Rapid and Sensitive On-Site Detection of Fipronil in Foods Using Evanescent Wave Fluorescent Immunosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Immunogen and Coating Antigen
2.3. Generation of Monoclonal Anti-FIP Antibodies
2.4. Indirect Competitive ELISA (icELISA)
2.5. Preparation of the Functionalized Fiber Bioprobe
2.6. Instrument: Evanescent Wave Fluorescence Detection Platform
2.7. FIP Detection Using an Evanescent Wave Fluorescence Biosensor
2.8. Detection of FIP in Food
3. Results
3.1. Synthesis of Immunogen and Coating Antigen
3.2. Identification and Characteristics of the Monoclonal Antibodies
3.3. Immunoassay Mechanism of FIP Using an Evanescent Wave Fluorescence Biosensor
3.4. Optimization of Detection Conditions
3.5. Quantitative Immunoassay of FIP
3.6. Detection of FIP in Milk and Water Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Martínez, M.A.; Wu, Q.; Ares, I.; Martínez-Larrañaga, M.R.; Anadón, A.; Yuan, Z. Fipronil insecticide toxicology: Oxidative stress and metabolism. Crit. Rev. Toxicol. 2016, 46, 876–899. [Google Scholar] [CrossRef] [PubMed]
- Vasylieva, N.; Ahn, K.C.; Barnych, B.; Gee, S.J.; Hammock, B.D. Development of an Immunoassay for the Detection of the Phenylpyrazole Insecticide Fipronil. Environ. Sci. Technol. 2015, 49, 10038–10047. [Google Scholar] [CrossRef] [PubMed]
- Hainzl, D.; Casida, J.E. Fipronil insecticide: Novel photochemical desulfinylation with retention of neurotoxicity. Proc. Natl. Acad. Sci. USA 1996, 93, 12764–12767. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.S.; Sharma, R.; Singh, S.K.; Singh, D.K. A comprehensive review of environmental fate and degradation of fipronil and its toxic metabolites. Environ. Res. 2021, 199, 111316. [Google Scholar] [CrossRef] [PubMed]
- Trinh, K.H.; Kadam, U.S.; Rampogu, S.; Cho, Y.; Yang, K.-A.; Kang, C.H.; Lee, K.-W.; Lee, K.O.; Chung, W.S.; Hong, J.C. Development of novel fluorescence-based and label-free noncanonical G4-quadruplex-like DNA biosensor for facile, specific, and ultrasensitive detection of fipronil. J. Hazard. Mater. 2022, 5, 127939. [Google Scholar] [CrossRef] [PubMed]
- Ratra, G.S.; Kamita, S.G.; Casida, J.E. Role of human GABA(A) receptor beta3 subunit in insecticide toxicity. Toxicol. Appl. Pharmacol. 2001, 172, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Daim, M.M.; Dessouki, A.A.; Abdel-Rahman, H.G.; Eltaysh, R.; Alkahtani, S. Hepatorenal protective effects of taurine and N-acetylcysteine against fipronilinduced injuries: The antioxidant status and apoptotic markers expression in rats. Sci. Total Environ. 2019, 650, 2063–2073. [Google Scholar] [CrossRef]
- Song, X.; Wang, X.; Liao, G.; Pan, Y.; Qian, Y.; Qiu, J. Toxic effects of fipronil and its metabolites on PC12 cell metabolism. Ecotoxic. Environ. Saf. 2021, 224, 112677. [Google Scholar] [CrossRef]
- Shimada, S.; Cutting, G.; Uhl, G.R. gamma-Aminobutyric acid A or C receptor? gamma-Aminobutyric acid rho 1 receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive gamma-aminobutyric acid responses in Xenopus oocytes. Mol. Pharmacol. 1992, 41, 683–687. [Google Scholar]
- Environmental Protection Agency (EPA), Fipronil; Tolerances for Residues, 2017, 180.517. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-E/part-180/subpart-C/section-180.517#p-180.517(a) (accessed on 23 October 2023).
- GB 2763-2021; National Food Safety Standard, Maximum Residue Limits for Pesticides in Food. National Health Commission of the People's Republic of China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Administration for Market Regulation: Beijing, China, 2021; pp. 124–125.
- Food and Agriculture Organization of the United Nations (FAO), Pesticides Use. 2019. Available online: http://www.fao.org/faostat/en/#data/RP/visualize (accessed on 23 October 2023).
- Stafford, E.G.; Tell, L.A.; Lin, Z.; Davis, J.L.; Vickroy, T.W.; Riviere, J.E.; Baynes, R.E. Consequences of fipronil exposure in egg-laying hens. J. Am. Vet. Med. Assoc. 2018, 253, 57–60. [Google Scholar] [CrossRef]
- EFSA, European Food Safety Authority; Reich, H.; Triacchini, G.A. Occurrence of residues of fipronil and other acaricides in chicken eggs and poultry muscle/fat. EFSA J. 2018, 16, e05164. [Google Scholar] [PubMed]
- Bichon, E.; Richard, C.; Le Bizec, B. Development and validation of a method for fipronil residue determination in ovine plasma using 96-well plate solid-phase extraction and gas chromatography-tandem mass spectrometry. J. Chromatogr. A 2008, 1201, 91–99. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Ma, W.; Guo, Z.; Li, X.; Song, S.; Tang, H.; Li, X.; Zhang, Q. Development of precise GC-EI-MS method to determine the residual fipronil and its metabolites in chicken egg. Food Chem. 2019, 281, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Bai, Y.; Jiang, H.; Zhang, Y.; Li, Y.; Duan, C.; Wen, K.; Yu, X.; Wang, Z. Broad-specificity antibody profiled by hapten prediction and its application in immunoassay for fipronil and major metabolites. J. Hazard. Mater. 2023, 441, 129931. [Google Scholar] [CrossRef]
- Wang, K.; Vasylieva, N.; Wan, D.; Eads, D.A.; Yang, J.; Tretten, T.; Barnych, B.; Li, J.; Li, Q.X.; Gee, S.J.; et al. Quantitative detection of fipronil and fipronil-sulfone in sera of black-tailed prairie dogs and rats after oral exposure to fipronil by camel single-domain antibody-based immunoassays. Anal. Chem. 2019, 91, 1532–1540. [Google Scholar] [CrossRef]
- Zhou, X.H.; Zhang, C.Q.; Zhang, X.; Sun, C.; Li, J.; Xiao, X.; Ouyang, Q.; Wang, Y. Determination of fipronil and its metabolites in eggs by indirect competitive ELISA and lateral-flow immunochromatographic strip. Biomed. Environ. Sci. 2020, 33, 731–734. [Google Scholar]
- Song, D.; Yang, R.; Wang, H.; Fang, S.; Liu, Y.; Long, F.; Zhu, A. Development of dual-color total internal reflection fluorescence biosensor for simultaneous quantitation of two small molecules and their affinity constants with antibodies. Biosens. Bioelectron. 2019, 126, 824–830. [Google Scholar] [CrossRef]
- Wei, Y.; Ren, Z.; Liu, C.; Jiang, T.; Wang, R.; Shi, C.; Liu, C. All-fiber biological detection microfluidic chip based on space division and wavelength division multiplexing technologies. Lab Chip 2022, 22, 4501. [Google Scholar] [CrossRef]
- Long, F.; He, M.; Zhu, A.; Shi, H. Portable optical immunosensor for highly sensitive detection of microcystin-LR in water samples. Biosens. Bioelectron. 2009, 24, 2346–2351. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Lu, Q.; Tian, J.; Kong, D.; Luo, J.; Yang, M. Development of a sensitive fluorescent immunoassay based on fluorescent nanoparticles labeling for the quantitation of fipronil in edible flowers. LWT 2023, 184, 115113. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Z.; Guo, L.; Xu, X.; Liu, L.; Kuang, H.; Xu, C. Lateral flow immunoassay for the simultaneous detection of fipronil and its metabolites in food samples. Food Chem. 2021, 356, 129710. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; White, M.I. Optofluidic microsystems for chemical and biological analysis. Nat. Photon. 2011, 5, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Song, D.; Zhuo, Y.; Chen, Y.; Zhu, A.; Long, F. Simultaneous and sensitive determination of Escherichia coli O157:H7 and Salmonella Typhimurium using evanescent wave dual-color fluorescence aptasensor and fiber nanoprobe through combining the micro/nano size effect and time-resolved effect. Biosens. Bioelectron. 2021, 185, 113288. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wang, P.; Gu, M.; Xue, J.; Wu, X. Human health risk assessment of pesticide residues in honeysuckle samples from different planting bases in China. Sci. Total Environ. 2021, 759, 142747. [Google Scholar] [CrossRef]
Pesticide | IC50 (μg/L) | Molar Cross-Reactivity (%) |
---|---|---|
Fipronil | 4.02 | 100.00 |
Fipronil desulfinyl | 43.64 | 9.21 |
Fipronil sulfide | 18.73 | 21.46 |
Fipronil sulfone | 28.68 | 14.02 |
Carbendazim | >1000 | <10−3 |
Carbofuran | >1000 | <10−3 |
Acetamiprid | >1000 | <10−3 |
Carbaryl | >1000 | <10−3 |
Paraquat | >1000 | <10−3 |
Samples | Spiked Conc. (µg/L) | Detected Conc. (µg/L) | Recovery (%) | RSD (%) | |
---|---|---|---|---|---|
Milk | #1 | 20.0 | 18.8 | 94.0 | 7.4 |
40.0 | 39.5 | 98.7 | 0.7 | ||
#2 | 20.0 | 21.1 | 105.4 | 8.2 | |
40.0 | 40.4 | 101.1 | 4.9 | ||
#3 | 20.0 | 23.7 | 118.3 | 0.6 | |
40.0 | 40.6 | 101.6 | 3.7 | ||
Drinking water | #1 | 1.0 | 0.92 | 92.0 | 5.2 |
5.0 | 4.92 | 98.4 | 3.2 | ||
#2 | 1.0 | 1.02 | 102 | 6.5 | |
5.0 | 5.23 | 104.6 | 4.8 | ||
#3 | 1.0 | 1.11 | 111 | 0.5 | |
5.0 | 5.26 | 105.2 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xu, W.; Liu, J.; Zhang, E.; Li, H.; Zhang, Y.; Zhang, J.; Li, C.; Zhang, X. Rapid and Sensitive On-Site Detection of Fipronil in Foods Using Evanescent Wave Fluorescent Immunosensor. Chemosensors 2023, 11, 578. https://doi.org/10.3390/chemosensors11120578
Li Y, Xu W, Liu J, Zhang E, Li H, Zhang Y, Zhang J, Li C, Zhang X. Rapid and Sensitive On-Site Detection of Fipronil in Foods Using Evanescent Wave Fluorescent Immunosensor. Chemosensors. 2023; 11(12):578. https://doi.org/10.3390/chemosensors11120578
Chicago/Turabian StyleLi, Yujing, Wenjuan Xu, Jingjing Liu, Erjing Zhang, Hejie Li, Yan Zhang, Jing Zhang, Chunsheng Li, and Xiaoguang Zhang. 2023. "Rapid and Sensitive On-Site Detection of Fipronil in Foods Using Evanescent Wave Fluorescent Immunosensor" Chemosensors 11, no. 12: 578. https://doi.org/10.3390/chemosensors11120578
APA StyleLi, Y., Xu, W., Liu, J., Zhang, E., Li, H., Zhang, Y., Zhang, J., Li, C., & Zhang, X. (2023). Rapid and Sensitive On-Site Detection of Fipronil in Foods Using Evanescent Wave Fluorescent Immunosensor. Chemosensors, 11(12), 578. https://doi.org/10.3390/chemosensors11120578