Electrochemical and Optical Properties of Fluorine Doped Tin Oxide Modified by ZnO Nanorods and Polydopamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of ZnO-PDA Nanostructures
2.3. Assessment of Structure and Electronic Properties of ZnO-PDA Nanostructures
2.4. Evaluation of Optical and Electrochemical Properties of ZnO-PDA Nanostructures
2.5. Electrochemical Impedance Spectroscopy (EIS) Measurements
2.6. Evaluation of Optical and Electrochemical Properties of ZnO-PDA Nanostructures after BSA Incubation
3. Results and Discussion
3.1. Characterisation of ZnO and ZnO-PDA with Electrochemical Impedance Spectroscopy
3.2. Characterisation of ZnO-PDA Interaction with BSA Molecules by Photoluminescence and Photoelectrochemical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- German, N.; Popov, A.; Ramanavicius, A.; Ramanaviciene, A. Development and Practical Application of Glucose Biosensor Based on Dendritic Gold Nanostructures Modified by Conducting Polymers. Biosensors 2022, 12, 641. [Google Scholar] [CrossRef]
- Fedorenko, V.; Viter, R.; Mrówczyński, R.; Damberga, D.; Coy, E.; Iatsunskyi, I. Synthesis and photoluminescence properties of hybrid 1D core–shell structured nanocomposites based on ZnO/polydopamine. RSC Adv. 2020, 10, 29751–29758. [Google Scholar] [CrossRef] [PubMed]
- Dutt, A.; Matsumoto, Y.; Santana-Rodríguez, G.; Ramos, E.; Monroy, B.M.; Salazar, J.S. Surface chemistry and density distribution influence on visible luminescence of silicon quantum dots: An experimental and theoretical approach. Phys. Chem. Chem. Phys. 2017, 19, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Dutt, A.; Santana-Rodríguez, G.; Santoyo-Salazar, J.; Aceves-Mijares, M. Nanocrystalline Si/SiO2 core-shell network with intense white light emission fabricated by hot-wire chemical vapor deposition. Appl. Phys. Lett. 2015, 106, 171912. [Google Scholar] [CrossRef]
- González-Garnica, M.; Galdámez-Martínez, A.; Malagón, F.; Ramos, C.; Santana, G.; Abolhassani, R.; Panda, P.K.; Kaushik, A.; Mishra, Y.K.; Karthik, T.V.; et al. One dimensional Au-ZnO hybrid nanostructures based CO2 detection: Growth mechanism and role of the seed layer on sensing performance. Sens. Actuators B Chem. 2021, 337, 129765. [Google Scholar] [CrossRef]
- Matlou, G.G.; Abrahamse, H. Hybrid Inorganic-Organic Core-Shell Nanodrug Systems in Targeted Photodynamic Therapy of Cancer. Pharmaceutics 2021, 13, 1773. [Google Scholar] [CrossRef] [PubMed]
- Kalambate, P.K.; Dhanjai; Huang, Z.; Li, Y.; Shen, Y.; Xie, M.; Huang, Y.; Srivastava, A.K. Core@shell nanomaterials based sensing devices: A review. TrAC Trends Anal. Chem. 2019, 115, 147–161. [Google Scholar] [CrossRef]
- Lv, X.-W.; Hu, Z.-P.; Chen, L.; Ren, J.-T.; Liu, Y.-P.; Yuan, Z.-Y. Organic–Inorganic Metal Phosphonate-Derived Nitrogen-Doped Core–Shell Ni2P Nanoparticles Supported on Ni Foam for Efficient Hydrogen Evolution Reaction at All pH Values. ACS Sustain. Chem. Eng. 2019, 7, 12770–12778. [Google Scholar] [CrossRef]
- Khodadadi, B.; Bordbar, M.; Nasrollahzadeh, M. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes. J. Colloid Interface Sci. 2017, 490, 1–10. [Google Scholar] [CrossRef]
- Ge, F.; Ye, H.; Li, M.-M.; Zhao, B.-X. Efficient removal of cationic dyes from aqueous solution by polymer-modified magnetic nanoparticles. Chem. Eng. J. 2012, 198-199, 11–17. [Google Scholar] [CrossRef]
- Moustakas, N.; Kontos, A.; Likodimos, V.; Katsaros, F.; Boukos, N.; Tsoutsou, D.; Dimoulas, A.; Romanos, G.; Dionysiou, D.; Falaras, P. Inorganic–organic core–shell titania nanoparticles for efficient visible light activated photocatalysis. Appl. Catal. B Environ. 2012, 130-131, 14–24. [Google Scholar] [CrossRef]
- Li, J.-Y.; Jiang, X.; Lin, L.; Zhou, J.-J.; Xu, G.-S.; Yuan, Y.-P. Improving the photocatalytic performance of polyimide by constructing an inorganic-organic hybrid ZnO-polyimide core–shell structure. J. Mol. Catal. A Chem. 2015, 406, 46–50. [Google Scholar] [CrossRef]
- Tavakoli, S.; Kharaziha, M.; Nemati, S. Polydopamine coated ZnO rod-shaped nanoparticles with noticeable biocompatibility, hemostatic and antibacterial activity. Nano-Struct. Nano-Objects 2021, 25, 100639. [Google Scholar] [CrossRef]
- Fedorenko, V.; Damberga, D.; Grundsteins, K.; Ramanavicius, A.; Ramanavicius, S.; Coy, E.; Iatsunskyi, I.; Viter, R. Application of Polydopamine Functionalized Zinc Oxide for Glucose Biosensor Design. Polymers 2021, 13, 2918. [Google Scholar] [CrossRef] [PubMed]
- Damberga, D.; Fedorenko, V.; Grundšteins, K.; Altundal, Ş.; Šutka, A.; Ramanavičius, A.; Coy, E.; Mrówczyński, R.; Iatsunskyi, I.; Viter, R. Influence of PDA Coating on the Structural, Optical and Surface Properties of ZnO Nanostructures. Nanomaterials 2020, 10, 2438. [Google Scholar] [CrossRef] [PubMed]
- Ramanaviciene, A.; German, N.; Kausaite-Minkstimiene, A.; Voronovic, J.; Kirlyte, J.; Ramanavicius, A. Comparative study of surface plasmon resonance, electrochemical and electroassisted chemiluminescence methods based immunosensor for the determination of antibodies against human growth hormone. Biosens. Bioelectron. 2012, 36, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Valiūnienė, A.; Rekertaitė, A.I.; Ramanavičienė, A.; Mikoliūnaitė, L.; Ramanavičius, A. Fast Fourier transformation electrochemical impedance spectroscopy for the investigation of inactivation of glucose biosensor based on graphite electrode modified by Prussian blue, polypyrrole and glucose oxidase. Colloids Surf. A Physicochem. Eng. Asp. 2017, 532, 165–171. [Google Scholar] [CrossRef]
- Häcker, J.; Danner, C.; Sievert, B.; Biswas, I.; Zhao-Karger, Z.; Wagner, N.; Friedrich, K.A. Investigation of Magnesium–Sulfur Batteries using Electrochemical Impedance Spectroscopy. Electrochim. Acta 2020, 338, 135787. [Google Scholar] [CrossRef]
- Baumann, M.; Wildfeuer, L.; Rohr, S.; Lienkamp, M. Parameter variations within Li-Ion battery packs—Theoretical investigations and experimental quantification. J. Energy Storage 2018, 18, 295–307. [Google Scholar] [CrossRef]
- Oldenburger, M.; Bedürftig, B.; Gruhle, A.; Grimsmann, F.; Richter, E.; Findeisen, R.; Hintennach, A. Investigation of the low frequency Warburg impedance of Li-ion cells by frequency domain measurements. J. Energy Storage 2019, 21, 272–280. [Google Scholar] [CrossRef]
- Valiūnienė, A.; Kavaliauskaitė, G.; Virbickas, P.; Ramanavičius, A. Prussian blue based impedimetric urea biosensor. J. Electroanal. Chem. 2021, 895, 115473. [Google Scholar] [CrossRef]
- Gabriunaite, I.; Valincius, G.; Žilinskas, A.; Valiūnienė, A. Tethered Bilayer Membrane Formation on Silanized Fluorine Doped Tin Oxide Surface. J. Electrochem. Soc. 2022, 169, 037515. [Google Scholar] [CrossRef]
- Gabriunaite, I.; Valiūnienė, A.; Sabirovas, T.; Valincius, G. Mixed Silane-based Self-assembled Monolayers Deposited on Fluorine Doped Tin Oxide as Model System for Development of Biosensors for Toxin Detection. Electroanalysis 2021, 33, 1315–1324. [Google Scholar] [CrossRef]
- Sabirovas, T.; VALIŪNIENĖ, A.; Valincius, G. Mechanically Polished Titanium Surface for Immobilization of Hybrid Bilayer Membrane. J. Electrochem. Soc. 2018, 165, G109–G115. [Google Scholar] [CrossRef]
- Riquelme, A.; Bennett, L.J.; Courtier, N.E.; Wolf, M.J.; Contreras-Bernal, L.; Walker, A.B.; Richardson, G.; Anta, J.A. Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion model. Nanoscale 2020, 12, 17385–17398. [Google Scholar] [CrossRef] [PubMed]
- Arredondo, B.; Romero, B.; Beliatis, M.; del Pozo, G.; Martín-Martín, D.; Blakesley, J.; Dibb, G.; Krebs, F.; Gevorgyan, S.; Castro, F. Analysing impact of oxygen and water exposure on roll-coated organic solar cell performance using impedance spectroscopy. Sol. Energy Mater. Sol. Cells 2018, 176, 397–404. [Google Scholar] [CrossRef]
- Omar, A.; Ali, M.S.; Rahim, N.A. Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Sol. Energy 2020, 207, 1088–1121. [Google Scholar] [CrossRef]
- Ayagou, M.D.D.; Tran, T.T.M.; Tribollet, B.; Kittel, J.; Sutter, E.; Ferrando, N.; Mendibide, C.; Duret-Thual, C. Electrochemical impedance spectroscopy of iron corrosion in H2S solutions. Electrochim. Acta 2018, 282, 775–783. [Google Scholar] [CrossRef]
- Gomes, M.P.; Costa, I.; Pébère, N.; Rossi, J.; Tribollet, B.; Vivier, V. On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy. Electrochim. Acta 2019, 306, 61–70. [Google Scholar] [CrossRef]
- De Motte, R.; Basilico, E.; Mingant, R.; Kittel, J.; Ropital, F.; Combrade, P.; Necib, S.; Deydier, V.; Crusset, D.; Marcelin, S. A study by electrochemical impedance spectroscopy and surface analysis of corrosion product layers formed during CO2 corrosion of low alloy steel. Corros. Sci. 2020, 172, 108666. [Google Scholar] [CrossRef]
- Samukaite-Bubniene, U.; Valiūnienė, A.; Bucinskas, V.; Genys, P.; Ratautaite, V.; Ramanaviciene, A.; Aksun, E.; Tereshchenko, A.; Zeybek, B.; Ramanavicius, A. Towards supercapacitors: Cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy based evaluation of polypyrrole electrochemically deposited on the pencil graphite electrode. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125750. [Google Scholar] [CrossRef]
- Larsen, A.; Dahal, E.; Paluba, J.; Cianciulli, K.; Isenhart, B.; Arnold, M.; Du, B.; Jiang, Y.; White, M.S. Nonlinear impedance spectroscopy of organic MIS capacitors and planar heterojunction diodes. Org. Electron. 2018, 62, 660–666. [Google Scholar] [CrossRef]
- Vicentini, R.; Soares, D.M.; Nunes, W.; Freitas, B.; Costa, L.; Da Silva, L.M.; Zanin, H. Core-niobium pentoxide carbon-shell nanoparticles decorating multiwalled carbon nanotubes as electrode for electrochemical capacitors. J. Power Sources 2019, 434, 226737. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2008; Available online: https://www.wiley.com/en-us/Electrochemical+Methods%3A+Fundamentals+and+Applications%2C+2nd+Edition-p-9780470452530 (accessed on 29 April 2022).
- Viter, R.; Kunene, K.; Genys, P.; Jevdokimovs, D.; Erts, D.; Sutka, A.; Bisetty, K.; Viksna, A.; Ramanaviciene, A.; Ramanavicius, A. Photoelectrochemical Bisphenol S Sensor Based on ZnO-Nanoroads Modified by Molecularly Imprinted Polypyrrole. Macromol. Chem. Phys. 2020, 221, 1900232. [Google Scholar] [CrossRef]
- Tamashevski, A.; Harmaza, Y.; Slobozhanina, E.; Viter, R.; Iatsunskyi, I. Photoluminescent Detection of Human T-Lymphoblastic Cells by ZnO Nanorods. Molecules 2020, 25, 3168. [Google Scholar] [CrossRef] [PubMed]
- Viter, R.; Savchuk, M.; Iatsunskyi, I.; Pietralik, Z.; Starodub, N.; Shpyrka, N.; Ramanaviciene, A.; Ramanavicius, A. Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A. Biosens. Bioelectron. 2018, 99, 237–243. [Google Scholar] [CrossRef]
- Luo, H.; Gu, C.; Zheng, W.; Dai, F.; Wang, X.; Zheng, Z. Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. RSC Adv. 2015, 5, 13470–13477. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Z.; Zhang, W.; Wang, X.; Shi, J. Polymer–inorganic microcapsules fabricated by combining biomimetic adhesion and bioinspired mineralization and their use for catalase immobilization. Biochem. Eng. J. 2015, 93, 281–288. [Google Scholar] [CrossRef]
- Amiri, M.; Amali, E.; Nematollahzadeh, A. Poly-dopamine thin film for voltammetric sensing of atenolol. Sens. Actuators B Chem. 2015, 216, 551–557. [Google Scholar] [CrossRef]
- Amiri, M.; Amali, E.; Nematollahzadeh, A.; Salehniya, H. Poly-dopamine films: Voltammetric sensor for pH monitoring. Sens. Actuators B Chem. 2016, 228, 53–58. [Google Scholar] [CrossRef]
- Coskun, H.; Aljabour, A.; Uiberlacker, L.; Strobel, M.; Hild, S.; Cobet, C.; Farka, D.; Stadler, P.; Sariciftci, N.S. Chemical vapor deposition—Based synthesis of conductive polydopamine thin-films. Thin Solid Film. 2018, 645, 320–325. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, Y.; Li, T.; Ma, P.; Zhang, S.; Du, M.; Chen, M.; Dong, W.; Ming, W. Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire. Compos. Sci. Technol. 2018, 164, 153–159. [Google Scholar] [CrossRef]
- D’Amato, R.; Donnadio, A.; Battocchio, C.; Sassi, P.; Pica, M.; Carbone, A.; Gatto, I.; Casciola, M. Polydopamine Coated CeO2 as Radical Scavenger Filler for Aquivion Membranes with High Proton Conductivity. Materials 2021, 14, 5280. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Joshi, M.K.; Lee, J.; Park, C.H.; Kim, C.S. Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J. Colloid Interface Sci. 2018, 513, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Iatsunskyi, I.; Vasylenko, A.; Viter, R.; Kempiński, M.; Nowaczyk, G.; Jurga, S.; Bechelany, M. Tailoring of the electronic properties of ZnO-polyacrylonitrile nanofibers: Experiment and theory. Appl. Surf. Sci. 2017, 411, 494–501. [Google Scholar] [CrossRef]
- Tereshchenko, A.; Smyntyna, V.; Ramanavicius, A. Interaction mechanism between TiO2 nanostructures and bovine leukemia virus proteins in photoluminescence-based immunosensors. RSC Adv. 2018, 8, 37740–37748. [Google Scholar] [CrossRef] [PubMed]
- Viter, R.; Jekabsons, K.; Kalnina, Z.; Poletaev, N.; Hsu, S.H.; Riekstina, U. Bioanalytical system for detection of cancer cells with photoluminescent ZnO nanorods. Nanotechnology 2016, 27, 465101. [Google Scholar] [CrossRef] [PubMed]
- Viter, R.; Khranovskyy, V.; Starodub, N. Application of Room Temperature Photoluminescence from ZnO Nano-rods for Salmonella Detection. IEEE Sens. J. 2014, 14, 2028–2034. [Google Scholar] [CrossRef] [Green Version]
E, V | −0.45 | −0.3 | 0 | |
Light off | R0, Ω cm2 | 161.3 (0.3%) | 164 (0.4%) | 172 (0.5%) |
Rct, kΩ cm2 | 5.6 (1.8%) | 35.6 (6.8%) | 4.1 (43%) | |
CPE1, µF/cm2 | 221.6 (0.9%) | 164.4 (0.8%) | 32.6 (7.5%) | |
n | 0.73 (0.4%) | 0.74 (0.4%) | 0.8 (1.3%) | |
CPE2, µF/cm2 | - | - | 21.8 (10.3%) | |
n | - | - | 0.6 (2.1%) | |
Light on | R0, Ω cm2 | 161.8 (0.4%) | 162.4 (0.5%) | 170 (0.6%) |
Rct, kΩ cm2 | 5.56 (2.0%) | 29.7 (8.0%) | 2.4 (38%) | |
CPE1, µF/cm2 | 218.0 (1.1%) | 168.5 (1.2%) | 28.7 (9%) | |
n | 0.73 (0.4%) | 0.72 (0.5%) | 0.8 (1.6%) | |
CPE2, µF/cm2 | - | - | 36.3 (6.5%) | |
n | - | - | 0.6 (1.8%) |
E, V | −0.45 | −0.3 | 0 | |
Light off | R0, Ω cm2 | 135.6 (0.5%) | 138.7 (0.6%) | 138 (0.6%) |
Rct, kΩ cm2 | 3.2 (1.9%) | 4.7 (2.3%) | 39.5 (13.8%) | |
CPE1, µF/cm2 | 272.2 (1.3%) | 217.2 (1.4%) | 30.7 (4.5%) | |
n | 0.78 (0.6%) | 0.76 (0.6%) | 0.8 (0.9%) | |
Ra | - | - | 3.1 (8.6%) | |
CPE2 | - | - | 81 (5.6%) | |
n | - | - | 0.7 (3.9%) | |
Light on | R0, Ω cm2 | 134.4 (0.7%) | 138 (0.7%) | 138 (0.8%) |
Rct, kΩ cm2 | 2.9 (2.3%) | 3.6 (1.2%) | 5.2 (3.1%) | |
CPE1, µF/cm2 | 235.1 (1.9%) | 150.1 (2.1%) | 24.1 (7.1%) | |
n | 0.79 (0.7%) | 0.81 (0.7%) | 0.8 (1.2%) | |
Ra | - | - | 2.8 (14.8%) | |
CPE2 | - | - | 57.6 (11.4%) | |
n | - | - | 0.7 (6.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viter, R.; Fedorenko, V.; Gabriunaite, I.; Tepliakova, I.; Ramanavicius, S.; Holubnycha, V.; Ramanavicius, A.; Valiūnienė, A. Electrochemical and Optical Properties of Fluorine Doped Tin Oxide Modified by ZnO Nanorods and Polydopamine. Chemosensors 2023, 11, 106. https://doi.org/10.3390/chemosensors11020106
Viter R, Fedorenko V, Gabriunaite I, Tepliakova I, Ramanavicius S, Holubnycha V, Ramanavicius A, Valiūnienė A. Electrochemical and Optical Properties of Fluorine Doped Tin Oxide Modified by ZnO Nanorods and Polydopamine. Chemosensors. 2023; 11(2):106. https://doi.org/10.3390/chemosensors11020106
Chicago/Turabian StyleViter, Roman, Viktoriia Fedorenko, Inga Gabriunaite, Irina Tepliakova, Simonas Ramanavicius, Viktoriia Holubnycha, Arunas Ramanavicius, and Aušra Valiūnienė. 2023. "Electrochemical and Optical Properties of Fluorine Doped Tin Oxide Modified by ZnO Nanorods and Polydopamine" Chemosensors 11, no. 2: 106. https://doi.org/10.3390/chemosensors11020106
APA StyleViter, R., Fedorenko, V., Gabriunaite, I., Tepliakova, I., Ramanavicius, S., Holubnycha, V., Ramanavicius, A., & Valiūnienė, A. (2023). Electrochemical and Optical Properties of Fluorine Doped Tin Oxide Modified by ZnO Nanorods and Polydopamine. Chemosensors, 11(2), 106. https://doi.org/10.3390/chemosensors11020106