Microplotter Printing of Hierarchically Organized NiCo2O4 Films for Ethanol Gas Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of NiCo2O4 Nanopowder
2.3. Microplotter Printing of Hierarchically Organized NiCo2O4 Film
2.4. Instrumentation
3. Results and Discussion
3.1. Characterization of the Intermediate Product and the Obtained NiCo2O4 Nanopowder
3.2. Characterization of Printed NiCo2O4 Film
3.3. Chemosensory Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, V.; Mariappan, C.R.; Azmi, R.; Moock, D.; Indris, S.; Bruns, M.; Ehrenberg, H.; Vijaya Prakash, G. Pseudocapacitance of Mesoporous Spinel-Type MCo2O4 (M = Co, Zn, and Ni) Rods Fabricated by a Facile Solvothermal Route. ACS Omega 2017, 2, 6003–6013. [Google Scholar] [CrossRef] [PubMed]
- Guragain, D.; Zequine, C.; Gupta, R.K.; Mishra, S.R. Facile Synthesis of Bio-Template Tubular MCo2O4 (M = Cr, Mn, Ni) Microstructure and Its Electrochemical Performance in Aqueous Electrolyte. Processes 2020, 8, 343. [Google Scholar] [CrossRef]
- Mohamed, S.G.; Tsai, Y.-Q.; Chen, C.-J.; Tsai, Y.-T.; Hung, T.-F.; Chang, W.-S.; Liu, R.-S. Ternary Spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) Porous Nanorods as Bifunctional Cathode Materials for Lithium–O2 Batteries. ACS Appl. Mater. Interfaces 2015, 7, 12038–12046. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Huang, X.; Chen, C.; Hou, W.; Xu, Y. M-Dependent activity of MCo2O4 spinels for water splitting and H2 production on Zn0.5Cd0.5S under visible light. Appl. Catal. B Environ. 2021, 298, 120469. [Google Scholar] [CrossRef]
- Li, G.; Li, L.; Shi, J.; Yuan, Y.; Li, Y.; Zhao, W.; Shi, J. One-pot pyrolytic synthesis of mesoporous MCo2O4(4.5) (M = Mn, Ni, Fe, Cu) spinels and its high efficient catalytic properties for CO oxidation at low temperature. J. Mol. Catal. A Chem. 2014, 390, 97–104. [Google Scholar] [CrossRef]
- Macias, J.D.; Bacelis-Martinez, R.D.; Ruiz-Gomez, M.A.; Bante-Guerra, J.; Villafan-Vidales, H.I.; Rodriguez-Gattorno, G.; Romero-Paredes, H.; Alvarado-Gil, J.J. Thermophysical and optical properties of NiCo2O4@ZrO2: A potential composite for thermochemical processes. Int. J. Hydrogen Energy 2021, 46, 10632–10641. [Google Scholar] [CrossRef]
- Bagtache, R.; Boudjedien, K.; Sebai, I.; Meziani, D.; Trari, M. Facile preparation of the spinel CuCo2O4 Application to hydrogen photo-production. Appl. Phys. A 2021, 127, 60. [Google Scholar] [CrossRef]
- Qu, F.; Jiang, H.; Yang, M. MOF-derived Co3O4/NiCo2O4 double-shelled nanocages with excellent gas sensing properties. Mater. Lett. 2017, 190, 75–78. [Google Scholar] [CrossRef]
- Joshi, N.; da Silva, L.F.; Jadhav, H.; M’Peko, J.-C.; Millan Torres, B.B.; Aguir, K.; Mastelaro, V.R.; Oliveira, O.N. One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures. RSC Adv. 2016, 6, 92655–92662. [Google Scholar] [CrossRef]
- Kumar, R. NiCo2O4 Nano-/Microstructures as High-Performance Biosensors: A Review. Nano-Micro Lett. 2020, 12, 122. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Rocha, D.P.; Silva, M.N.T.; Martins, P.R.; Nossol, E.; Angnes, L.; Rout, C.S.; Munoz, R.A.A. Feasible strategies to promote the sensing performances of spinel MCo2O4 (M = Ni, Fe, Mn, Cu and Zn) based electrochemical sensors: A review. J. Mater. Chem. C 2021, 9, 7852–7887. [Google Scholar] [CrossRef]
- Hu, Y.; Li, T.; Zhang, J.; Guo, J.; Wang, W.; Zhang, D. High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Sens. Actuators B Chem. 2022, 352, 130912. [Google Scholar] [CrossRef]
- Basirun, W.J.; Saeed, I.M.; Rahman, M.S.; Mazari, S.A. Nickel oxides/hydroxides-graphene as hybrid supercapattery nanocomposites for advanced charge storage materials—A review. Crit. Rev. Solid State Mater. Sci. 2021, 46, 553–586. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yun, K.-S. Room-temperature hydrogen gas sensor composed of palladium thin film deposited on NiCo2O4 nanoneedle forest. Sens. Actuators B Chem. 2023, 376, 132958. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Ma, S.; Wang, Y.; Wang, P.; Zhang, G.; Gengzang, D.; Jiao, H.; Wang, M.; Chen, W. Multishelled NiO/NiCo2O4 hollow microspheres derived from bimetal-organic frameworks as high-performance sensing material for acetone detection. J. Hazard. Mater. 2021, 415, 125662. [Google Scholar] [CrossRef]
- Wang, D.; Mi, Q.; Zhang, H.; Li, G.; Zhang, D. Sensitive Xylene Gas Sensor Based on NiO-NiCo2O4 Hierarchical Spherical Structure Constructed With Nanorods. IEEE Sens. J. 2022, 22, 10346–10352. [Google Scholar] [CrossRef]
- Dang, F.; Wang, Y.; Gao, J.; Xu, L.; Cheng, P.; Lv, L.; Zhang, B.; Li, X.; Wang, C. Hierarchical flower-like NiCo2O4 applied in n-butanol detection at low temperature. Sens. Actuators B Chem. 2020, 320, 128577. [Google Scholar] [CrossRef]
- Wang, Q.; Bai, J.; Huang, B.; Hu, Q.; Cheng, X.; Li, J.; Xie, E.; Wang, Y.; Pan, X. Design of NiCo2O4@SnO2 heterostructure nanofiber and their low temperature ethanol sensing properties. J. Alloys Compd. 2019, 791, 1025–1032. [Google Scholar] [CrossRef]
- Gai, L.-Y.; Lai, R.-P.; Dong, X.-H.; Wu, X.; Luan, Q.-T.; Wang, J.; Lin, H.-F.; Ding, W.-H.; Wu, G.-L.; Xie, W.-F. Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 2022, 41, 1818–1842. [Google Scholar] [CrossRef]
- Yang, S.; Lei, G.; Xu, H.; Lan, Z.; Wang, Z.; Gu, H. Metal Oxide Based Heterojunctions for Gas Sensors: A Review. Nanomaterials 2021, 11, 1026. [Google Scholar] [CrossRef]
- Rao, B.B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour. Mater. Chem. Phys. 2000, 64, 62–65. [Google Scholar] [CrossRef]
- Wang, L.; Kang, Y.; Liu, X.; Zhang, S.; Huang, W.; Wang, S. ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B Chem. 2012, 162, 237–243. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, T.; Zeng, H.; Guo, W.; Zhao, B.; Sun, Y.; Li, Y.; Jiang, L. Multishelled Hollow Structures of Yttrium Oxide for the Highly Selective and Ultrasensitive Detection of Methanol. Small 2019, 15, 1804688. [Google Scholar] [CrossRef] [PubMed]
- Klym, H.; Ingram, A.; Shpotyuk, O.; Hadzaman, I.; Solntsev, V.; Hotra, O.; Popov, A.I. Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temp. Phys. 2016, 42, 601–605. [Google Scholar] [CrossRef]
- Joshi, R.K.; Schneider, J.J. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chem. Soc. Rev. 2012, 41, 5285. [Google Scholar] [CrossRef]
- Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730. [Google Scholar] [CrossRef]
- Pham, T.N.; Huy, T.Q.; Le, A.-T. Spinel ferrite (AFe2O4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications. RSC Adv. 2020, 10, 31622–31661. [Google Scholar] [CrossRef]
- Yan, M.; Jiang, F.; Liu, Y.; Sun, L.; Bai, H.; Zhu, F.; Shi, W. Flexible mixed metal oxide hollow spheres/RGO hybrid lamellar films for high performance supercapacitors. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 125902. [Google Scholar] [CrossRef]
- Jin, J.; Dai, Y.; Lu, J.; Dai, X.; Tie, N.; Ma, F.; Wang, W.; Pu, L.; Zhang, H. Hydrothermal synthesis of NiO/NiCo2O4 nanomaterials for applications in electrochemical energy storage. J. Mater. Sci. Mater. Electron. 2022, 33, 354–366. [Google Scholar] [CrossRef]
- Liu, S.; Liu, L.; Wang, W.; Zhou, Y.; Dai, G.; Liu, Y. Enhanced Non-Enzymatic Glucose Detection Using a Flower-Like NiCo2O4 Spheres Modified Electrode. J. Anal. Chem. 2021, 76, 993–1001. [Google Scholar] [CrossRef]
- Ji, J.; Xu, J.; Fan, G.; Guo, T.; Yang, L.; Li, F. Controlled synthesis of CeOx-NiCo2O4 nanocomposite with 3D umbrella-shaped hierarchical structure: A sharp-tip enhanced electrocatalyst for efficient oxygen evolution reaction over a broad pH region. Electrochim. Acta 2021, 382, 138345. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Ju, T.; Ying, Z.; Xie, J.; Zhang, Y. Preparation and electrochemical properties of NiCo2O4 nanorods grown on nickel foam filled by carbon-coated attapulgite for supercapacitors. Mater. Res. Express 2019, 6, 125524. [Google Scholar] [CrossRef]
- Hui, Z.; Yao, S.; Ou, T.K.; Liu, Q.; Zhi, L.; Cao, Y.; Sun, Y. Soft-template-assisted Synthesis of Hierarchical NiCo2O4 array/Ni foam for application in supercpacitors. Int. J. Electrochem. Sci. 2022, 17, 220422. [Google Scholar] [CrossRef]
- John, G.; Gopalakrishnan, S.; Sharan, A.; Navaneethan, M.; Kulandaivel, J.; Singh, N.; Justin Jesuraj, P. Exploring the Heterostructure Engineering of SnS/NiCo2O4 for Overall Water Splitting. Energy Fuels 2022, 37, 624–634. [Google Scholar] [CrossRef]
- Arbaz, S.J.; Sekhar, S.C.; Ramulu, B.; Yu, J.S. Binder-free preparation of bimetallic oxide vertical nanosheet arrays toward high-rate performance and energy density supercapacitors. Int. J. Energy Res. 2021, 45, 13999–14009. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, X.; Zhang, Y.; Jia, J.; He, X.; Yu, L.; Pan, Y.; Liao, J.; Sun, M.; He, J. Interconnected NiCo2O4 nanosheet arrays grown on carbon cloth as a host, adsorber and catalyst for sulfur species enabling high-performance Li–S batteries. Nanoscale Adv. 2021, 3, 1690–1698. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; Kim, H.; Fujishima, A.; Terashima, C. Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications. J. Hazard. Mater. 2021, 419, 126453. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Hierarchical Architectured Dahlia Flower-Like NiCo2O4/NiCoSe2 as a Bifunctional Electrode for High-Energy Supercapacitor and Methanol Fuel Cell Application. Energy Fuels 2021, 35, 9646–9659. [Google Scholar] [CrossRef]
- Isacfranklin, M.; Ravi, G.; Yuvakkumar, R.; Kumar, P.; Velauthapillai, D.; Saravanakumar, B.; Thambidurai, M.; Dang, C. Urchin like NiCo2O4/rGO nanocomposite for high energy asymmetric storage applications. Ceram. Int. 2020, 46, 16291–16297. [Google Scholar] [CrossRef]
- Yan, S.; Luo, S.; Sun, M.; Wang, Q.; Zhang, Y.; Liu, X. Facile hydrothermal synthesis of urchin-like NiCo2O4 as advanced electrochemical pseudocapacitor materials. Int. J. Energy Res. 2021, 45, 20186–20198. [Google Scholar] [CrossRef]
- Sundriyal, P.; Bhattacharya, S. Scalable Micro-fabrication of Flexible, Solid-State, Inexpensive, and High-Performance Planar Micro-supercapacitors through Inkjet Printing. ACS Appl. Energy Mater. 2019, 2, 1876–1890. [Google Scholar] [CrossRef]
- Ge, L.; Ye, X.; Yu, Z.; Chen, B.; Liu, C.; Guo, H.; Zhang, S.; Sassa, F.; Hayashi, K. A fully inkjet-printed disposable gas sensor matrix with molecularly imprinted gas-selective materials. NPJ Flex. Electron. 2022, 6, 40. [Google Scholar] [CrossRef]
- Bacelis-Martínez, R.D.; Oskam, G.; Rodriguez Gattorno, G.; Ruiz-Gómez, M.A. Inkjet Printing as High-Throughput Technique for the Fabrication of NiCo2O4 Films. Adv. Mater. Sci. Eng. 2017, 2017. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Dong, D.; Yao, G.; Wei, G.; He, A.; Wu, H.; Zhu, H.; Huang, Z.; Tang, Z. E-nose based on a high-integrated and low-power metal oxide gas sensor array. Sens. Actuators B Chem. 2023, 380, 133289. [Google Scholar] [CrossRef]
- Kravchenko, D.E.; Matavž, A.; Rubio-Giménez, V.; Vanduffel, H.; Verstreken, M.; Ameloot, R. Aerosol Jet Printing of the Ultramicroporous Calcium Squarate Metal-Organic Framework. Chem. Mater. 2022, 34, 6809–6814. [Google Scholar] [CrossRef]
- Verma, A.; Goos, R.; Weerdt, J.D.; Pelgrims, P.; Ferraris, E. Design, Fabrication, and Testing of a Fully 3D-Printed Pressure Sensor Using a Hybrid Printing Approach. Sensors 2022, 22, 7531. [Google Scholar] [CrossRef]
- Fisher, C.; Warmack, B.J.; Yu, Y.; Skolrood, L.N.; Li, K.; Joshi, P.C.; Saito, T.; Aytug, T. All-aerosol-jet-printed highly sensitive and selective polyaniline-based ammonia sensors: A route toward low-cost, low-power gas detection. J. Mater. Sci. 2021, 56, 12596–12606. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Pozharnitskaya, V.M.; Simonenko, E.P.; Glumov, O.V.; Melnikova, N.A.; Sevastyanov, V.G.; Kuznetsov, N.T. Pen Plotter Printing of MnOx Thin Films Using Manganese Alkoxoacetylacetonate. Russ. J. Inorg. Chem. 2021, 66, 1416–1424. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Mokrushin, A.S.; Solovey, V.R.; Pozharnitskaya, V.M.; Simonenko, E.P.; Glumov, O.V.; Melnikova, N.A.; Lizunova, A.A.; et al. Pen plotter printing of Co3O4 thin films: Features of the microstructure, optical, electrophysical and gas-sensing properties. J. Alloys Compd. 2020, 832, 154957. [Google Scholar] [CrossRef]
- Liu, S.; Cao, R.; Wu, J.; Guan, L.; Li, M.; Liu, J.; Tian, J. Directly writing barrier-free patterned biosensors and bioassays on paper for low-cost diagnostics. Sens. Actuators B Chem. 2019, 285, 529–535. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Vlasov, I.S.; Solovey, V.R.; Shelaev, A.V.; Simonenko, E.P.; Glumov, O.V.; Melnikova, N.A.; Kozodaev, M.G.; et al. Microplotter printing of planar solid electrolytes in the CeO2–Y2O3 system. J. Colloid Interface Sci. 2021, 588, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Simonenko, T.L.; Simonenko, N.P.; Simonenko, E.P.; Vlasov, I.S.; Volkov, I.A.; Kuznetsov, N.T. Microplotter Printing of Hierarchically Organized Planar NiCo2O4 Nanostructures. Russ. J. Inorg. Chem. 2022, 67, 1848–1854. [Google Scholar] [CrossRef]
- Fedorov, F.S.; Simonenko, N.P.; Trouillet, V.; Volkov, I.A.; Plugin, I.A.; Rupasov, D.P.; Mokrushin, A.S.; Nagornov, I.A.; Simonenko, T.L.; Vlasov, I.S.; et al. Microplotter-Printed On-Chip Combinatorial Library of Ink-Derived Multiple Metal Oxides as an “Electronic Olfaction” Unit. ACS Appl. Mater. Interfaces 2020, 12, 56135–56150. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Simonenko, E.P.; Kuznetsov, N.T. Microextrusion Printing of Multilayer Hierarchically Organized Planar Nanostructures Based on NiO, (CeO2)0.8(Sm2O3)0.2 and La0.6Sr0.4Co0.2Fe0.8O3−δ. Micromachines 2022, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Grafov, O.Y.; Simonenko, E.P.; Kuznetsov, N.T. Synthesis of ((CeO2)0.8(Sm2O3)0.2)@NiO Core-Shell Type Nanostructures and Microextrusion Printing of a Composite Anode Based on Them. Materials 2022, 15, 8918. [Google Scholar] [CrossRef]
- Gorobtsov, P.Y.; Mokrushin, A.S.; Simonenko, T.L.; Simonenko, N.P.; Simonenko, E.P.; Kuznetsov, N.T. Microextrusion Printing of Hierarchically Structured Thick V2O5 Film with Independent from Humidity Sensing Response to Benzene. Materials 2022, 15, 7837. [Google Scholar] [CrossRef]
- Fisenko, N.A.; Solomatov, I.A.; Simonenko, N.P.; Mokrushin, A.S.; Gorobtsov, P.Y.; Simonenko, T.L.; Volkov, I.A.; Simonenko, E.P.; Kuznetsov, N.T. Atmospheric Pressure Solvothermal Synthesis of Nanoscale SnO2 and Its Application in Microextrusion Printing of a Thick-Film Chemosensor Material for Effective Ethanol Detection. Sensors 2022, 22, 9800. [Google Scholar] [CrossRef]
- Simonenko, N.P.; Kadyrov, N.S.; Simonenko, T.L.; Simonenko, E.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Preparation of ZnS Nanopowders and Their Use in the Additive Production of Thick-Film Structures. Russ. J. Inorg. Chem. 2021, 66, 1283–1288. [Google Scholar] [CrossRef]
- Porta, P.; Dragone, R.; Fierro, G.; Inversi, M.; Jacono, M.L.; Moretti, G. Preparation and characterisation of cobalt–copper hydroxysalts and their oxide products of decomposition. J. Chem. Soc. Faraday Trans. 1992, 88, 311–319. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Z.; Zhou, J.; Sui, Z.; Zhou, X. Hierarchical NiCo LDH–rGO/Ni Foam Composite as Electrode Material for High-Performance Supercapacitors. Trans. Tianjin Univ. 2019, 25, 266–275. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Du, X.; Ma, X.; Hao, X.; Ma, W.; Wang, K.; Guan, G.; Abudula, A. A high-performance electroactive PPy/rGO/NiCo-LDH hybrid film for removal of dilute dodecyl sulfonate ions. Electrochim. Acta 2020, 331, 135288. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Klyuev, A.L.; Grafov, O.Y.; Ivanova, T.M.; Simonenko, E.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Hydrothermally synthesized hierarchical Ce1−xSmxO2−δ oxides for additive manufacturing of planar solid electrolytes. Ceram. Int. 2022, 48, 22401–22410. [Google Scholar] [CrossRef]
- Valdez, R.; Grotjahn, D.B.; Smith, D.K.; Quintana, J.M.; Olivas, A. Nanosheets of Co-(Ni and Fe) layered double hydroxides for electrocatalytic water oxidation reaction. Int. J. Electrochem. Sci. 2015, 10, 909–918. [Google Scholar]
- Marimuthu, G.; Palanisamy, G.; Pazhanivel, T.; Bharathi, G.; Cristopher, M.M.; Jeyadheepan, K. Nanorod like NiCo2O4 nanostructure for high sensitive and selective ammonia gas sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 1951–1959. [Google Scholar] [CrossRef]
- Cai, Y.; Ma, J.; Wang, T. Hydrothermal synthesis of α-Ni(OH)2 and its conversion to NiO with electrochemical properties. J. Alloys Compd. 2014, 582, 328–333. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, H.; Frost, R.L. Synthesis and characterisation of cobalt hydroxy carbonate Co2CO3(OH)2 nanomaterials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 78, 420–428. [Google Scholar] [CrossRef]
- Zakutayev, A.; Paudel, T.R.; Ndione, P.F.; Perkins, J.D.; Lany, S.; Zunger, A.; Ginley, D.S. Cation off-stoichiometry leads to high p-type conductivity and enhanced transparency in Co2ZnO4 thin films. Phys. Rev. B 2012, 85, 085204. [Google Scholar] [CrossRef]
- Chen, W.; Wei, L.; Lin, Z.; Liu, Q.; Chen, Y.; Lin, Y.; Huang, Z. Hierarchical flower-like NiCo2O4@TiO2 hetero-nanosheets as anodes for lithium ion batteries. RSC Adv. 2017, 7, 47602–47613. [Google Scholar] [CrossRef]
- Pathak, M.; Mutadak, P.; Mane, P.; More, M.A.; Chakraborty, B.; Late, D.J.; Rout, C.S. Enrichment of the field emission properties of NiCo2O4 nanostructures by UV/ozone treatment. Mater. Adv. 2021, 2, 2658–2666. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Dudorova, D.A.; Simonenko, E.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Triethanolamine-Assisted Hydrothermal Synthesis of Hierarchically Organized Nickel Oxide Particles. Russ. J. Inorg. Chem. 2022, 67, 622–627. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Meng, A.; Li, Q. Network-like holey NiCo2O4 nanosheet arrays on Ni foam synthesized by electrodeposition for high-performance supercapacitors. J. Solid State Electrochem. 2019, 23, 635–644. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Mokrushin, A.S.; Nagornov, I.A.; Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Khamova, T.V.; Kopitsa, G.P.; Evzrezov, A.N.; Simonenko, E.P.; Sevastyanov, V.G.; et al. Chemoresistive gas-sensitive ZnO/Pt nanocomposites films applied by microplotter printing with increased sensitivity to benzene and hydrogen. Mater. Sci. Eng. B 2021, 271, 115233. [Google Scholar] [CrossRef]
- Ambardekar, V.; Bandyopadhyay, P.P.; Majumder, S.B. Understanding on the ethanol sensing mechanism of atmospheric plasma sprayed 25 wt.%WO3–75 wt.%SnO2 coating. Sens. Actuators B Chem. 2019, 290, 414–425. [Google Scholar] [CrossRef]
- McConnell, C.; Kanakaraj, S.N.; Dugre, J.; Malik, R.; Zhang, G.; Haase, M.R.; Hsieh, Y.Y.; Fang, Y.; Mast, D.; Shanov, V. Hydrogen Sensors Based on Flexible Carbon Nanotube-Palladium Composite Sheets Integrated with Ripstop Fabric. ACS Omega 2020, 5, 487–497. [Google Scholar] [CrossRef]
- Ji, H.; Zeng, W.; Li, Y. Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef]
- Degler, D.; Weimar, U.; Barsan, N. Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials. ACS Sens. 2019, 4, 2228–2249. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Kim, J.S.; Lee, J.H. Rational Design of Semiconductor-Based Chemiresistors and their Libraries for Next-Generation Artificial Olfaction. Adv. Mater. 2020, 32, 2002075. [Google Scholar] [CrossRef]
- Akhtar, A.; Sadaf, S.; Liu, J.; Wang, Y.; Wei, H.; Zhang, Q.; Fu, C.; Wang, J. Hydrothermally synthesized spherical g-C3N4-NiCo2O4 nanocomposites for ppb level ethanol detection. J. Alloys Compd. 2022, 911, 165048. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, X.; Sun, Y.; Wang, Q.; Xia, X.Y.; Tang, B. Facile synthesis of tortoise shell-like porous NiCo2O4 nanoplate with promising triethylamine gas sensing properties. Sens. Actuators B Chem. 2020, 323, 128663. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Tian, H.; Qiao, L.; Zeng, Y.; Liu, C. Bimetal carbonaceous templates for multi-shelled NiCo2O4 hollow sphere with enhanced xylene detection. Sens. Actuators B Chem. 2021, 339, 129862. [Google Scholar] [CrossRef]
- Akhtar, A.; Di, W.; Liu, J.; Fu, C.; Wang, J.; Chu, X. The detection of ethanol vapors based on a p-type gas sensor fabricated from heterojunction MoS2–NiCo2O4. Mater. Chem. Phys. 2022, 282, 125964. [Google Scholar] [CrossRef]
- Wicker, S.; Großmann, K.; Bârsan, N.; Weimar, U. Co3O4—A systematic investigation of catalytic and gas sensing performance under variation of temperature, humidity, test gas and test gas concentration. Sens. Actuators B Chem. 2013, 185, 644–650. [Google Scholar] [CrossRef]
- Mokoena, T.P.; Tshabalala, Z.P.; Hillie, K.T.; Swart, H.C.; Motaung, D.E. The blue luminescence of p-type NiO nanostructured material induced by defects: H2S gas sensing characteristics at a relatively low operating temperature. Appl. Surf. Sci. 2020, 525, 146002. [Google Scholar] [CrossRef]
Compound | Ni2p3/2 | Co2p3/2 |
---|---|---|
Peak 1 (eV) | 854.4 | 779.7 |
% | 13.16 | 25.17 |
FWHM (eV) | 1.32 | 1.40 |
Peak 2 (eV) | 855.9 | 780.5 |
% | 32.71 | 10.53 |
FWHM (eV) | 2.57 | 1.19 |
Peak 3 (eV) | 857.9 | 781.3 |
% | 16.78 | 14.39 |
FWHM (eV) | 3.95 | 1.74 |
Peak 4 (eV) | 861.6 | 782.2 |
% | 24.59 | 32.46 |
FWHM (eV) | 3.27 | 3.97 |
Peak 5 (eV) | 867.41 | 786.48 |
% | 3.35 | 12.56 |
FWHM (eV) | 2.47 | 4.39 |
Peak 6 (eV) | 864.39 | 789.7 |
% | 9.42 | 4.89 |
FWHM (eV) | 3.28 | 2.81 |
Compound | Ni2p3/2 | Co2p3/2 | ||
---|---|---|---|---|
Ni(II) | Ni(III) | Co(II) | Co(III) | |
Peak 1 (eV) | 854.4 | 855.4 | 780.2 | 779.8 |
% | 14.3 | 42.3 | 46.6 | 40.5 |
FWHM (eV) | 1.02 | 2.67 | 2.24 | 1.3 |
Peak 2 (eV) | 856.1 | 858.0 | 782.3 | 781.1 |
% | 44.2 | 23.8 | 25.7 | 29.1 |
FWHM (eV) | 3.25 | 4.00 | 2.66 | 1.62 |
Peak 3 (eV) | 861.6 | 861.5 | 785.7 | 782.4 |
% | 34.0 | 13.3 | 1.6 | 15.2 |
FWHM (eV) | 3.76 | 2.67 | 2.29 | 2.18 |
Peak 4 (eV) | 864.7 | 867.4 | 786.6 | 785.4 |
% | 3.6 | 3.5 | 26.1 | 8.1 |
FWHM (eV) | 2.04 | 2.91 | 4.98 | 4.44 |
Peak 5 (eV) | 867.0 | 863.6 | 789.7 | |
% | 3.9 | 17.1 | 7.1 | |
FWHM (eV) | 2.44 | 4.00 | 3.29 |
Compound | Ni2p3/2 | Co2p3/2 | O1s | ||||||
---|---|---|---|---|---|---|---|---|---|
Ni(II) | Ni(III) | Co(II) | Co(III) | L.Ox | H.Ox | C=O | C–O | H2O | |
Position, eV | 854, 4 | 855, 4 | 780, 2 | 779, 8 | 529, 9 | 531, 0 | 531, 3 | 531, 9 | 533, 2 |
Conc., at.% | 5, 7 | 7, 4 | 16, 0 | 9, 1 | 34, 4 | 16, 1 | 1, 6 | 5, 7 | 4, 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonenko, T.L.; Simonenko, N.P.; Mokrushin, A.S.; Gorobtsov, P.Y.; Lizunova, A.A.; Grafov, O.Y.; Simonenko, E.P.; Kuznetsov, N.T. Microplotter Printing of Hierarchically Organized NiCo2O4 Films for Ethanol Gas Sensing. Chemosensors 2023, 11, 138. https://doi.org/10.3390/chemosensors11020138
Simonenko TL, Simonenko NP, Mokrushin AS, Gorobtsov PY, Lizunova AA, Grafov OY, Simonenko EP, Kuznetsov NT. Microplotter Printing of Hierarchically Organized NiCo2O4 Films for Ethanol Gas Sensing. Chemosensors. 2023; 11(2):138. https://doi.org/10.3390/chemosensors11020138
Chicago/Turabian StyleSimonenko, Tatiana L., Nikolay P. Simonenko, Artem S. Mokrushin, Philipp Yu. Gorobtsov, Anna A. Lizunova, Oleg Yu. Grafov, Elizaveta P. Simonenko, and Nikolay T. Kuznetsov. 2023. "Microplotter Printing of Hierarchically Organized NiCo2O4 Films for Ethanol Gas Sensing" Chemosensors 11, no. 2: 138. https://doi.org/10.3390/chemosensors11020138
APA StyleSimonenko, T. L., Simonenko, N. P., Mokrushin, A. S., Gorobtsov, P. Y., Lizunova, A. A., Grafov, O. Y., Simonenko, E. P., & Kuznetsov, N. T. (2023). Microplotter Printing of Hierarchically Organized NiCo2O4 Films for Ethanol Gas Sensing. Chemosensors, 11(2), 138. https://doi.org/10.3390/chemosensors11020138