Electrochemical Sensing Platform Based on Renewable Carbon Modified with Antimony Nanoparticles for Methylparaben Detection in Personal Care Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation and Methods
2.2. Reagents and Solutions
2.3. Synthesis of RC-Antimony Nanoparticles
2.4. Electrode Preparation
2.5. Analysis of Methylparaben in PCPs
3. Results
3.1. Morphological and Spectroscopic Characterization of the RC-SbNP Composite
3.2. Electrochemical Characterization of the GC/RC-SbNP Electrode
3.3. Methylparaben Oxidation Process
3.4. Influence of pH on the Oxidation Process of Methylparaben Using the GC/RC-SbNP Electrode
3.5. Optimization of the Electrode Composition in the Voltammetric Response of Methylparaben Using the GC/RC-SbNP Electrode
3.6. Calibration Curve and Detection and Quantification Limits
3.7. Determination of MePa in PCPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madikizela, L.M.; Rimayi, C.; Khulu, S.; Chimuka, L.; Ncube, S. Pharmaceuticals and Personal Care Products. In Emerging Freshwater Pollutants: Analysis, Fate and Regulations; Elsevier: Amsterdam, The Netherlands, 2022; pp. 171–190. ISBN 9780128228500. [Google Scholar]
- Osuoha, J.O.; Anyanwu, B.O.; Ejileugha, C. Pharmaceuticals and Personal Care Products as Emerging Contaminants: Need for Combined Treatment Strategy. J. Hazard. Mater. Adv. 2022, 9, 100206. [Google Scholar] [CrossRef]
- AL Falahi, O.A.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R.; Ewadh, H.M.; Kurniawan, S.B.; Imron, M.F. Occurrence of Pharmaceuticals and Personal Care Products in Domestic Wastewater, Available Treatment Technologies, and Potential Treatment Using Constructed Wetland: A Review. Process Saf. Environ. Prot. 2022, 168, 1067–1088. [Google Scholar] [CrossRef]
- Farag Ambarak, M. Asian Journal of Green Chemistry Determination of Methylparaben in Some Cosmetics and Pharmaceutics Using Liquid-Liquid Extraction and Spectrophotometric Technique. Asian J. Green Chem. 2020, 4, 192–201. [Google Scholar] [CrossRef]
- Li, J.; Han, Y.; Li, X.; Xiong, L.; Wei, L.; Cheng, X. Analysis of Methylparaben in Cosmetics Based on a Chemiluminescence H2O2−NaIO4−CNQDs System. Luminescence 2021, 36, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Kwon, D.; Beirns, E.; Tan, G.Y.A.; Lee, P.H.; Kim, J. Superior Methylparaben Removal by Anaerobic Fluidized Bed Ceramic Membrane Bioreactor with PVDF Tubular Fluidized Biocarrier: Reactor Performance and Microbial Community. J. Environ. Chem. Eng. 2023, 11, 109153. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Petala, A.; Zalaora, A.A.; Mantzavinos, D.; Frontistis, Z. Solar Light-Induced Photocatalytic Degradation of Methylparaben by g-C3N4 in Different Water Matrices. J. Chem. Technol. Biotechnol. 2020, 95, 2811–2821. [Google Scholar] [CrossRef]
- Cetinić, K.A.; Grgić, I.; Previšić, A.; Rožman, M. The Curious Case of Methylparaben: Anthropogenic Contaminant or Natural Origin? Chemosphere 2022, 294, 133781. [Google Scholar] [CrossRef]
- Hu, C.; Bai, Y.; Li, J.; Sun, B.; Chen, L. Endocrine Disruption and Reproductive Impairment of Methylparaben in Adult Zebrafish. Food Chem. Toxicol. 2023, 171, 113545. [Google Scholar] [CrossRef]
- Nowak, K.; Jabłońska, E.; Garley, M.; Radziwon, P.; Ratajczak-Wrona, W. Methylparaben-Induced Regulation of Estrogenic Signaling in Human Neutrophils. Mol. Cell. Endocrinol. 2021, 538, 111470. [Google Scholar] [CrossRef] [PubMed]
- Vieira, W.T.; De Farias, M.B.; Spaolonzi, M.P.; Da Silva, M.G.C.; Vieira, M.G.A. Endocrine-Disrupting Compounds: Occurrence, Detection Methods, Effects and Promising Treatment Pathways—A Critical Review. J. Environ. Chem. Eng. 2021, 9, 104558. [Google Scholar] [CrossRef]
- Xue, J.; Wu, Q.; Sakthivel, S.; Pavithran, P.V.; Vasukutty, J.R.; Kannan, K. Urinary Levels of Endocrine-Disrupting Chemicals, Including Bisphenols, Bisphenol A Diglycidyl Ethers, Benzophenones, Parabens, and Triclosan in Obese and Non-Obese Indian Children. Environ. Res. 2015, 137, 120–128. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho Penha, L.C.; Coimbra Rola, R.; da Silva Junior, F.M.; de Martinez Gaspar Martins, C. Toxicity and Sublethal Effects of Methylparaben on Zebrafish (Danio Rerio) Larvae and Adults. Environ. Sci. Pollut. Res. 2021, 28, 45534–45544. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Mortimer, M.; Cheng, H.; Sang, N.; Guo, L.H. Parabens as Chemicals of Emerging Concern in the Environment and Humans: A Review. Sci. Total Environ. 2021, 778, 146150. [Google Scholar] [CrossRef] [PubMed]
- Puerta, Y.T.; Guimarães, P.S.; Martins, S.E.; Martins, C.d.M.G. Toxicity of Methylparaben to Green Microalgae Species and Derivation of a Predicted No Effect Concentration (PNEC) in Freshwater Ecosystems. Ecotoxicol. Environ. Saf. 2020, 188, 109916. [Google Scholar] [CrossRef]
- Nowak, K.; Ratajczak-Wrona, W.; Górska, M.; Jabłońska, E. Parabens and Their Effects on the Endocrine System. Mol. Cell. Endocrinol. 2018, 474, 238–251. [Google Scholar] [CrossRef]
- Faradillawan Khalid, W.E.; Nasir Mat Arip, M.; Jasmani, L.; Heng Lee, Y. A New Sensor for Methyl Paraben Using an Electrode Made of a Cellulose Nanocrystal–Reduced Graphene Oxide Nanocomposite. Sensors 2019, 19, 2726. [Google Scholar] [CrossRef] [Green Version]
- Marson, E.O.; Paniagua, C.E.S.; Gomes Júnior, O.; Gonçalves, B.R.; Silva, V.M.; Ricardo, I.A.; Maria, M.C.; Amorim, C.C.; Trovó, A.G. A Review toward Contaminants of Emerging Concern in Brazil: Occurrence, Impact and Their Degradation by Advanced Oxidation Process in Aquatic Matrices. Sci. Total Environ. 2022, 836, 155605. [Google Scholar] [CrossRef]
- Khansari, N.; Adib, N.; Alikhani, A.; Babaee, T.; Khosrokhavar, R. Development and Validation of a New Method for Determination of Methylparaben in Iran Market Infant Formulae by HPLC. J. Environ. Health Sci. Eng. 2021, 19, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, S.; Hussain, S.; Javed, M.; Raza, A.; Iqbal, S.; Alrbyawi, H.; Aljazzar, S.O.; Elkaeed, E.B.; Somaily, H.H.; Pashameah, R.A.; et al. Simultaneous HPLC Determination of Clindamycin Phosphate, Tretinoin, and Preservatives in Gel Dosage Form Using a Novel Stability-Indicating Method. Inorganics 2022, 10, 168. [Google Scholar] [CrossRef]
- De Almeida Brehm Goulart, F.; Reichert, G.; Felippe, T.C.; Mizukawa, A.; Antonelli, J.; Fernandes, C.S.; de Azevedo, J.C.R. Daily Variation of Lipid Regulators and Personal Care Products in a River Impacted by Domestic Effluents in Southern Brazil. Water 2021, 13, 1393. [Google Scholar] [CrossRef]
- Dos Santos, M.M.; Brehm, F.d.A.; Filippe, T.C.; Knapik, H.G.; de Azevedo, J.C.R. Ocorrência e Avaliação de Risco de Parabenos e Triclosan Em Águas Superficiais Na Região Sul Do Brasil: Um Problema de Poluentes Emergentes Em Um País Emergente. Rev. Bras. Recur. Hidr. 2016, 21, 603–617. [Google Scholar] [CrossRef] [Green Version]
- Dualde, P.; Pardo, O.; FFernández, S.; Pastor, A.; Yusà, V. Determination of Four Parabens and Bisphenols A, F and S in Human Breast Milk Using QuEChERS and Liquid Chromatography Coupled to Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1114–1115, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Kaya, S.I.; Cetinkaya, A.; Bakirhan, N.K.; Ozkan, S.A. Trends in Sensitive Electrochemical Sensors for Endocrine Disruptive Compounds. Trends Environ. Anal. Chem. 2020, 28, e00106. [Google Scholar] [CrossRef]
- Silwana, B.; van der Horst, C.; Iwuoha, E.; Somerset, V. Reduced Graphene Oxide Impregnated Antimony Nanoparticle Sensor for Electroanalysis of Platinum Group Metals. Electroanalysis 2016, 28, 1597–1607. [Google Scholar] [CrossRef]
- Oliveira, T.M.B.F.; Ribeiro, F.W.P.; Sousa, C.P.; Salazar-Banda, G.R.; de Lima-Neto, P.; Correia, A.N.; Morais, S. Current Overview and Perspectives on Carbon-Based (Bio)Sensors for Carbamate Pesticides Electroanalysis. TrAC Trends Anal. Chem. 2020, 124, 115779. [Google Scholar] [CrossRef]
- Piovesan, J.V.; Santana, E.R.; Spinelli, A. Reduced Graphene Oxide/Gold Nanoparticles Nanocomposite-Modified Glassy Carbon Electrode for Determination of Endocrine Disruptor Methylparaben. J. Electroanal. Chem. 2018, 813, 163–170. [Google Scholar] [CrossRef]
- Mielech-Łukasiewicz, K.; Bliźniukiewicz, A. Electrochemical Oxidation and Determination of Methylparaben at Overoxidized Polypyrrole Film Modified a Boron-Doped Diamond Electrode. J. Iran. Chem. Soc. 2018, 15, 2703–2711. [Google Scholar] [CrossRef]
- De Lima, L.F.; Daikuzono, C.M.; Miyazaki, C.M.; Pereira, E.A.; Ferreira, M. Layer-by-Layer Nanostructured Films of Magnetite Nanoparticles and Polypyrrole towards Synergistic Effect on Methylparaben Electrochemical Detection. Appl. Surf. Sci. 2020, 505, 144278. [Google Scholar] [CrossRef]
- Santana, E.R.; Spinelli, A. Electrode Modified with Graphene Quantum Dots Supported in Chitosan for Electrochemical Methods and Non-Linear Deconvolution of Spectra for Spectrometric Methods: Approaches for Simultaneous Determination of Triclosan and Methylparaben. Microchim. Acta 2020, 187, 250. [Google Scholar] [CrossRef]
- Baig, N.; Sajid, M.; Saleh, T.A. Recent Trends in Nanomaterial-Modified Electrodes for Electroanalytical Applications. TrAC Trends Anal. Chem. 2019, 111, 47–61. [Google Scholar] [CrossRef]
- Spanu, D.; Binda, G.; Dossi, C.; Monticelli, D. Biochar as an Alternative Sustainable Platform for Sensing Applications: A Review. Microchem. J. 2020, 159, 105506. [Google Scholar] [CrossRef]
- Nan, N.; DeVallance, D.B.; Xie, X.; Wang, J. The Effect of Bio-Carbon Addition on the Electrical, Mechanical, and Thermal Properties of Polyvinyl Alcohol/Biochar Composites. J. Compos. Mater. 2016, 50, 1161–1168. [Google Scholar] [CrossRef]
- Arnold, S.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Slow Pyrolysis of Bio-Oil and Studies on Chemical and Physical Properties of the Resulting New Bio-Carbon. J. Clean. Prod. 2016, 172, 2748–2758. [Google Scholar] [CrossRef]
- Agustini, D.; Mangrich, A.S.; Bergamini, M.F.; Marcolino-Junior, L.H. Sensitive Voltammetric Determination of Lead Released from Ceramic Dishes by Using of Bismuth Nanostructures Anchored on Biochar. Talanta 2015, 142, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Gevaerd, A.; De Oliveira, P.R.; Mangrich, A.S.; Bergamini, M.F.; Marcolino-Junior, L.H. Evaluation of Antimony Microparticles Supported on Biochar for Application in the Voltammetric Determination of Paraquat. Mater. Sci. Eng. C 2016, 62, 123–129. [Google Scholar] [CrossRef]
- De Oliveira, P.R.; Kalinke, C.; Gogola, J.L.; Mangrich, A.S.; Junior, L.H.M.; Bergamini, M.F. The Use of Activated Biochar for Development of a Sensitive Electrochemical Sensor for Determination of Methyl Parathion. J. Electroanal. Chem. 2017, 799, 602–608. [Google Scholar] [CrossRef]
- Martins, G.; Gogola, J.L.; Caetano, F.R.; Kalinke, C.; Jorge, T.R.; Santos, C.N.D.; Bergamini, M.F.; Marcolino-Junior, L.H. Quick Electrochemical Immunoassay for Hantavirus Detection Based on Biochar Platform. Talanta 2019, 204, 163–171. [Google Scholar] [CrossRef]
- Valenga, M.G.P.; Martins, G.; Martins, T.A.C.; Didek, L.K.; Gevaerd, A.; Marcolino-Junior, L.H.; Bergamini, M.F. Biochar: An Environmentally Friendly Platform for Construction of a SARS-CoV-2 Electrochemical Immunosensor. Sci. Total Environ. 2023, 858, 159797. [Google Scholar] [CrossRef]
- He, R.; Yuan, X.; Huang, Z.; Wang, H.; Jiang, L.; Huang, J.; Tan, M.; Li, H. Activated Biochar with Iron-Loading and Its Application in Removing Cr (VI) from Aqueous Solution. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 579, 123642. [Google Scholar] [CrossRef]
- Chacón, F.J.; Sánchez-Monedero, M.A.; Lezama, L.; Cayuela, M.L. Enhancing Biochar Redox Properties through Feedstock Selection, Metal Preloading and Post-Pyrolysis Treatments. Chem. Eng. J. 2020, 395, 125100. [Google Scholar] [CrossRef]
- Ji, L.; Spanu, D.; Denisov, N.; Recchia, S.; Schmuki, P.; Altomare, M. A Dewetted-Dealloyed Nanoporous Pt Co-Catalyst Formed on TiO2 Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H2 Production. Chem. Asian J. 2020, 15, 301–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, F.C.; Cesarino, I.; Cesarino, V.; Mascaro, L.H.; MacHado, S.A.S. Carbon Nanotubes Modified with Antimony Nanoparticles: A Novel Material for Electrochemical Sensing. Electrochim. Acta 2012, 85, 560–565. [Google Scholar] [CrossRef]
- Silva, M.K.L.L.; Cesarino, I. Electrochemical Sensor Based on Sb Nanoparticles/Reduced Graphene Oxide for Heavy Metal Determination. Int. J. Environ. Anal. Chem. 2020, 102, 3109–3123. [Google Scholar] [CrossRef]
- Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Antimony- Based Electrodes for Analytical Determinations. TrAC Trends Anal. Chem. 2016, 77, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Nunes, E.W.; Silva, M.K.L.; Cesarino, I. Evaluation of a Reduced Graphene Oxide-Sb Nanoparticles Electrochemical Sensor for the Detection of Cadmium and Lead in Chamomile Tea. Chemosensors 2020, 8, 53. [Google Scholar] [CrossRef]
- Hasegawa, K.; Minakata, K.; Suzuki, M.; Suzuki, O. The Standard Addition Method and Its Validation in Forensic Toxicology. Forensic Toxicol. 2021, 39, 311–333. [Google Scholar] [CrossRef]
- Cesarino, I.; Cincotto, F.H.; Machado, S.A.S. A Synergistic Combination of Reduced Graphene Oxide and Antimony Nanoparticles for Estriol Hormone Detection. Sens. Actuators B Chem. 2015, 210, 453–459. [Google Scholar] [CrossRef]
- Sebez, B.; Ogorevc, B.; Hocevar, S.B.; Veber, M. Functioning of Antimony Film Electrode in Acid Media under Cyclic and Anodic Stripping Voltammetry Conditions. Anal. Chim. Acta 2013, 785, 43–49. [Google Scholar] [CrossRef]
- Gil, E.d.S.; Andrade, C.H.; Barbosa, N.L.; Braga, R.C.; Serrano, S.H.P.P. Cyclic Voltammetry and Computational Chemistry Studies on the Evaluation of the Redox Behavior of Parabens and Other Analogues. J. Braz. Chem. Soc. 2012, 23, 565–572. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent Advances in Utilization of Biochar. Renew. Sustain. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Cesarino, I.; Cesarino, V.; Lanza, M.R.V. Carbon Nanotubes Modified with Antimony Nanoparticles in a Paraffin Composite Electrode: Simultaneous Determination of Sulfamethoxazole and Trimethoprim. Sens. Actuators B Chem. 2013, 188, 1293–1299. [Google Scholar] [CrossRef]
- Da Silva, M.K.L.; Plana Simões, R.; Cesarino, I. Evaluation of Reduced Graphene Oxide Modified with Antimony and Copper Nanoparticles for Levofloxacin Oxidation. Electroanalysis 2018, 30, 2066–2076. [Google Scholar] [CrossRef]
- Da Silveira, J.P.; Piovesan, J.V.; Spinelli, A. Carbon Paste Electrode Modified with Ferrimagnetic Nanoparticles for Voltammetric Detection of the Hormone Estriol. Microchem. J. 2017, 133, 22–30. [Google Scholar] [CrossRef]
- Naik, K.M.; Nandibewoor, S.T. Electroanalytical Method for the Determination of Methylparaben. Sens. Actuators A Phys. 2014, 212, 127–132. [Google Scholar] [CrossRef]
- Błedzka, D.; Gromadzińska, J.; Wasowicz, W. Parabens. From Environmental Studies to Human Health. Environ. Int. 2014, 67, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, C.D.; Prado, T.M.; Cincotto, F.H.; Verbinnen, R.T.; Machado, S.A.S. Methylparaben Quantification via Electrochemical Sensor Based on Reduced Graphene Oxide Decorated with Ruthenium Nanoparticles. Sens. Actuators B Chem. 2017, 251, 739–745. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Li, G.; Ye, B. A New Strategy for Enhancing Electrochemical Sensing from MWCNTs Modified Electrode with Langmuir-Blodgett Film and Used in Determination of Methylparaben. Sens. Actuators B Chem. 2015, 211, 332–338. [Google Scholar] [CrossRef]
- Baytak, A.K.; Duzmen, S.; Teker, T.; Aslanoglu, M. Voltammetric Determination of Methylparaben and Its DNA Interaction Using a Novel Platform Based on Carbon Nanofibers and Cobalt-Nickel-Palladium Nanoparticles. Sens. Actuators B Chem. 2017, 239, 330–337. [Google Scholar] [CrossRef]
- Chormey, D.S.; Zaman, B.T.; Kasa, N.A.; Bakırdere, S. Liquid Phase Microextraction Strategies and Their Application in the Determination of Endocrine Disruptive Compounds in Food Samples. TrAC Trends Anal. Chem. 2020, 128, 115917. [Google Scholar] [CrossRef]
- Chakraborty, J.N. Colouring Materials. Fundam. Pract. Colouration Text. 2010, 11–19. [Google Scholar] [CrossRef]
- Calvo, F.; Gómez, J.M.; Ricardez-Sandoval, L.; Alvarez, O. Integrated Design of Emulsified Cosmetic Products: A Review. Chem. Eng. Res. Des. 2020, 161, 279–303. [Google Scholar] [CrossRef]
- Duis, K.; Junker, T.; Coors, A. Review of the Environmental Fate and Effects of Two UV Filter Substances Used in Cosmetic Products. Sci. Total Environ. 2022, 808, 151931. [Google Scholar] [CrossRef] [PubMed]
Electrode | Linear Range (µmol L−1) | LOD (µmol L−1) | LOQ (µmol L−1) | Real Samples | Reference |
---|---|---|---|---|---|
Gold electrode | 40–1000 | 1.71 | 5.70 | Pharmaceutical products and urine | [55] |
GCE/MWCNTs-LB | 1.0–80 | 0.40 | Not reported | Skin toner | [58] |
Au/(MNP/Ppy)3 electrode | 0.0–131.40 | 0.0995 | Not reported | Urine, breast milk and cosmetic | [29] |
(Co-Ni-Pd)NPs-CNFs/GCE | 0.003–0.3 | 0.0012 | Not reported | Cosmetics, pharmaceuticals and urine samples | [59] |
GCE/rGO/RuNPs | 0.5–3.00 | 0.24 | Not reported | Deodorant cream | [57] |
AuNP-rGO-CS/GCE | 0.03–1.30 | 0.0138 | 0.04173 | Liquid soap, skin cleansing lotion, insect repellent and mouthwash | [27] |
GC/RC-SbNPs | 0.2–9.0 | 0.05 | 0.16 | Hand sanitizer, mouthwash, deodorant, emollient for cuticles and moisturizer cream | This work |
Samples | DPVRECOVERED | 2 Total MePa (µg/mL) | 1 Relative Error (%) | |
---|---|---|---|---|
(µmol L−1) | DPV | UV-Vis | ||
3 Hand sanitizer | 4.13 ± 0.10 | 50.30 ± 0.50 | 51.00 ± 0.50 | −1.50 |
3 Mouthwash | 1.15 ± 0.05 | 49.22 ± 0.80 | 52.95 ± 0.92 | −3.80 |
4 Deodorant | 0.38 ± 0.05 | 468.50 ± 2.60 | 513.51 ± 1.80 | −8.80 |
4 Emollient for cuticles | 0.32 ± 0.03 | 394.50 ± 5.60 | 456.45 ± 2.20 | −13.33 |
4 Moisturizer cream | 0.18 ± 0.04 | 221.40 ± 2.70 | 255.61 ± 1.50 | −13.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, G.C.; da Silva, M.K.L.; Barreto, F.C.; Cesarino, I. Electrochemical Sensing Platform Based on Renewable Carbon Modified with Antimony Nanoparticles for Methylparaben Detection in Personal Care Products. Chemosensors 2023, 11, 141. https://doi.org/10.3390/chemosensors11020141
Gomes GC, da Silva MKL, Barreto FC, Cesarino I. Electrochemical Sensing Platform Based on Renewable Carbon Modified with Antimony Nanoparticles for Methylparaben Detection in Personal Care Products. Chemosensors. 2023; 11(2):141. https://doi.org/10.3390/chemosensors11020141
Chicago/Turabian StyleGomes, Gabriela Contesa, Martin Kássio Leme da Silva, Francisco Contini Barreto, and Ivana Cesarino. 2023. "Electrochemical Sensing Platform Based on Renewable Carbon Modified with Antimony Nanoparticles for Methylparaben Detection in Personal Care Products" Chemosensors 11, no. 2: 141. https://doi.org/10.3390/chemosensors11020141
APA StyleGomes, G. C., da Silva, M. K. L., Barreto, F. C., & Cesarino, I. (2023). Electrochemical Sensing Platform Based on Renewable Carbon Modified with Antimony Nanoparticles for Methylparaben Detection in Personal Care Products. Chemosensors, 11(2), 141. https://doi.org/10.3390/chemosensors11020141