Trends in Molecularly Imprinted Polymers (MIPs)-Based Plasmonic Sensors
Abstract
:1. Introduction
2. MIP-Based Plasmonic Chemosensors and Biosensors
2.1. MIP Film-Based SPR Sensors
2.2. NanoMIP-Based SPR Sensors
2.3. MIP-Coated Nanoparticles-Based LSPR and SPR Sensors
2.4. MIP-Based SPR Imaging Sensors
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lowdon, J.W.; Diliën, H.; Singla, P.; Peeters, M.; Cleij, T.J.; van Grinsven, B.; Eersels, K. MIPs for commercial application in low-cost sensors and assays—An overview of the current status quo. Sens. Actuators B Chem. 2020, 325, 128973. [Google Scholar] [CrossRef]
- Dickert, F.L. Molecular imprinting and functional polymers for all transducers and applications. Sensors 2018, 18, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzun, L.; Turner, A.P.F. Molecularly-imprinted polymer sensors: Realizing their potential. Biosens. Bioelectron. 2016, 76, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Hayden, O. One binder to bind them all. Sensors 2016, 16, 1665. [Google Scholar] [CrossRef] [Green Version]
- Hayden, O.; Lieberzeit, P.A.; Blaas, D.; Dickert, F.L. Artificial antibodies for bioanalyte detection–Sensing viruses and proteins. Adv. Funct. Mater. 2006, 16, 1269–1278. [Google Scholar] [CrossRef]
- Ye, L.; Haupt, K. Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal. Bioanal. Chem. 2004, 378, 1887–1897. [Google Scholar] [CrossRef]
- Leibl, N.; Haupt, K.; Gonzato, C.; Duma, L. Molecularly Imprinted Polymers for Chemical Sensing: A Tutorial Review. Chemosensors 2021, 9, 123. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Bedwell, T.S.; Whitcombe, M.J. Analytical applications of MIPs in diagnostic assays: Future perspectives. Anal. Bioanal. Chem. 2016, 408, 1735–1751. [Google Scholar] [CrossRef] [Green Version]
- Piletsky, S. Molecular Imprinting of Polymers, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Murdaya, N.; Triadenda, A.L.; Rahayu, D.; Hasanah, A.N. A Review: Using Multiple Templates for Molecular Imprinted Polymer: Is It Good? Polymers 2022, 14, 4441. [Google Scholar] [CrossRef]
- Vasapollo, G.; del Sole, R.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [Green Version]
- Asman, S.; Mohamad, S.; Sarih, N.M. Exploiting β-Cyclodextrin in Molecular Imprinting for Achieving Recognition of Benzylparaben in Aqueous Media. Int. J. Mol. Sci. 2015, 16, 3656–3676. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, S.A. Molecular imprinted polymers as drug delivery vehicles. Drug Deliv. 2014, 23, 2262–2271. [Google Scholar] [CrossRef]
- Pardo, A.; Mespouille, L.; Dubois, P.; Blankert, B.; Duez, P. Molecularly Imprinted Polymers: Compromise between Flexibility and Rigidity for Improving Capture of Template Analogues. Chem. A Eur. J. 2014, 20, 3500–3509. [Google Scholar] [CrossRef] [PubMed]
- Caro, E.; Marce, R.; Borrull, F.; Cormack, P.; Sherrington, D. Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples. TrAC Trends Anal. Chem. 2006, 25, 143–154. [Google Scholar] [CrossRef]
- Sanagi, M.M.; Salleh, S.; Ibrahim, W.A.W.; Abu Naim, A.; Hermawan, D.; Miskam, M.; Hussain, I.; Aboul-Enein, H.Y. Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. J. Food Compos. Anal. 2013, 32, 155–161. [Google Scholar] [CrossRef]
- Kadhem, A.J.; Gentile, G.J.; Fidalgo de Cortalezzi, M.M. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021, 26, 6233. [Google Scholar] [CrossRef]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer-Verlag: New York, NY, USA, 2007; pp. 21–34. [Google Scholar]
- Daghestani, H.N.; Day, B.W. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors. Sensors 2010, 10, 9630–9646. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ming, H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens. 2012, 2, 37–49. [Google Scholar] [CrossRef]
- Boozer, C.; Kim, G.; Cong, S.; Guan, H.; Londergan, T. Looking towards label-free biomolecular interaction analysis in a high-throughput format: A review of new surface plasmon resonance technologies. Curr. Opin. Biotechnol. 2006, 17, 400–405. [Google Scholar] [CrossRef]
- Esen, C.; Piletsky, S.A. Surface Plasmon Resonance Sensors Based on Molecularly Imprinted Polymers. In Plasmonic Sensors and Their Applications; Denizli, A., Ed.; Wiley-VCH GmbH: Weinheim, Germany, 2021; Chapter 13; pp. 221–235. [Google Scholar]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Verellen, N.; Van Dorpe, P.; Huang, C.; Lodewijks, K.; Vandenbosch, G.A.; Lagae, L.; Moshchalkov, V.V. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 2011, 11, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jalali, M.; Mahshid, S.; Wachsmann-Hogiu, S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 2020, 145, 364–384. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.D.; Shrivastav, A.M.; Usha, S.P. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting. Sensors 2016, 16, 1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arghir, I.; Delport, F.; Spasic, D.; Lammertyn, J. Smart design of fiber optic surfaces for improved plasmonic biosensing. N. Biotechnol. 2015, 32, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.H.; Dillen, A.; Saeys, W.; Lammertyn, J.; Spasic, D. Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal. Chim. Acta 2020, 1104, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Pesavento, M.; Zeni, L. A review on simple and highly sensitive plastic optical fiber probes for bio-chemical sensing. Sens. Actuators B Chem. 2021, 331, 129393. [Google Scholar] [CrossRef]
- Yang, W.; Ma, Y.; Sun, H.; Huang, C.; Shen, X. Molecularly imprinted polymers based optical fiber sensors: A review. TrAC Trends Anal. Chem. 2022, 152, 116608. [Google Scholar] [CrossRef]
- Chiappini, A.; Pasquardini, L.; Bossi, A.M. Molecular Imprinted Polymers Coupled to Photonic Structures in Biosensors: The State of Art. Sensors 2020, 20, 5069. [Google Scholar] [CrossRef]
- Fang, L.; Jia, M.; Zhao, H.; Kang, L.; Shi, L.; Zhou, L.; Kong, W. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends Food Sci. Technol. 2021, 116, 387–404. [Google Scholar] [CrossRef]
- Lai, E.P.C.; Fafara, A.; Noot, V.A.V.; Kono, M.; Polsky, B. Surface plasmon resonance sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine, and xanthine. Can. J. Chem. 1998, 76, 265–273. [Google Scholar] [CrossRef]
- Rico-Yuste, A.; Carrasco, S. Molecularly imprinted polymer-based hybrid materials for the development of optical sensors. Polymers 2019, 11, 1173. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Liu, C.; Xie, Y.; Jia, P.; Hayashi, K. Localized surface plasmon resonance gas sensor based on molecularly imprinted polymer coated au nanoisland films: Influence of nanostructure on sensing characteristics. IEEE Sensors J. 2016, 16, 3532–3540. [Google Scholar] [CrossRef]
- Cennamo, N.; Massarotti, D.; Conte, L.; Zeni, L. Low Cost Sensors Based on SPR in a Plastic Optical Fiber for Biosensor Implementation. Sensors 2011, 11, 11752–11760. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Porto, G.; Biasiolo, A.; Perri, C.; Arcadio, F.; Zeni, L. A Molecularly Imprinted Polymer on a Plasmonic Plastic Optical Fiber to Detect Perfluorinated Compounds in Water. Sensors 2018, 18, 1836. [Google Scholar] [CrossRef] [Green Version]
- Cennamo, N.; De Maria, L.; D’Agostino, G.; Zeni, L.; Pesavento, M. Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform. Sensors 2015, 15, 8499–8511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesavento, M.; Zeni, L.; De Maria, L.; Alberti, G.; Cennamo, N. SPR-Optical Fiber-Molecularly Imprinted Polymer Sensor for the Detection of Furfural in Wine. Biosensors 2021, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Pesavento, M.; Marchetti, S.; Zeni, L. Molecularly Imprinted Polymers and Optical Fiber Sensors for Security Applications. In Advanced Materials for Defense. Springer Proceedings in Materials; Fangueiro, R., Rana, S., Eds.; Springer: Cham, Switzerland, 2020; Volume 4, pp. 17–24. [Google Scholar]
- Cennamo, N.; D’Agostino, G.; Pesavento, M.; Zeni, L. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of L-nicotine. Sens. Actuators B Chem. 2014, 191, 529–536. [Google Scholar] [CrossRef]
- Cennamo, N.; De Maria, L.; Chemelli, C.; Profumo, A.; Zeni, L.; Pesavento, M. Markers detection in transformer oil by plasmonic chemical sensor system based on POF and MIPs. IEEE Sens. J. 2016, 16, 7663–7670. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Perri, C.; Arcadio, F.; Chiaretti, G.; Parisio, E.M.; Camarlinghi, G.; Vettori, C.; Di Marzo, F.; Cennamo, R.; et al. Proof of Concept for a Quick and Highly Sensitive On-Site Detection of SARS-CoV-2 by Plasmonic Optical Fibers and Molecularly Imprinted Polymers. Sensors 2021, 21, 1681. [Google Scholar] [PubMed]
- Dibekkaya, H.; Saylan, Y.; Yılmaz, F.; Derazshamshir, A.; Denizli, A. Surface plasmon resonance sensors for real-time detection of cyclic citrullinated peptide antibodies. J. Macromol. Sci. Part A 2016, 53, 585–594. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Öpik, A.; Furchner, A.; Syritski, V. Hybrid molecularly imprinted polymer for amoxicillin detection. Biosens. Bioelectron. 2018, 118, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Ertürk, G.; Mattiasson, B. From imprinting to microcontact imprinting—A new tool to increase selectivity in analytical devices. J. Chromatogr. 2016, 1021, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Perçin, I.; Idil, N.; Bakhshpour, M.; Yılmaz, E.; Mattiasson, B.; Denizli, A. Microcontact imprinted plasmonic nanosensors: Powerful tools in the detection of salmonella paratyphi. Sensors 2017, 17, 1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertürk Bergdahl, G.; Andersson, T.; Allhorn, M.; Yngman, S.; Timm, R.; Lood, R. In vivo detection and absolute quantification of a secreted bacterial factor from skin using molecularly imprinted polymers in a surface plasmon resonance biosensor for improved diagnostic abilities. ACS Sens. 2019, 4, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Kidakova, A.; Reut, J.; Rappich, J.; Öpik, A.; Syritski, V. Preparation of a surface-grafted protein-selective polymer film by combined use of controlled/living radical photopolymerization and microcontact imprinting. React. Funct. Polym. 2018, 125, 47–56. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Dong, C.; Li, Y.; Jin, P.; Qi, J. Selective recognition and removal of chlorophenols from aqueous solution using molecularly imprinted polymer prepared by reversible addition-fragmentation chain transfer polymerization. Biosens. Bioelectron. 2009, 25, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Salian, V.D.; White, C.J.; Byrne, M.E. Molecularly imprinted polymers via living radical polymerization: Relating increased structural homogeneity to improved template binding parameters. React. Funct. Polym. 2014, 78, 38–46. [Google Scholar] [CrossRef]
- Gonzato, C.; Courty, M.; Pasetto, P.; Haupt, K. Magnetic molecularly imprinted polymer nanocomposites via surface-initiated RAFT polymerization. Adv. Funct. Mater. 2011, 21, 3947–3953. [Google Scholar] [CrossRef]
- Chou, P.C.; Rick, J.; Chou, T.C. C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach. Anal. Chim. Acta 2005, 542, 20–25. [Google Scholar] [CrossRef]
- Ertürk, G.; Hedström, M.; Mattiasson, B. A sensitive and real-time assay of trypsin by using molecular imprinting-based capacitive biosensor. Biosens. Bioelectron. 2016, 86, 557–565. [Google Scholar] [CrossRef]
- Osman, B.; Uzun, L.; Beşirli, N.; Denizli, A. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection. Mater. Sci. Eng. C 2013, 33, 3609–3614. [Google Scholar] [CrossRef] [PubMed]
- Malitesta, C.; Mazzotta, E.; Picca, R.A.; Poma, A.; Chianella, I.; Piletsky, S.A. MIP sensors–the electrochemical approach. Anal. Bioanal. Chem. 2012, 402, 1827–1846. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Chang, H.J.; Lee, N.; Kim, J.H.; Chun, H.S. Detection of mycoestrogen zearalenone by a molecularly imprinted polypyrrole-based surface plasmon resonance (SPR) sensor. J. Agric. Food Chem. 2009, 57, 1113–1118. [Google Scholar] [CrossRef]
- Pernites, R.B.; Ponnapati, R.R.; Advincula, R.C. Surface plasmon resonance (SPR) detection of theophylline via electropolymerized molecularly imprinted polythiophenes. Macromolecules 2010, 43, 9724–9735. [Google Scholar] [CrossRef]
- Pernites, R.B.; Ponnapati, R.R.; Felipe, M.J.; Advincula, R. Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: Pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosens. Bioelectron. 2011, 26, 2766–2771. [Google Scholar] [CrossRef] [PubMed]
- Hubilla, F.A.D.; Mabilangan, A.I.; Advincula, R.C.; del Mundo, F.R. A surface plasmon resonance histamine sensor based on an electropolymerized molecularly imprinted polymer (e-mip). MATEC Web Conf. 2017, 95, 02006. [Google Scholar] [CrossRef]
- Gupta, G.; Singh, P.K.; Boopathi, M.; Kamboj, D.V.; Singh, B.; Vijayaraghavan, R. Molecularly imprinted polymer for the recognition of biological warfare agent staphylococcal enterotoxin B based on Surface Plasmon Resonance. Thin Solid Film. 2010, 519, 1115–1121. [Google Scholar] [CrossRef]
- Gupta, G.; Bhaskar, A.S.; Tripathi, B.K.; Pandey, P.; Boopathi, M.; Rao, P.V.; Singh, B.; Vijayaraghavan, R. Supersensitive detection of T-2 toxin by the in situ synthesized π-conjugated molecularly imprinted nanopatterns. An in situ investigation by surface plasmon resonance combined with electrochemistry. Biosens. Bioelectron. 2011, 26, 2534–2540. [Google Scholar] [CrossRef] [PubMed]
- Bartold, K.; Pietrzyk-Le, A.; Huynh, T.P.; Iskierko, Z.; Sosnowska, M.; Noworyta, K.; Lisowski, W.; Sannicolò, F.; Cauteruccio, S.; Licandro, E.; et al. Programmed transfer of sequence information into a molecularly imprinted polymer for hexakis (2, 2′-bithien-5-yl) DNA analogue formation toward single-nucleotide-polymorphism detection. ACS Appl. Mater. Interfaces 2017, 9, 3948–3958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartold, K.; Pietrzyk-Le, A.; Golebiewska, K.; Lisowski, W.; Cauteruccio, S.; Licandro, E.; D’Souza, F.; Kutner, W. Oligonucleotide determination via peptide nucleic acid macromolecular imprinting in an electropolymerized cg-rich artificial oligomer analogue. ACS Appl. Mater. Interfaces 2018, 10, 27562–27569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sari, E.; Üzek, R.; Duman, M.; Denizli, A. Fabrication of surface plasmon resonance nanosensor for the selective determination of erythromycin via molecular imprinted nanoparticles. Talanta 2016, 150, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, E.; Özgür, E.; Bereli, N.; Türkmen, D.; Denizli, A. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection. Mater. Sci. Eng. C 2017, 73, 603–610. [Google Scholar] [CrossRef]
- Altintas, Z. Surface plasmon resonance based sensor for the detection of glycopeptide antibiotics in milk using rationally designed nanoMIPs. Sci. Rep. 2018, 8, 11222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashley, J.; Shukor, Y.; D’Aurelio, R.; Trinh, L.; Rodgers, T.L.; Temblay, J.; Pleasants, M.; Tothill, I.E. Synthesis of molecularly imprinted polymer nanoparticles for α-casein detection using surface plasmon resonance as a milk allergen sensor. ACS Sens. 2018, 3, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Erdem, Ö.; Saylan, Y.; Cihangir, N.; Denizli, A. Molecularly imprinted nanoparticles based plasmonic sensors for real-time enterococcus faecalis detection. Biosens. Bioelectron. 2019, 126, 608–614. [Google Scholar] [CrossRef]
- Rahtuvanoğlu, A.; Akgönüllü, S.; Karacan, S.; Denizli, A. Biomimetic nanoparticles based surface plasmon resonance biosensors for histamine detection in foods. ChemistrySelect 2020, 5, 5683–5692. [Google Scholar] [CrossRef]
- Cennamo, N.; Maniglio, D.; Tatti, R.; Zeni, L.; Bossi, A.M. Deformable molecularly imprinted nanogels permit sensitivity-gain in plasmonic sensing. Biosens. Bioelectron. 2020, 156, 112126. [Google Scholar] [CrossRef]
- Cennamo, N.; Bossi, A.M.; Arcadio, F.; Maniglio, D.; Zeni, L. On the Effect of Soft Molecularly Imprinted Nanoparticles Receptors Combined to Nanoplasmonic Probes for Biomedical Applications. Front. Bioeng. Biotechnol. 2021, 9, 801489. [Google Scholar] [CrossRef]
- Arcadio, F.; Seggio, M.; Del Prete, D.; Buonanno, G.; Mendes, J.; Coelho, L.C.C.; Jorge, P.A.S.; Zeni, L.; Bossi, A.M.; Cennamo, N. A Plasmonic Biosensor Based on Light-Diffusing Fibers Functionalized with Molecularly Imprinted Nanoparticles for Ultralow Sensing of Proteins. Nanomaterials 2022, 12, 1400. [Google Scholar] [CrossRef] [PubMed]
- Üzek, R.; Özkara, S.; Güngüneş, H.; Uzun, L.; Şenel, S. Magnetic nanoparticles for plasmid DNA purification through hydrophobic interaction chromatography. Sep. Sci. Technol. 2014, 49, 2193–2203. [Google Scholar] [CrossRef]
- Amin, M.M.; Zilles, J.L.; Greiner, J.; Charbonneau, S.; Raskin, L.; Morgenroth, E. Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater. Environ. Sci. Technol. 2006, 40, 3971–3977. [Google Scholar] [CrossRef] [PubMed]
- Lian, W.; Liu, S.; Yu, J.; Xing, X.; Li, J.; Cui, M.; Huang, J. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/graphene–gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens. Bioelectron. 2012, 38, 163–169. [Google Scholar] [CrossRef]
- Altintas, Z.; Gittens, M.; Guerreiro, A.; Thompson, K.A.; Walker, J.; Piletsky, S.; Tothill, I.E. Detection of waterborne viruses using high affinity molecularly imprinted polymers. Anal. Chem. 2015, 87, 6801–6807. [Google Scholar] [CrossRef]
- Hoshino, Y.; Kodama, T.; Okahata, Y.; Shea, K.J. Peptide imprinted polymer nanoparticles: A plastic antibody. J. Am. Chem. Soc. 2008, 130, 15242–15243. [Google Scholar] [CrossRef] [PubMed]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing–A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Chauhan, M.; Singh, V.K. Review on recent experimental SPR/LSPR based fiber optic analyte sensors. Opt. Fiber Technol. 2021, 64, 102580. [Google Scholar] [CrossRef]
- Ahmad, R.; Griffete, N.; Lamouri, A.; Felidj, N.; Chehimi, M.M.; Mangeney, C. Nanocomposites of gold nanoparticles@ molecularly imprinted polymers: Chemistry, processing, and applications in sensors. Chem. Mater. 2015, 27, 5464–5478. [Google Scholar] [CrossRef]
- Wu, L.; Li, X.; Miao, H.; Xu, J.; Pan, G. State of the art in development of molecularly imprinted biosensors. View 2022, 3, 20200170. [Google Scholar] [CrossRef]
- Abbas, A.; Tian, L.; Morrissey, J.J.; Kharasch, E.D.; Singamaneni, S. Hot spot-localized artificial antibodies for label-free plasmonic biosensing. Adv. Funct. Mater. 2013, 23, 1789–1797. [Google Scholar] [CrossRef]
- Hu, R.; Luan, J.; Kharasch, E.D.; Singamaneni, S.; Morrissey, J.J. Aromatic functionality of target proteins influences monomer selection for creating artificial antibodies on plasmonic biosensors. ACS Appl. Mater. Interfaces 2017, 9, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, J.R.L.; Teixeira, N.; De Freitas, V.; Sales, M.G.F.; Sutherland, D.S. A saliva molecular imprinted localized surface plasmon resonance biosensor for wine astringency estimation. Food Chem. 2017, 233, 457–466. [Google Scholar] [CrossRef]
- Culver, H.R.; Wechsler, M.E.; Peppas, N.A. Label-free detection of tear biomarkers using hydrogel-coated gold nanoshells in a localized surface plasmon resonance-based biosensor. ACS Nano 2018, 12, 9342–9354. [Google Scholar] [CrossRef]
- Chen, B.; Liu, C.; Sun, X.; Hayashi, K. Molecularly imprinted polymer coated Au nanoparticle sensor for α-pinene vapor detection. In Proceedings of the SENSORS, 2013 IEEE, Baltimore, MD, USA, 4–6 November 2013. [Google Scholar]
- Shang, L.; Liu, C.; Chen, B.; Hayashi, K. Development of molecular imprinted sol-gel based LSPR sensor for detection of volatile cis-jasmone in plant. Sens. Actuators B Chem. 2018, 260, 617–626. [Google Scholar] [CrossRef]
- Bagherpour, M.B.; Nikazar, M.; Welander, U.; Bonakdarpour, B.; Sanati, M. Effects of irrigation and water content of packings on alpha-pinene vapours biofiltration performance. Biochem. Eng. J. 2005, 24, 185–193. [Google Scholar] [CrossRef]
- Misra, G.; Pavlostathis, S.G.; Perdue, E.M.; Araujo, R. Aerobic biodegradation of selected monoterpenes. Appl. Microbiol. Biotechnol. 1996, 45, 831–838. [Google Scholar] [CrossRef]
- Mohseni, M.; Allen, D.G. Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds. Chem. Eng. Sci. 2000, 55, 1545–1558. [Google Scholar] [CrossRef]
- Dhamwichukorn, S.; Kleinheinz, G.T.; Bagley, S.T. Thermophilic biofiltration of methanol and α-pinene. J. Ind. Microbiol. Biotechnol. 2001, 26, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Chegel, V.I.; Lopatynskyi, A.M.; Lytvyn, V.K.; Demydov, P.V.; Martínez-Pastor, J.P.; Abargues, R.; Gadea, E.A.; Piletsky, S.A. Localized surface plasmon resonance nanochips with molecularly imprinted polymer coating for explosives sensing. Semicond. Phys. Quantum Electron. 2020, 23, 431–436. [Google Scholar] [CrossRef]
- Wang, W.; Wang, R.; Liao, M.; Kidd, M.T.; Li, Y. Rapid detection of enrofloxacin using a localized surface plasmon resonance sensor based on polydopamine molecular imprinted recognition polymer. J. Food Meas. Charact. 2021, 15, 3376–3386. [Google Scholar] [CrossRef]
- Underner, M.; Grignon, B.; Roblot, F.; Meurice, J.C.; Patte, F. Fluoroquinolones: Pharmacology, antibacterial spectrum and indications in pneumology. Rev. Pneumol. Clin. 1989, 45, 14–22. [Google Scholar] [PubMed]
- Nemeth, J.; Oesch, G.; Kuster, S.P. Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: Systematic review and meta-analysis. J. Antimicrob. Chemother. 2015, 70, 382–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, D.C. Mechanisms of action of antimicrobials: Focus on fluoroquinolones. Clin. Infect. Dis. 2001, 32, S9–S15. [Google Scholar] [CrossRef] [PubMed]
- Holland, W.R.; Hall, D.G. Surface-plasmon dispersion relation: Shifts induced by the interaction with localized plasma resonances. Phys. Rev. B 1983, 27, 7765–7768. [Google Scholar] [CrossRef]
- Frasconi, M.; Tel-Vered, R.; Riskin, M.; Willner, I. Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites. Anal. Chem. 2010, 82, 2512–2519. [Google Scholar] [CrossRef]
- Riskin, M.; Tel-Vered, R.; Frasconi, M.; Yavo, N.; Willner, I. Stereoselective and chiroselective surface plasmon resonance (SPR) analysis of amino acids by molecularly imprinted Au-nanoparticle composites. Chem. Eur. J. 2010, 16, 7114–7120. [Google Scholar] [CrossRef]
- Ben-Amram, Y.; Riskin, M.; Willner, I. Selective and enantioselective analysis of mono-and disaccharides using surface plasmon resonance spectroscopy and imprinted boronic acid-functionalized Au nanoparticle composites. Analyst 2010, 135, 2952–2959. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Yavuz, H.; Denizli, A. SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 2020, 219, 121219. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Yavuz, H.; Denizli, A. Development of Gold Nanoparticles Decorated Molecularly Imprinted–Based Plasmonic Sensor for the Detection of Aflatoxin M1 in Milk Samples. Chemosensors 2021, 9, 363. [Google Scholar] [CrossRef]
- Türkmen, D.; Bakhshpour, M.; Göktürk, I.; Aşır, S.; Yılmaz, F.; Denizli, A. Selective dopamine detection by SPR sensor signal amplification using gold nanoparticles. New J. Chem. 2021, 45, 18296–18306. [Google Scholar] [CrossRef]
- Lee, K.H.; Su, Y.D.; Chen, S.J.; Lee, G.B. 2-Dimensional SPR Detection System Integrated with Molecular Imprinting Polymer Microarrays Using Microfluidic Technology. In Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, 22–26 January 2006; pp. 430–433. [Google Scholar]
- Lautner, G.; Kaev, J.; Reut, J.; Öpik, A.; Rappich, J.; Syritski, V.; Gyurcsányi, R.E. Selective artificial receptors based on micropatterned surface-imprinted polymers for label-free detection of proteins by SPR Imaging. Adv. Funct. Mater. 2011, 21, 591–597. [Google Scholar] [CrossRef]
- Bosserdt, M.; Erdőssy, J.; Lautner, G.; Witt, J.; Köhler, K.; Gajovic-Eichelmann, N.; Yarman, A.; Wittstock, G.; Scheller, F.W.; Gyurcsányi, R.E. Microelectrospotting as a new method for electrosynthesis of surface-imprinted polymer microarrays for protein recognition. Biosens. Bioelectron. 2015, 73, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Q.; Yu, N.; Shi, C.; Wang, X.; Wu, J. Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array. Talanta 2016, 161, 797–803. [Google Scholar] [CrossRef] [PubMed]
Analyte | MIP Composition | Platform | Dynamic Range | Cross-Sensitivity | LOD | Ref. |
---|---|---|---|---|---|---|
Caffeine, Theopylline, Xanthine | PMMA-EGDMA 1 | SPR chip | 0.4–6 mg/L | Dyphilline, Hydrochlorothiazide, Nicotin acid, phenylbutazone, Theobromide | 0.4 mg/mL | [35] |
PFA 2 | VBT-PFDA-EDMA 2 | POF-SPR 9 | 0.1–4 mg/L | nd | 1.33 × 10−4 mg/mL | [39] |
2-furaldehyde | MAA-DVB 3 | POF-SPR 9 | 9–30 ppb | nd | 9 × 10−3 mg/mL | [40,41] |
TNT | MAA-DVB 3 | POF-SPR 9 | nd | 2,4-dinitrotoluene, 1,3-dinitrobenzene | 1.1 × 10−4 mg/mL | [42] |
L-nicotine | MAA-DVB 3 | POF-SPR 9 | 0–0.001 M | nd | 30 mg/mL | [43] |
Dibenzyl disulfide, 2-furaldehyde | MAA-DVB 3 | POF-SPR 9 | 2·10−15–10−13 M | nd | 7.24 × 10−3 mg/mL | [44] |
SARS-CoV 2 | Aam-TBAm-HEMA 4 | POF-SPR 9 | nd | nd | 0.058 µM | [45] |
Amoxicillin | MAAM-VTMOS-TEOS 5 | SPR chip | 0.1–2–6 nM | Ampicillin, norfloxacin, sulfamethizole, doxycycline | 73 pM | [47] |
S. Paratyphi | MAH-HEMA-EGDMA 6 | SPR chip | 2.5·106–15·106 cfu/mL | nd | 1.4 × 10−6 CFU/mL | [49] |
RoxP 7 | HEMA-PEGMA 7 | SPR chip | nd | nd | 0.2 nM | [50] |
Bovine serum albumin | DEAEM-BAA 8 | SPR chip | 2.5–25 nM | Human serum albumine | 5.6 nM | [51] |
Mycotoxin Zearalenone | Pyrrole | SPR chip | 0.3–3000 ng/L | α-zearalenol, β-zearalenol, zearalanone, and α-zearalanone | 0.3 ng/g | [59] |
Theopylline | TTCA 10 | SPR chip | 10–50 µM | 1-napthalene sulfonic acid sodium salt, acetanilide | 3.36 µM | [60] |
Paracetamol, Naproxene | TTCA 10 | SPR chip | nd | caffeine, theobromine,3-aminophenol, and 4-aminobenzoic acid | nd | [61] |
Histamine | TTCA 10 | SPR chip | 15–500 µg/mL | Histidine, Cadaverine, Putrescine | 2 µg/mL | [62] |
Staphylococcal enterotoxin B | 3-aminophenyl boronic acid | SPR chip | 3.2–25.6 fM | Caffeine, Theobromine | 0.05 fM | [63] |
Oligonucleotides | 2-(cytosin-1-yl)ethyl 4-bis(2,2′-bithien-5-yl)methylbenzoate | SPR chip | 3–80 nM | nd | 200 pM | [64,65] |
T 2 toxin | 3-aminophenyl boronic acid | SPR chip | 2.1–33.6 fM | Ricin, Curcin, Arbin, MicrocistinLR | 0.1 fM | [66] |
Analyte | MIP Composition | Polymerization Method | Platform | LOD | Dynamic Range | Cross Sensitivity | Ref. |
---|---|---|---|---|---|---|---|
Erythromycin | MAA-EGDMA-HEMA 1 | Two-phase mini-emulsion polymerization | SPR-CHIP | 0.3 mg/L | (6.8–68.1) × 10−6 mol dm−3 | nd | [67] |
Atrazine | MAA-EGDMA-HEMA 1 | Two-phase mini-emulsion polymerization | SPR-CHIP | 0.7134 ng/mL | 0.5–1.5 ng mL−1 | Simazine, Amitrole | [68] |
Glycopeptide antibiotics | EGDMA-TRIM 2 | Solid phase synthesis | SPR-CHIP | 4.1 ng/L | 10–200 µg Kg−1 | Teicoplanin, Artemisinin | [69] |
-Casein | NIPAm-BIS-APM-TBAm-AA 3 | Solid phase synthesis | SPR-CHIP | 127 ng/mL | 0.5–8 ppm | BLG 8, BSA 9 | [70] |
Enterococcus faecalis | MAH-HEMA-EGDMA 4 | Two-phase mini-emulsion polymerization | SPR-CHIP | 1.05 × 102 cfu/mL | 2 × 104–1 × 108 cfu mL−1 | E. coli, B. subtilis, S. aureus | [71] |
Histamine | MAH-HEMA-EGDMA 4 | Two-phase mini-emulsion polymerization | SPR-CHIP | 0.58 ng/mL | 0.001–10 µg mL−1 | Histidine, Tryptophan, Dopamine | [72] |
HTR 5 | Aam-MAA-TBAm-BIS 6 | Solution precipitation polymerization | POF-SPR 7 | 1.2 fM | 1.2 fM–1.8 pM | nd | [73] |
BSA | AaM-MAA-TBAm-BIS 6 | Solution precipitation polymerization | POF-SPR 7 | 3 fM | 2 fM–0.1 pM | -lactalbumin,myoglobin | [74] |
HTR | AaM-MAA-TBAm-BIS 6 | Solution precipitation polymerization | POF-SPR 7 | 4 fM | 8–280 fM | PEP, HRP | [75] |
Analyte | MIP Composition | Polymerization Method | Nanoobjects | LOD | Dynamic Range | Cross-Selectivity | Ref. |
---|---|---|---|---|---|---|---|
Proteins | TMPS-APTMS 1 | Sol-Gel | Au nanorods | 0.32 µg/mL | 0.25 nM–16 µM | Hemoglobin, BSA 6 | [85] |
Aromatic proteins | TMPS-APTMS-TMPhs 2 | Shell Sol-Gel | Au nanorods | 0.5 µg/mL | 0.9–1.5 nM | HAS 7, BSA 6 | [86] |
Polyphenols | TPCA-MAA-EGDMA-MA 3 | Surface polymerization | Au nanodisks | 1 µM | 1–100 µM | nd | [87] |
Lactoferrin Lysozyme | PNM 4 | Hydrogel | Silica core-Au nanoshells | 32 µg/mL | nd | nd | [88] |
-pinene vapor | MAA-EGDMA 5 | Bulk polymerization | Gold nanoparticles glass | 0.8 ppm | 3.8–46.4 ppm | nd | [89] |
Explosives | Acrylamide mixture | Surface polymerization | Gold nanoislands | 1 pM water 0.1 ppm vapor | 1 pM–100 µM | nd | [95] |
Enrofloxacin | Polydopamine | Self bulk polymerization | Gold nanoparticles chip | 61 ng/mL | 0–100 ng/mL | DANO 8, TETR 9, PHTH 10 | [96] |
Analyte | MIP Composition | Platform | Dynamic Range | Cross Sensitivity | LOD | Ref. |
---|---|---|---|---|---|---|
Noemycin, Kanamycin, Streptomycin, Enrofloxacin | Thioaniline | SPR chip | 2 × 10−6–20 nM | nd | 200 fM | [101] |
Amino acids | Thioaniline-cysteine | SPR chip | 0.002–4 µM | nd | 2 nM | [102] |
Mono-, disaccharides | Boronic acid | SPR chip | 10−6–200 nM | nd | 40 ppb | [103] |
Aflatoxin M1 | N−methacryloyl−l−phenylalanine | SPR chip | 0.0003–20 ng/mL | Aflatoxin B1, citrinin, ochratoxin A | 0.4 pg/mL | [104,105] |
Dopamine | N-Methacryloyl-(L)-cysteine methyl ester, N-methacryloyl-(L)-phenylalanine methyl ester | SPR chip | 0.01–0.075 ppb 0.15–0.5 ppb | (±)-epinephrine hydrochloride, l-norepinephrine hydrochloride | 0.091 ppb | [106] |
Analyte | MIP Composition | Platform | Dynamic Range | Cross Sensitivity | LOD | Ref. |
---|---|---|---|---|---|---|
Progesterone, cholesterol, testosterone | Methacrylic acid | SPRi chip | nd | nd | 0.1 µM | [107] |
Proteins | poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) | SPRi chip | 8 × 10−4–0.5 mg/mL | Streptavidin, neutravidin, and extravidin | 125 nM | [108] |
Proteins | Scopoletin | SPRi chip | nd | nd | nd | [109] |
Enrofloxacin Sulfapyridine Chloramphenicol | Itaconic acid | SPRi chip | 0.15–20 µg/L | Ciprofloxacin, ofloxacin, azithromycin, dopamine, penicillin | 0.3 µg/L 0.29 µg/L 0.26 µg/L | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberti, G.; Zanoni, C.; Spina, S.; Magnaghi, L.R.; Biesuz, R. Trends in Molecularly Imprinted Polymers (MIPs)-Based Plasmonic Sensors. Chemosensors 2023, 11, 144. https://doi.org/10.3390/chemosensors11020144
Alberti G, Zanoni C, Spina S, Magnaghi LR, Biesuz R. Trends in Molecularly Imprinted Polymers (MIPs)-Based Plasmonic Sensors. Chemosensors. 2023; 11(2):144. https://doi.org/10.3390/chemosensors11020144
Chicago/Turabian StyleAlberti, Giancarla, Camilla Zanoni, Stefano Spina, Lisa Rita Magnaghi, and Raffaela Biesuz. 2023. "Trends in Molecularly Imprinted Polymers (MIPs)-Based Plasmonic Sensors" Chemosensors 11, no. 2: 144. https://doi.org/10.3390/chemosensors11020144
APA StyleAlberti, G., Zanoni, C., Spina, S., Magnaghi, L. R., & Biesuz, R. (2023). Trends in Molecularly Imprinted Polymers (MIPs)-Based Plasmonic Sensors. Chemosensors, 11(2), 144. https://doi.org/10.3390/chemosensors11020144