An Electrochemical Immunosensor with PEDOT: PSS/MWCNTs-COOH Nanocomposites as a Modified Working Electrode Material for Detecting Tau-441
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials and Reagents
2.2. Apparatus
2.3. Preparation of the Nanocomposite
2.4. Fabrication of the Immunosensor
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of PEDOT: PSS/MWCNTs-COOH Nano-Composite
3.2. Electrochemical Characterization of the Sensor
3.3. Optimization of Experimental Conditions
3.4. Analytical Performance
3.5. Reproducibility, Specificity, and Stability of the Sensor
3.6. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s Dement. 2016, 12, 292–323. [Google Scholar] [CrossRef]
- Sexton, C.; Solis, M.; Aharon-Peretz, J.; Alexopoulos, P.; Apostolova, L.G.; Bayen, E.; Birkenhager, B.; Cappa, S.; Constantinidou, F.; Fortea, J.; et al. Alzheimer’s disease research progress in the Mediterranean region: The Alzheimer’s Association International Conference Satellite Symposium. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2022, 18, 1957–1968. [Google Scholar] [CrossRef] [PubMed]
- 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023, 19, 1598–1695. [CrossRef]
- Karaboga, M.N.S.; Sezgintürk, M.K. Analysis of Tau-441 protein in clinical samples using rGO/AuNP nanocomposite-supported disposable impedimetric neuro-biosensing platform: Towards Alzheimer’s disease detection. Talanta 2020, 219, 121257. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.J.; Barthelemy, N.R.; Benzinger, T.L.; Bollinger, J.G.; Fagan, A.M.; Gordon, B.A.; Hansson, O.; Holtzman, D.M.; Horie, K.; Li, M.; et al. Mass spectrometry measures of plasma Aβ, tau and P-tau isoforms’ relationship to amyloid PET, tau PET, and clinical stage of Alzheimer’s disease. Alzheimer’s Dement. 2020, 16, e037518. [Google Scholar] [CrossRef]
- Galvão, F.; Grokoski, K.C.; da Silva, B.B.; Lamers, M.L.; Siqueira, I.R. The amyloid precursor protein (APP) processing as a biological link between Alzheimer’s disease and cancer. Ageing Res. Rev. 2019, 49, 83–91. [Google Scholar] [CrossRef]
- Pimplikar, S.W. Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2009, 41, 1261–1268. [Google Scholar] [CrossRef]
- Muralidar, S.; Ambi, S.V.; Sekaran, S.; Thirumalai, D.; Palaniappan, B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol. 2020, 163, 1599–1617. [Google Scholar] [CrossRef]
- 2021 Alzheimer’s disease facts and figures. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2021, 17, 327–406. [CrossRef]
- Zhao, X.; Zeng, W.; Xu, H.; Sun, Z.; Hu, Y.; Peng, B.; McBride, J.D.; Duan, J.; Deng, J.; Zhang, B.; et al. A microtubule stabilizer ameliorates protein pathogenesis and neurodegeneration in mouse models of repetitive traumatic brain injury. Sci. Transl. Med. 2023, 15, eabo6889. [Google Scholar] [CrossRef]
- Lo, C.H. Recent advances in cellular biosensor technology to investigate tau oligomerization. Bioeng. Transl. Med. 2021, 6, e10231. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne-Kam, D.; Ulfat, A.K.; Hervé, V.; Vu, T.-M.; Brouillette, J. Implication of tau propagation on neurodegeneration in Alzheimer’s disease. Front. Neurosci. 2023, 17, 1219299. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Angnes, L.; Sattarahmady, N.; Negahdary, M.; Heli, H. Electrochemical Immunosensors Developed for Amyloid-Beta and Tau Proteins, Leading Biomarkers of Alzheimer’s Disease. Biosensors 2023, 13, 742. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.J.; Barthelemy, N.R.; Benzinger, T.L.; Bollinger, J.G.; Fagan, A.M.; Gordon, B.A.; Hansson, O.; Holtzman, D.M.; Horie, K.; Li, M.; et al. CSF and blood plasma mass spectrometry measures of Aβ, tau, and NfL species and longitudinal relationship to preclinical and clinical staging of amyloid and tau aggregation and clinical stage of Alzheimer’s disease. Alzheimer’s Dement. 2021, 17, e050711. [Google Scholar] [CrossRef]
- Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Abnous, K. A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens. Bioelectron. 2016, 85, 509–514. [Google Scholar] [CrossRef]
- Reddy, K.K.; Bandal, H.; Satyanarayana, M.; Goud, K.Y.; Gobi, K.V.; Jayaramudu, T.; Amalraj, J.; Kim, H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. Adv. Sci. 2020, 7, 1902980. [Google Scholar] [CrossRef]
- Khan, M.; Liu, X.; Tang, Y.; Liu, X. Ultra-sensitive electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine with poly (L-arginine)/graphene wrapped Au nanoparticles modified electrode. Biosens. Bioelectron. 2018, 117, 508–514. [Google Scholar] [CrossRef]
- Chen, J.; Song, N.; Zhang, N.; Gao, Z.; Wu, D.; Hongmin, M.; Ren, X.; Wei, Q. Smartphone-controlled portable photoelectrochemical immunosensor for point-of-care testing of carcinoembryonic antigen. Chem. Eng. J. 2023, 473, 145276. [Google Scholar] [CrossRef]
- Zhou, T.; Ji, W.; Fan, H.; Zhang, L.; Wan, X.; Fan, Z.; Liu, G.L.; Peng, Q.; Huang, L. A Metasurface Plasmonic Analysis Platform Combined with Gold Nanoparticles for Ultrasensitive Quantitative Detection of Small Molecules. Biosensors 2023, 13, 681. [Google Scholar] [CrossRef]
- Wu, Y.; Fu, Y.; Guo, J.; Guo, J. Single-molecule immunoassay technology: Recent advances. Talanta 2023, 265, 124903. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Xiang, S.; Hu, H.; Zhan, Y.; Yu, Y.; Zhang, J.; Wu, P.; Liu, F.Y.; Kai, T.; et al. Recent advances in immunoassay technologies for the detection of human coronavirus infections. Front. Cell. Infect. Microbiol. 2023, 12, 1040248. [Google Scholar] [CrossRef] [PubMed]
- Scarano, S.; Lisi, S.; Ravelet, C.; Peyrin, E.; Minunni, M. Detecting Alzheimer’s disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms—A critical review. Anal. Chim. Acta 2016, 940, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, D.A.; Klaver, A.C.; Coffey, M.P. ELISA measurement of specific antibodies to phosphorylated tau in intravenous immunoglobulin products. Int. Immunopharmacol. 2015, 28, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Špringer, T.; Hemmerová, E.; Finocchiaro, G.; Krištofiková, Z.; Vyhnálek, M.; Homola, J. Surface plasmon resonance biosensor for the detection of tau-amyloid β complex. Sens. Actuators B Chem. 2020, 316, 128146. [Google Scholar] [CrossRef]
- Rezabakhsh, A.; Rahbarghazi, R.; Fathi, F. Surface plasmon resonance biosensors for detection of Alzheimer’s biomarkers; an effective step in early and accurate diagnosis. Biosens. Bioelectron. 2020, 167, 112511. [Google Scholar] [CrossRef] [PubMed]
- Nangare, S.; Patil, P. Poly(allylamine) coated layer-by-layer assembly decorated 2D carbon backbone for highly sensitive and selective detection of Tau-441 using surface plasmon resonance biosensor. Anal. Chim. Acta 2023, 1271, 341474. [Google Scholar] [CrossRef] [PubMed]
- Razzino, C.A.; Serafín, V.; Gamella, M.; Pedrero, M.; Montero-Calle, A.; Barderas, R.; Calero, M.; Lobo, A.O.; Yáñez-Sedeño, P.; Campuzano, S.; et al. An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosens. Bioelectron. 2020, 163, 112238. [Google Scholar] [CrossRef]
- Song, Y.; Xu, T.; Zhu, Q.; Zhang, X. Integrated individually electrochemical array for simultaneously detecting multiple Alzheimer’s biomarkers. Biosens. Bioelectron. 2020, 162, 112253. [Google Scholar] [CrossRef]
- Wong, A.; Santos, A.M.; Fatibello-Filho, O. Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film. Sens. Actuators B Chem. 2018, 255, 2264–2273. [Google Scholar] [CrossRef]
- Yola, B.B.; Karaman, C.; Özcan, N.; Atar, N.; Polat, I.; Yola, M.L. Electrochemical Tau Protein Immunosensor Based on MnS/GO/PANI and Magnetite-incorporated Gold Nanoparticles. Electroanalysis 2022, 34, 1519–1528. [Google Scholar] [CrossRef]
- Ben Hassine, A.; Raouafi, N.; Moreira, F.T. Novel biomimetic Prussian blue nanocubes-based biosensor for Tau-441 protein detection. J. Pharm. Biomed. Anal. 2023, 226, 115251. [Google Scholar] [CrossRef] [PubMed]
- Keshmiri, N.; Hoseini, A.H.A.; Najmi, P.; Liu, J.; Milani, A.S.; Arjmand, M. Highly conductive polystyrene/carbon nanotube/PEDOT:PSS nanocomposite with segregated structure for electromagnetic interference shielding. Carbon 2023, 212, 118104. [Google Scholar] [CrossRef]
- Hou, S.; Chen, H.; Lv, D.; Li, W.; Liu, X.; Zhang, Q.; Yu, X.; Han, Y. Highly Conductive Inkjet-Printed PEDOT:PSS Film under Cyclic Stretching. ACS Appl. Mater. Interfaces 2023, 15, 28503–28515. [Google Scholar] [CrossRef]
- Okpalugo, T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, G.; Yang, X. Electrochemical immunosensor based on Fe3O4/MWCNTs-COOH/AuNPs nanocomposites for trace liver cancer marker alpha-fetoprotein detection. Talanta 2023, 259, 124492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, G.; Wang, H.; Li, X. Template-Directed In Situ Polymerization Preparation of Nanocomposites of PEDOT:PSS-Coated Multi-Walled Carbon Nanotubes with Enhanced Thermoelectric Property. Chem. Asian J. 2015, 10, 149–153. [Google Scholar] [CrossRef]
- Lien, S.-Y.; Lin, P.-C.; Chen, W.-R.; Liu, C.-H.; Lee, K.-W.; Wang, N.-F.; Huang, C.-J. The Mechanism of PEDOT: PSS Films with Organic Additives. Crystals 2022, 12, 1109. [Google Scholar] [CrossRef]
- Sayyad, P.W.; Sontakke, K.S.; Farooqui, A.A.; Shirsat, S.M.; Tsai, M.-L.; Shirsat, M.D. A novel three-dimensional electrochemical Cd(II) biosensor based on l-glutathione capped poly(3,4-ethylenedioxythiophene):polystyrene sulfonate/carboxylated multiwall CNT network. J. Sci. Adv. Mater. Devices 2022, 7, 100504. [Google Scholar] [CrossRef]
- Wu, R.; Xu, X.; Li, N.; Liu, C.; Chen, X.; Chen, Z.; Lan, X.; Jiang, Q.; Xu, J.; Jiang, F.; et al. Ultralong-Cycling and Free-Standing Carboxylated Graphene/PEDOT:PSS Films as Electrode for Flexible Supercapacitors. Int. J. Energy Res. 2023, 2023, 5695694. [Google Scholar] [CrossRef]
- Chen, T.; Chen, Q.; Liu, G.; Chen, G. High cycling stability and well printability poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/multi-walled carbon nanotube nanocomposites via in situ polymerization applied on electrochromic display. J. Appl. Polym. Sci. 2018, 135, 45943. [Google Scholar] [CrossRef]
- Mahato, K.; Purohit, B.; Bhardwaj, K.; Jaiswal, A.; Chandra, P. Novel electrochemical biosensor for serotonin detection based on gold nanorattles decorated reduced graphene oxide in biological fluids and in vitro model. Biosens. Bioelectron. 2019, 142, 111502. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hu, J.; Mao, Z.; Koh, K.; Chen, H. Loach mucus-like guanosine-based hydrogel as an antifouling coating for electrochemical detection of tau protein. Sens. Actuators B Chem. 2022, 370, 132419. [Google Scholar] [CrossRef]
- Toyos-Rodríguez, C.; Llamedo-González, A.; Pando, D.; García, S.; García, J.; García-Alonso, F.; de la Escosura-Muñiz, A. Novel magnetic beads with improved performance for Alzheimer’s disease biomarker detection. Microchem. J. 2022, 175, 107211. [Google Scholar] [CrossRef]
- Toyos-Rodríguez, C.; García-Alonso, F.J.; de la Escosura-Muñiz, A. Towards the maximization of nanochannels blockage through antibody-antigen charge control: Application for the detection of an Alzheimer’s disease biomarker. Sens. Actuators B Chem. 2023, 380, 133394. [Google Scholar] [CrossRef]
- Shiravandi, A.; Yari, F.; Tofigh, N.; Ashtiani, M.K.; Shahpasand, K.; Ghanian, M.-H.; Shekari, F.; Faridbod, F. Earlier Detection of Alzheimer’s Disease Based on a Novel Biomarker cis P-tau by a Label-Free Electrochemical Immunosensor. Biosensors 2022, 12, 879. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Hu, J.; Zhu, H.; Chen, Q.; Koh, K.; Chen, H.; Xu, X.-H. A facile and effective immunoassay for sensitive detection of phosphorylated tau: The role of flower-shaped TiO2 in specificity and signal amplification. Sens. Actuators B Chem. 2022, 366, 132015. [Google Scholar] [CrossRef]
Biosensor | Electrochemical Techniques | LOD | Linear Range | Ref. |
---|---|---|---|---|
PDDA/G4 hydrogel | EIS, CV, DPV | 1.31 pg mL−1 | 0.01–100 ng mL−1 | [42] |
MB@NAV | i-t | 63 ng mL−1 | 50–750 ng mL−1 | [43] |
ITO/PET | DPV | 4.3 ng mL−1 | 5–100 ng mL−1 | [44] |
Gold electrodes | EIS, CV, DPV | 0.05 pM | 0.05–3000 pM | [45] |
Flower-shaped TiO2 | EIS | 1.774 pg mL−1 | 1–200 ng mL−1 | [46] |
PEDOT:PSS/MWCNTs-COOH | CV, DPV | 0.0074 ng mL−1 | 0.00001–50 μg mL−1 | This work |
Sample | Added Amount (ng mL−1) | Found Amount (ng mL−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 0.01 | 0.009896 | 98.96 | 5.37 |
2 | 0.1 | 0.09848 | 98.48 | 2.12 |
3 | 1 | 1.10076 | 100.76 | 2.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Liu, X.; Wei, S.; Zhao, F.; Chen, Z.; Xiao, H. An Electrochemical Immunosensor with PEDOT: PSS/MWCNTs-COOH Nanocomposites as a Modified Working Electrode Material for Detecting Tau-441. Chemosensors 2023, 11, 573. https://doi.org/10.3390/chemosensors11120573
Ren H, Liu X, Wei S, Zhao F, Chen Z, Xiao H. An Electrochemical Immunosensor with PEDOT: PSS/MWCNTs-COOH Nanocomposites as a Modified Working Electrode Material for Detecting Tau-441. Chemosensors. 2023; 11(12):573. https://doi.org/10.3390/chemosensors11120573
Chicago/Turabian StyleRen, Hanwen, Xiansu Liu, Shanshan Wei, Feijun Zhao, Zhencheng Chen, and Haolin Xiao. 2023. "An Electrochemical Immunosensor with PEDOT: PSS/MWCNTs-COOH Nanocomposites as a Modified Working Electrode Material for Detecting Tau-441" Chemosensors 11, no. 12: 573. https://doi.org/10.3390/chemosensors11120573
APA StyleRen, H., Liu, X., Wei, S., Zhao, F., Chen, Z., & Xiao, H. (2023). An Electrochemical Immunosensor with PEDOT: PSS/MWCNTs-COOH Nanocomposites as a Modified Working Electrode Material for Detecting Tau-441. Chemosensors, 11(12), 573. https://doi.org/10.3390/chemosensors11120573