.; Kishida, H.; Matsuzaki, H.; et al. Effect of an In-Plane Ligand on the Electronic Structures of Bromo-Bridged Nano-Wire Ni−Pd Mixed-Metal Complexes, [Ni1−xPdx(bn)2Br]Br2 (bn = 2S,3S-Diaminobutane). Inorg. Chem. 2009, 48, 7446–7451. [Google Scholar] [CrossRef] [PubMed]
- Zeghouane, M.; Grégoire, G.; Chereau, E.; Avit, G.; Staudinger, P.; Moselund, K.E.; Schmid, H.; Coulon, P.-M.; Shields, P.; Goktas, N.I.; et al. Selective Area Growth of GaAs Nanowires and Microplatelet Arrays on Silicon by Hydride Vapor-Phase Epitaxy. Cryst. Growth Des. 2023, 23, 2120–2127. [Google Scholar] [CrossRef]
- Elalaily, T.; Berke, M.; Kedves, M.; Fülöp, G.; Scherübl, Z.; Kanne, T.; Nygård, J.; Makk, P.; Csonka, S. Signatures of Gate-Driven Out-of-Equilibrium Superconductivity in Ta/InAs Nanowires. ACS Nano 2023, 17, 5528–5535. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, N.; Schäfer, M.; Römer, M.; Straub, S.D.; Zhang, S.; Brötz, J.; Trautmann, C.; Scheu, C.; Etzold, B.J.M.; Toimil-Molares, M.E. Cu Nanowire Networks with Well-Defined Geometrical Parameters for Catalytic Electrochemical CO2 Reduction. ACS Appl. Nano Mater. 2023, 6, 4190–4200. [Google Scholar] [CrossRef]
- Mao, H.; Chen, J.; He, L.; Fan, Z.; Ren, Y.; Yin, J.; Dai, W.; Yang, H. Halide-Salt-Free Synthesis of Silver Nanowires with High Yield and Purity for Transparent Conductive Films. ACS Omega 2023, 8, 7607–7614. [Google Scholar] [CrossRef]
- Wang, S.; She, L.; Zheng, Q.; Song, Y.; Yang, Y.; Chen, L. Ag-Doped CuV2O6 Nanowires for Enhanced Visible-Light Photocatalytic CO2 Reduction. Ind. Eng. Chem. Res. 2022, 62, 455–465. [Google Scholar] [CrossRef]
- Yalcin, S.E.; Malvankar, N.S. The blind men and the filament: Understanding structures and functions of microbial nanowires. Curr. Opin. Chem. Biol. 2020, 59, 193–201. [Google Scholar] [CrossRef]
- Jin, H.; Xu, Z.; Hu, Z.-Y.; Yin, Z.; Wang, Z.; Deng, Z.; Wei, P.; Feng, S.; Dong, S.; Liu, J.; et al. Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction. Nat. Commun. 2023, 14, 1518. [Google Scholar] [CrossRef]
- Wakizaka, M.; Kumagai, S.; Wu, H.; Sonobe, T.; Iguchi, H.; Yoshida, T.; Yamashita, M.; Takaishi, S. Macro- and atomic-scale observations of a one-dimensional heterojunction in a nickel and palladium nanowire complex. Nat. Commun. 2022, 13, 1188. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Poddar, S.; Lin, Y.; Long, Z.; Zhang, D.; Zhang, Q.; Shu, L.; Qiu, X.; Kam, M.; Javey, A.; et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020, 581, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Xiao, T.-H.; Luo, Z.; Kitahama, Y.; Hiramatsu, K.; Kishimoto, N.; Itoh, T.; Cheng, Z.; Goda, K. Porous carbon nanowire array for surface-enhanced Raman spectroscopy. Nat. Commun. 2020, 11, 4772. [Google Scholar] [CrossRef] [PubMed]
- Borsoi, F.; Zuo, K.; Gazibegovic, S.; Veld, R.L.M.O.H.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Heedt, S. Transmission phase read-out of a large quantum dot in a nanowire interferometer. Nat. Commun. 2020, 11, 3666. [Google Scholar] [CrossRef] [PubMed]
- Holm, J.V.; Jørgensen, H.I.; Krogstrup, P.; Nygård, J.; Liu, H.; Aagesen, M. Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon. Nat. Commun. 2013, 4, 1498. [Google Scholar] [CrossRef] [PubMed]
- Mocking, T.F.; Bampoulis, P.; Oncel, N.; Poelsema, B.; Zandvliet, H.J.W. Electronically stabilized nanowire growth. Nat. Commun. 2013, 4, 2387. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.; Calvi, C.; Tinsley, J.; Hollinger, R.; Kaymak, V.; Pukhov, A.; Wang, S.; Rockwood, A.; Wang, Y.; Shlyaptsev, V.N.; et al. Micro-scale fusion in dense relativistic nanowire array plasmas. Nat. Commun. 2018, 9, 1077. [Google Scholar] [CrossRef]
- Liu, Z.; Zhan, Y.; Shi, G.; Moldovan, S.; Gharbi, M.; Song, L.; Ma, L.; Gao, W.; Huang, J.; Vajtai, R.; et al. Anomalous high capacitance in a coaxial single nanowire capacitor. Nat. Commun. 2012, 3, 879. [Google Scholar] [CrossRef]
- Hwang, A.; Kim, E.; Moon, J.; Lee, H.; Lee, M.; Jeong, J.; Lim, E.-K.; Jung, J.; Kang, T.; Kim, B. Atomically Flat Au Nanoplate Platforms Enable Ultraspecific Attomolar Detection of Protein Biomarkers. ACS Appl. Mater. Interfaces 2019, 11, 18960–18967. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, N.; Liu, X.; He, Y.; Wan, H.; Liang, B.; Ma, R.; Pan, A.; Roy, V.A.L. Polypyrrole-Modified NH4NiPO4·H2O Nanoplate Arrays on Ni Foam for Efficient Electrode in Electrochemical Capacitors. ACS Sustain. Chem. Eng. 2016, 4, 5578–5584. [Google Scholar] [CrossRef]
- Choi, D.; Wang, D.; Bae, I.-T.; Xiao, J.; Nie, Z.; Wang, W.; Viswanathan, V.V.; Lee, Y.J.; Zhang, J.-G.; Graff, G.L.; et al. LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode. Nano Lett. 2010, 10, 2799–2805. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cao, J.; Zheng, W.; Chen, Y.; Wu, D.; Dang, W.; Wang, K.; Peng, H.; Liu, Z. Controlled Synthesis of Topological Insulator Nanoplate Arrays on Mica. J. Am. Chem. Soc. 2012, 134, 6132–6135. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Bosman, M.; Danesh, M.; Zeng, M.; Song, P.; Darma, Y.; Rusydi, A.; Lin, H.; Qiu, C.-W.; Loh, K.P. Visible Surface Plasmon Modes in Single Bi2Te3 Nanoplate. Nano Lett. 2015, 15, 8331–8335. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.-B.; Wang, L.; Ma, Z.-C.; Zhang, R.; Chen, Q.-D.; Lv, C.; Han, B.; Xiao, X.-Z.; Zhang, X.-L.; Zhang, Y.-L.; et al. Surface-Plasmon-Mediated Programmable Optical Nanofabrication of an Oriented Silver Nanoplate. ACS Nano 2014, 8, 6682–6692. [Google Scholar] [CrossRef] [PubMed]
- Dun, C.; Hewitt, C.A.; Huang, H.; Xu, J.; Montgomery, D.S.; Nie, W.; Jiang, Q.; Carroll, D.L. Layered Bi2Se3 Nanoplate/Polyvinylidene Fluoride Composite Based n-type Thermoelectric Fabrics. ACS Appl. Mater. Interfaces 2015, 7, 7054–7059. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Bao, Y.; Manna, U.; Shah, R.A.; Scherer, N.F. Enhancing Nanoparticle Electrodynamics with Gold Nanoplate Mirrors. Nano Lett. 2014, 14, 2436–2442. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Cabán-Acevedo, M.; Kaiser, N.S.; Jin, S. Gated Hall Effect of Nanoplate Devices Reveals Surface-State-Induced Surface Inversion in Iron Pyrite Semiconductor. Nano Lett. 2014, 14, 6754–6760. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.W.; Kim, K.; Lee, G.; Kang, M.; Chang, H.; Jang, A.-R.; Lee, J.-O. Electrochemical Transparency of Graphene. ACS Nano 2022, 16, 9278–9286. [Google Scholar] [CrossRef]
- Bao, Q.; Loh, K.P. Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano 2012, 6, 3677–3694. [Google Scholar] [CrossRef]
- Nabil, A.; Hendawy, H.A.M.; Abdel-Salam, R.; Ahmed, R.M.; Shawky, A.; Emara, S.; Ibrahim, N. A Green Voltammetric Determination of Molnupiravir Using a Disposable Screen-Printed Reduced Graphene Oxide Electrode: Application for Pharmaceutical Dosage and Biological Fluid Forms. Chemosensors 2023, 11, 471. [Google Scholar] [CrossRef]
- Budde, H.; Coca-López, N.; Shi, X.; Ciesielski, R.; Lombardo, A.; Yoon, D.; Ferrari, A.C.; Hartschuh, A. Raman Radiation Patterns of Graphene. ACS Nano 2015, 10, 1756–1763. [Google Scholar] [CrossRef]
- Wang, Y.; Jaiswal, M.; Lin, M.; Saha, S.; Oezyilmaz, B.; Loh, K.P. Electronic Properties of Nanodiamond Decorated Graphene. ACS Nano 2012, 6, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Lee, K.Y.; Park, H.-K.; Chae, S.J.; Lee, Y.H.; Kim, S.-W. Controlled Growth of Semiconducting Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators. ACS Nano 2011, 5, 4197–4204. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Acuna, P.; Rudayni, F.; Rijal, K.; Chan, W.-L.; Zhao, H. Hybrid Heterostructures to Generate Long-Lived and Mobile Photocarriers in Graphene. ACS Nano 2023, 17, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xiao, H.; Zhou, X.; Xu, X.; Jiang, S.; Qin, Z.; Ding, S.; Bian, C.; Liu, Z. Highly Deformable Graphene/Poly(3,4-ethylenedioxythiophene):Poly(styrene Sulfonate) Hydrogel Composite Film for Stretchable Supercapacitors. ACS Appl. Energy Mater. 2022, 5, 7277–7286. [Google Scholar] [CrossRef]
- Smith, K.; Retallick, A.; Melendrez, D.; Vijayaraghavan, A.; Heil, M. Modeling Graphene–Polymer Heterostructure MEMS Membranes with the Föppl–von Kármán Equations. ACS Appl. Mater. Interfaces 2023, 15, 9853–9861. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Ci, H.; Yang, X.; Liu, Z.; Sun, J. Direct-Chemical Vapor Deposition-Enabled Graphene for Emerging Energy Storage: Versatility, Essentiality, and Possibility. ACS Nano 2022, 16, 11646–11675. [Google Scholar] [CrossRef] [PubMed]
- Koulouklidis, A.D.; Tasolamprou, A.C.; Doukas, S.; Kyriakou, E.; Ergoktas, M.S.; Daskalaki, C.; Economou, E.N.; Kocabas, C.; Lidorikis, E.; Kafesaki, M.; et al. Ultrafast Terahertz Self-Induced Absorption and Phase Modulation on a Graphene-Based Thin Film Absorber. ACS Photonics 2022, 9, 3075–3082. [Google Scholar] [CrossRef]
- Lyu, C.; Cheng, C.; He, Y.; Qiu, L.; He, Z.; Zou, D.; Li, D.; Lu, J. Graphene Hydrogel as a Porous Scaffold for Cartilage Regeneration. ACS Appl. Mater. Interfaces 2022, 14, 54431–54438. [Google Scholar] [CrossRef]
- Schmitt, A.; Vallet, P.; Mele, D.; Rosticher, M.; Taniguchi, T.; Watanabe, K.; Bocquillon, E.; Fève, G.; Berroir, J.M.; Voisin, C.; et al. Mesoscopic Klein-Schwinger effect in graphene. Nat. Phys. 2023, 19, 830–835. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, S.; Chen, S.; Zhang, Z.; Watanabe, K.; Taniguchi, T.; Zettl, A.; Wang, F. Observation of hydrodynamic plasmons and energy waves in graphene. Nature 2023, 614, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Zhou, F.; Xu, J.; Wang, Z.; Lan, J.; Fan, Y.; Wang, Z.; Liu, W.; Chen, J.; Feng, S.; et al. Unexpectedly efficient ion desorption of graphene-based materials. Nat. Commun. 2022, 13, 7247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Polski, R.; Thomson, A.; Lantagne-Hurtubise, É.; Lewandowski, C.; Zhou, H.; Watanabe, K.; Taniguchi, T.; Alicea, J.; Nadj-Perge, S. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 2023, 613, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Machín, A.; Cotto, M.; Duconge, J.; Morant, C.; Petrescu, F.I.; Márquez, F. Sensitive and Reversible Ammonia Gas Sensor Based on Single-Walled Carbon Nanotubes. Chemosensors 2023, 11, 247. [Google Scholar] [CrossRef]
- Han, H. Characteristics and Applicability Analysis of Nanomorphological Structures for Textile Materials: A systematic review. Proc. Costume Cult Assoc Conf. 2023, 7, 65. [Google Scholar]
- Feng, L.; Wu, R.; Liu, C.; Lan, J.; Lin, Y.-H.; Yang, X. Facile Green Vacuum-Assisted Method for Polyaniline/SWCNT Hybrid Films with Enhanced Thermoelectric Performance by Interfacial Morphology Control. ACS Appl. Energy Mater. 2021, 4, 4081–4089. [Google Scholar] [CrossRef]
- Deng, W.; Deng, L.; Li, Z.; Zhang, Y.; Chen, G. Synergistically Boosting Thermoelectric Performance of PEDOT:PSS/SWCNT Composites via the Ion-Exchange Effect and Promoting SWCNT Dispersion by the Ionic Liquid. ACS Appl. Mater. Interfaces 2021, 13, 12131–12140. [Google Scholar] [CrossRef] [PubMed]
- Mariappan, D.D.; Kim, S.; Zhao, J.; Zhao, H.; Muecke, U.; Gleason, K.; Akinwande, A.I.; Hart, A.J. Ultrathin High-Mobility SWCNT Transistors with Electrodes Printed by Nanoporous Stamp Flexography. ACS Appl. Nano Mater. 2023, 6, 5075–5080. [Google Scholar] [CrossRef]
- Liu, B.; Alamri, M.; Walsh, M.; Doolin, J.L.; Berrie, C.L.; Wu, J.Z. Development of an ALD-Pt@SWCNT/Graphene 3D Nanohybrid Architecture for Hydrogen Sensing. ACS Appl. Mater. Interfaces 2020, 12, 53115–53124. [Google Scholar] [CrossRef]
- Charoenpakdee, J.; Suntijitrungruang, O.; Boonchui, S. Investigating valley-dependent current generation due to asymmetric energy dispersion for charge-transfer from a quantum dot to single-walled carbon nanotube. Sci. Rep. 2023, 13, 3105. [Google Scholar] [CrossRef]
- Dehaghani, M.Z.; Yousefi, F.; Seidi, F.; Bagheri, B.; Mashhadzadeh, A.H.; Naderi, G.; Esmaeili, A.; Abida, O.; Habibzadeh, S.; Saeb, M.R.; et al. Encapsulation of an anticancer drug Isatin inside a host nano-vehicle SWCNT: A molecular dynamics simulation. Sci. Rep. 2021, 11, 18753. [Google Scholar] [CrossRef]
- Kordek-Khalil, K.; Janas, D.; Rutkowski, P. Revealing the effect of electrocatalytic performance boost during hydrogen evolution reaction on free-standing SWCNT film electrode. Sci. Rep. 2021, 11, 19981. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.; Chiashi, S.; Shiomi, J.; Maruyama, S. Heat diffusion-related damping process in a highly precise coarse-grained model for nonlinear motion of SWCNT. Sci. Rep. 2021, 11, 563. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-S.; Trerayapiwat, K.J.; Sun, L.; Krzyaniak, M.D.; Wasielewski, M.R.; Rajh, T.; Sharifzadeh, S.; Ma, X. Long-lived electronic spin qubits in single-walled carbon nanotubes. Nat. Commun. 2023, 14, 848. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Wu, R.; Liu, C.; Lan, J.; Lin, Y.-H.; Yang, X. High Thermoelectric and Flexible PEDOT/SWCNT/BC Nanoporous Films Derived from Aerogels. ACS Sustain. Chem. Eng. 2019, 7, 12591–12600. [Google Scholar] [CrossRef]
- Fraser, R.A.; Stoeffler, K.; Ashrafi, B.; Zhang, Y.; Simard, B. Large-Scale Production of PMMA/SWCNT Composites Based on SWCNT Modified with PMMA. ACS Appl. Mater. Interfaces 2012, 4, 1990–1997. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Wan, P.; Ren, Z.; Yan, S. Anisotropic Polyaniline/SWCNT Composite Films Prepared by in Situ Electropolymerization on Highly Oriented Polyethylene for High-Efficiency Ammonia Sensor. ACS Appl. Mater. Interfaces 2019, 11, 38169–38176. [Google Scholar] [CrossRef] [PubMed]
- Chobsilp, T.; Threrujirapapong, T.; Yordsri, V.; Treetong, A.; Inpaeng, S.; Tedsree, K.; Ayala, P.; Pichler, T.; Shi, L.; Muangrat, W. Highly Sensitive and Selective Formaldehyde Gas Sensors Based on Polyvinylpyrrolidone/Nitrogen-Doped Double-Walled Carbon Nanotubes. Sensors 2022, 22, 9329. [Google Scholar] [CrossRef]
- Barrejón, M.; Zummo, F.; Mikhalchan, A.; Vilatela, J.J.; Fontanini, M.; Scaini, D.; Ballerini, L.; Prato, M. TEGylated Double-Walled Carbon Nanotubes as Platforms to Engineer Neuronal Networks. ACS Appl. Mater. Interfaces 2022, 15, 77–90. [Google Scholar] [CrossRef]
- Behrouz, M.; Ghatee, M.H. Simulation of a Patterned Core–Shell Double-Walled Carbon Nanotube with an Optimal Heat Capacity as Efficient Thermal Conductivity Modules. ACS Appl. Nano Mater. 2022, 5, 1542–1552. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Tian, Z.; Ma, J.; Yu, H.; Xie, Q. Atomic Correlation between Bilayer Graphene and Double-Walled Carbon Nanotubes. J. Phys. Chem. C 2022, 126, 4030–4036. [Google Scholar] [CrossRef]
- Aziz, A.; Bazbouz, M.B.; Welland, M.E. Double-Walled Carbon Nanotubes Ink for High-Conductivity Flexible Electrodes. ACS Appl. Nano Mater. 2020, 3, 9385–9392. [Google Scholar] [CrossRef]
- Gordeev, G.; Wasserroth, S.; Li, H.; Flavel, B.; Reich, S. Moiré-Induced Vibrational Coupling in Double-Walled Carbon Nanotubes. Nano Lett. 2021, 21, 6732–6739. [Google Scholar] [CrossRef] [PubMed]
- Le Ouay, B.; Lau-Truong, S.; Flahaut, E.; Brayner, R.; Aubard, J.; Coradin, T.; Laberty-Robert, C. DWCNT-Doped Silica Gel Exhibiting Both Ionic and Electronic Conductivities. J. Phys. Chem. C 2012, 116, 11306–11314. [Google Scholar] [CrossRef]
- Erkens, M.; Levshov, D.; Wenseleers, W.; Li, H.; Flavel, B.S.; Fagan, J.A.; Popov, V.N.; Avramenko, M.; Forel, S.; Flahaut, E.; et al. Efficient Inner-to-Outer Wall Energy Transfer in Highly Pure Double-Wall Carbon Nanotubes Revealed by Detailed Spectroscopy. ACS Nano 2022, 16, 16038–16053. [Google Scholar] [CrossRef] [PubMed]
- Picard, L.; Lincker, F.; Kervella, Y.; Zagorska, M.; DeBettignies, R.; Peigney, A.; Flahaut, E.; Louarn, G.; Lefrant, S.; Demadrille, R.; et al. Composites of Double-Walled Carbon Nanotubes with bis-Quaterthiophene-Fluorenone Conjugated Oligomer: Spectroelectrochemical and Photovoltaic Properties. J. Phys. Chem. C 2009, 113, 17347–17354. [Google Scholar] [CrossRef]
- Levshov, D.; Than, T.X.; Arenal, R.; Popov, V.N.; Parret, R.; Paillet, M.; Jourdain, V.; Zahab, A.A.; Michel, T.; Yuzyuk, Y.I.; et al. Experimental Evidence of a Mechanical Coupling between Layers in an Individual Double-Walled Carbon Nanotube. Nano Lett. 2011, 11, 4800–4804. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liang, X.L.; Chen, Q.; Zhang, Z.Y.; Peng, L.-M. Field-Effect Characteristics and Screening in Double-Walled Carbon Nanotube Field-Effect Transistors. J. Phys. Chem. B 2005, 109, 17361–17365. [Google Scholar] [CrossRef]
- Herisanu, N.; Marinca, B.; Marinca, V. Nonlinear Vibration of Double-Walled Carbon Nanotubes Subjected to Mechanical Impact and Embedded on Winkler–Pasternak Foundation. Materials 2022, 15, 8599. [Google Scholar] [CrossRef]
- Roodbari, N.J.; Hosseini, S.R.; Omrani, A. Synthesis, Characterization, and Electrochemical Performance of rGO-MWCNT/Mn-Co-Cu Nanohybrid as Novel Catalyst for Methanol Electrooxidation. Energy Fuels 2023, 37, 5489–5498. [Google Scholar] [CrossRef]
- Aslam, F.; Shah, A.; Ullah, N.; Munir, S. Multiwalled Carbon Nanotube/Fe-Doped ZnO-Based Sensors for Droplet Electrochemical Detection and Degradation Monitoring of Brilliant Green. ACS Appl. Nano Mater. 2023, 6, 6172–6185. [Google Scholar] [CrossRef]
- Song, X.; Zhang, Q.; Wu, H.; Guo, S.; Qiu, J. Highly Efficient Dispersion of Individual Multiwalled Carbon Nanotubes by Polylactide in High Elastic State. Ind. Eng. Chem. Res. 2023, 62, 5042–5050. [Google Scholar] [CrossRef]
- Nguyen, D.-B.; Ha, V.-P.; Vuong, V.-D.; Chien, Y.-H.; Van Le, T.; Chu, C.-Y. Simulation and Verification of the Direct Current Electric Field on Fabricating High Porosity f-MWCNTs Thin Films by Electrophoretic Deposition Technique. Langmuir 2023, 39, 3883–3894. [Google Scholar] [CrossRef] [PubMed]
- Kiran, S.; Houda, S.; Yasmin, G.; Shafiq, Z.; Abbas, A.; Manzoor, S.; Syed, A.; Elgorban, A.M.; Zaghloul, N.S.S.; Ashiq, M.N. Facile Synthesis of a Nickel-Based Dopamine MOF/Multiwalled Carbon Nanotubes Nanocomposite as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. Energy Fuels 2023, 37, 5388–5398. [Google Scholar] [CrossRef]
- Arévalo-Fester, J.; Briceño, A. Insights into Selective Removal by Dye Adsorption on Hydrophobic vs Multivalent Hydrophilic Functionalized MWCNTs. ACS Omega 2023, 8, 11233–11250. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Wei, X.; Zhang, L.; Dong, S.; Cao, W.; Ma, D.; Ouyang, Y. Pt2CeO2 Heterojunction Supported on Multiwalled Carbon Nanotubes for Robust Electrocatalytic Oxidation of Methanol. Molecules 2023, 28, 2995. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhou, T.; Xia, H.; Zhang, T. Flexible Room-Temperature Ammonia Gas Sensors Based on PANI-MWCNTs/PDMS Film for Breathing Analysis and Food Safety. Nanomaterials 2023, 13, 1158. [Google Scholar] [CrossRef]
- Mathur, P.; Shih, J.-Y.; Li, Y.-J.J.; Hung, T.-F.; Thirumalraj, B.; Ramaraj, S.K.; Jose, R.; Karuppiah, C.; Yang, C.-C. In Situ Metal Organic Framework (ZIF-8) and Mechanofusion-Assisted MWCNT Coating of LiFePO4/C Composite Material for Lithium-Ion Batteries. Batteries 2023, 9, 182. [Google Scholar] [CrossRef]
- Guo, H.; Thirunavukkarasu, N.; Mubarak, S.; Lin, H.; Zhang, C.; Li, Y.; Wu, L. Preparation of Thermoplastic Polyurethane/Multi-Walled Carbon Nanotubes Composite Foam with High Resilience Performance via Fused Filament Fabrication and CO2 Foaming Technique. Polymers 2023, 15, 1535. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Z.; Lin, F.; Zhao, Y.; Hu, Y.; Yang, Q.; Zou, Y.; Zhao, Y.; Yang, R. Research on Temperature-Switched Dopamine Electrochemical Sensor Based on Thermosensitive Polymers and MWCNTs. Polymers 2023, 15, 1465. [Google Scholar] [CrossRef]
Device | Analysis Method | Relevant Literature |
---|---|---|
FE-SEM (field emission scanning electron microscopy) | Surface photography for the structure, size, etc., of a sample | [14] |
AFM (atomic force microscopy) | Photographing the structure and size of a sample in three dimensions | [15] |
Dynamic light scattering (DLS), electrophoretic light scattering (ELS), and laser diffraction (LD) | Identifying and verifying the size and behavior of nanoparticles in liquids | [16] |
Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) | Combining information about the shape and size of nanoparticles with all existing nanocrystal structural analyses | [17] |
High-resolution X-ray diffraction (HR-XRD) and X-ray reflectivity (XRR) | Used to investigate ‘two-dimensional’ nanolayers | [18] |
X-ray fluorescence (XRF) | Analyzing the elemental composition of nanoparticles to evaluate parameters such as doping agent concentration or impurities | [19] |
Nanoparticle tracking analysis (NTA) | Used as a tool in nanotoxicology studies for nanoparticle concentration measurements; it can also be used to investigate whether certain samples can be classified as nanomaterials | [20] |
Title | Main Content | Applicability | Relevant Literature |
---|---|---|---|
Nanomaterials for Drug Delivery and Cancer Therapy | Drug dynamic profiles, custom applications | Drug vector | Nicoletta et al. [27] |
Developing Mg-Gd-Dy-Ag-Zn-Zr Alloy with High Strength via Nano-Precipitation | Mg-10Gd-4Dy-1.5Ag-1Zn-0.5Zr | Metal nanoparticle-based sensors | Xie et al. [28] |
Plant-Derived Exosome-like Nanoparticles for Biomedical Applications and Regenerative Therapy | Plant-derived exosome-like nanoparticles | Biofunctionalization, bioink printing, and microfluidic system | Sarasati et al. [29] |
A Novel Hydro-Thermal Synthesis of Nano-Structured Molybdenum-Iron Intermetallic Alloys at Relatively Low Temperatures | MoFe and MoFe3 intermetallic alloys | Metal nanoparticle-based sensors | El-Geassy et al. [30] |
Enhancing Drought Tolerance in Wheat Cultivars through Nano-ZnO Priming by Improving Leaf Pigments and Antioxidant Activity | ZnO NPs | Biologically viable strategy, metal oxide nanoparticle-based sensors | Abbas et al. [31] |
Construction and Enhanced Efficiency of Bi2MoO6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance | Bi2MoO6/ZnO | Electrochemical sensors, metal oxide nanoparticle-based sensors, photocatalyst | Yan et al. [32] |
Title | Main Content | Applications | Relevant Literature |
---|---|---|---|
The blind men and the filament: understanding structures and functions of microbial nanowires | OmcS, OmcZ | Conducting polymer | Yalcin et al. [39] |
Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction | Pt 3 Ni | Biosensors, pH sensors | Jin et al. [40] |
Macro- and atomic-scale observations of a one-dimensional heterojunction in a nickel and palladium nanowire complex | [Ni(chxn) 2 Br]Br 2 | Metal nanowire-based sensors | Wakizaka et al. [41] |
A biomimetic eye with a hemispherical perovskite nanowire array retina | Mimic photoreceptors in the human retina | Metal nanowire-based sensors | Gu et al. [42] |
Porous carbon nanowire array for surface-enhanced Raman spectroscopy | Porous carbon nanowires | Electrochemical image sensor, nanowire photosensors, a hemispherical image sensor | Chen et al. [43] |
Transmission phase read-out of a large quantum dot in a nanowire interferometer | One-dimensional networks and demonstrated interferometer readings in nanowire-based architectures | Excellent biocompatibility | Borsoi et al. [44] |
Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon | GaAsP single-nanowire solar cell, energy bandgap | Viable tool for parity read-out of future topological qubits | Holm et al. [45] |
Electronically stabilized nanowire growth | Self-assembled metal iridium nanowires grown on the surface of germanium (001) | Single-nanowire solar cells | Mocking et al. [46] |
Micro-scale fusion in dense relativistic nanowire array plasmas | A string-level pulse of a small ultrafast laser, plasma | Nanowire-based electrochemical sensors | Curtis et al. [47] |
Anomalous high capacitance in a coaxial single nanowire capacitor | Coaxial asymmetric Cu–Cu 2 OC structure | Ion-tracked polycarbonate | Liu et al. [48] |
Title | Main Content | Applications | Relevant Literature |
---|---|---|---|
Visible Surface Plasmon Modes in Single Bi2Te3 Nanoplate | Bi2Te3 nanoplate | Metal nanoplate-based sensors | Meng et al. [53] |
Surface-Plasmon-Mediated Programmable Optical Nanofabrication of an Oriented Silver Nanoplate | Silver nanoplate | Thermoelectric sensors | Bin et al. [54] |
Layered Bi2Se3 Nanoplate/Polyvinylidene Fluoride Composite Based n-type Thermoelectric Fabrics | Bi2Se3 nanoplate/polyvinylidene fluoride composite | Metal nanoplate-based sensors | Chao et al. [55] |
Norbert F. S. Enhancing Nanoparticle Electrodynamics with Gold Nanoplate Mirrors | Gold nanoplate mirrors | Metal nanoplate-based sensors | Zijie et al. [56] |
Gated Hall Effect of Nanoplate Devices Reveals Surface-State-Induced Surface Inversion in Iron Pyrite Semiconductor | Iron pyrite semiconductor | Nanoplate-based electrochemical sensors | Dong et al. [57] |
Electrochemical Transparency of Graphene | Graphene | Optical biosensing, environmental sensing | Du et al. [58] |
Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices | Graphene | Nanoplate-based electrochemical sensors | Qiaoliang et al. [59] |
A Green Voltammetric Determination of Molnupiravir Using a Disposable Screen-Printed Reduced Graphene Oxide Electrode: Application for Pharmaceutical Dosage and Biological Fluid Forms | Reduced Graphene Oxide | Electrochemical sensors | Nabil et al. [60] |
Raman Radiation Patterns of Graphene | Graphene | Nanoplate-based electrochemical sensors | Harald et al. [61] |
Electronic Properties of Nanodiamond Decorated Graphene | Graphene | Semiconducting nanoplate-based sensors | Yu et al. [62] |
Controlled Growth of Semiconducting Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators | Graphene | Graphene−TMD bilayer heterostructure-based photodetectors | Brijesh et al. [63] |
Hybrid Heterostructures to Generate Long-Lived and Mobile Photocarriers in Graphene | Graphene | Electrochemical sensors | Pavel et al. [64] |
Highly Deformable Graphene/Poly(3,4-ethylenedioxythiophene):Poly(styrene Sulfonate) Hydrogel Composite Film for Stretchable Supercapacitors | Graphene/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) hydrogel composite film | Polymeric and graphene-based sensors, capacitive pressure sensor | Wen et al. [65] |
Heil Modeling Graphene–Polymer Heterostructure MEMS Membranes with the Föppl–von Kármán Equations | Graphene–polymer heterostructure MEMS membranes | Electrochemical energy storage | Katherine et al. [66] |
Direct-Chemical Vapor Deposition-Enabled Graphene for Emerging Energy Storage: Versatility, Essentiality, and Possibility | Graphene | Energy storage | Zixiong et al. [67] |
Ultrafast Terahertz Self-Induced Absorption and Phase Modulation on a Graphene-Based Thin Film Absorber | Graphene-based thin-film absorber | Terahertz radiation | Anastasios et al. [68] |
Graphene Hydrogel as a Porous Scaffold for Cartilage Regeneration | Graphene | Biopolymers, scaffolds | Chengqi et al. [69] |
Mesoscopic Klein-Schwinger effect in graphene | Graphene | Nanoplate-based electrochemical sensors | Schmitt et al. [70] |
Observation of hydrodynamic plasmons and energy waves in graphene | Graphene | Nanoplate-based electrochemical sensors | Zhao et al. [71] |
Unexpectedly efficient ion desorption of graphene-based materials | Graphene | High-efficiency desorption, extraction, and concentration of ions with potential applications | Xia et al. [72] |
Enhanced superconductivity in spin–orbit proximitized bilayer graphene | Spin–orbit proximitized bilayer graphene | Nanoplate-based electrochemical sensors | Zhang et al. [73] |
Title | Main Content | Applications | Relevant Literature |
---|---|---|---|
Investigating valley-dependent current generation due to asymmetric energy dispersion for charge-transfer from a quantum dot to single-walled carbon nanotube | Single-walled carbon nanotube | SWCNT-based nano electronic circuits | Charoenpakdee et al. [80] |
Encapsulation of an anticancer drug Isatin inside a host nano-vehicle SWCNT: a molecular dynamics simulation | Single-walled carbon nanotube | SWCNT-based drug delivery cargo systems | Dehaghani et al. [81] |
Revealing the effect of electrocatalytic performance boost during hydrogen evolution reaction on free-standing SWCNT film electrode | Single-walled carbon nanotube | SWCNT-based nano electrochemical sensors | Kordek et al. [82] |
Heat diffusion-related damping process in a highly precise coarse-grained model for nonlinear motion of SWCNT | Single-walled carbon nanotube | Heat diffusion | Koh et al. [83] |
Long-lived electronic spin qubits in single-walled carbon nanotubes | Single-walled carbon nanotube | SWCNT-based nano electrochemical sensors | Chen et al. [84] |
High Thermoelectric and Flexible PEDOT/SWCNT/BC Nanoporous Films Derived from Aerogels | PEDOT/SWCNT/BC | SWCNT-based thermoelectric sensors | Fang et al. [85] |
Large-Scale Production of PMMA/SWCNT Composites Based on SWCNT Modified with PMMA | PMMA/SWCNT | Covalent functionalization | Robin et al. [86] |
Anisotropic Polyaniline/SWCNT Composite Films Prepared by in Situ Electropolymerization on Highly Oriented Polyethylene for High-Efficiency Ammonia Sensor | Polyaniline/SWCNT | Anisotropic polyaniline/SWCNT composite-based high-efficiency ammonia sensor | Tingcong et al. [87] |
Title | Main Content | Applications | Relevant Literature |
---|---|---|---|
DWCNT-Doped Silica Gel Exhibiting Both Ionic and Electronic Conductivities | Double-walled carbon nanotube | DWCNT-based nano electronic conductive sensors | Benjamin et al. [94] |
Efficient Inner-to-Outer Wall Energy Transfer in Highly Pure Double-Wall Carbon Nanotubes Revealed by Detailed Spectroscopy | Double-walled carbon nanotube | DWCNT-based nano electrochemical sensors | Maksiem et al. [95] |
Composites of Double-Walled Carbon Nanotubes with bis-Quaterthiophene-Fluorenone Conjugated Oligomer: Spectroelectrochemical and Photovoltaic Properties | Double-walled carbon nanotube | DWCNT-based nano electrochemical sensors | Lionel et al. [96] |
Experimental Evidence of a Mechanical Coupling between Layers in an Individual Double-Walled Carbon Nanotube | Double-walled carbon nanotube | DWCNT-based nano electrochemical sensors | Levshov et al. [97] |
Field-Effect Characteristics and Screening in Double-Walled Carbon Nanotube Field-Effect Transistors | Double-walled carbon nanotube | DWCNT-based field-effect transistors | Wang et al. [98] |
Nonlinear Vibration of Double-Walled Carbon Nanotubes Subjected to Mechanical Impact and Embedded on Winkler–Pasternak Foundation | Double-walled carbon nanotube | DWCNT-based flexible pressure sensor, capacitive pressure-sensing, nanosensors | Herisanu et al. [99] |
Title | Main Content | Applications | Relevant Literature |
---|---|---|---|
Pt2CeO2 Heterojunction Supported on Multi walled Carbon Nanotubes for Robust Electrocatalytic Oxidation of Methanol | Multi-walled carbon nanotubes | MWCNT-based electrochemical sensors | Yang et al. [106] |
Flexible Room-Temperature Ammonia Gas Sensors Based on PANI-MWCNTs/PDMS Film for Breathing Analysis and Food Safety | PANI-MWCNTs/PDMS | MWCNT-based ammonia gas sensors | Zhu et al. [107] |
In Situ Metal Organic Framework (ZIF-8) and Mechanofusion-Assisted MWCNT Coating of LiFePO4/C Composite Material for Lithium-Ion Batteries | MWCNT coating of LiFePO4/C composite material | MWCNT-based electrochemical sensors | Mathur et al. [108] |
Preparation of Thermoplastic Polyurethane/Multi-Walled Carbon Nanotubes Composite Foam with High Resilience Performance via Fused Filament Fabrication and CO2 Foaming Technique | Thermoplastic polyurethane/multi-walled carbon nanotube composite | Thermoplastic polyurethane/MWCNT composite foam-based wearable flexible sensors | Guo et al. [109] |
Research on Temperature-Switched Dopamine Electrochemical Sensor Based on Thermosensitive Polymers and MWCNTs | Multi-walled carbon nanotubes | Thermosensitive polymer and MWCNT-based temperature-switched dopamine electrochemical sensor | Wang et al. [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.-R. Characteristics and Applicability Analysis of Nanomorphological Structures for Chemosensors: A Systematic Review. Chemosensors 2023, 11, 537. https://doi.org/10.3390/chemosensors11100537
Han H-R. Characteristics and Applicability Analysis of Nanomorphological Structures for Chemosensors: A Systematic Review. Chemosensors. 2023; 11(10):537. https://doi.org/10.3390/chemosensors11100537
Chicago/Turabian StyleHan, Hye-Ree. 2023. "Characteristics and Applicability Analysis of Nanomorphological Structures for Chemosensors: A Systematic Review" Chemosensors 11, no. 10: 537. https://doi.org/10.3390/chemosensors11100537
APA StyleHan, H. -R. (2023). Characteristics and Applicability Analysis of Nanomorphological Structures for Chemosensors: A Systematic Review. Chemosensors, 11(10), 537. https://doi.org/10.3390/chemosensors11100537