Different Diacetyl Perception Detected through MOX Sensors in Real-Time Analysis of Beer Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Calibration of MOX Sensor Array and S3+ Setup
- Temperature between 500 °C and 800 °C;
- Time between 1 h and 10 h.
- A chamber test with a standardized dimension, which promote a smooth flow in and out of the chamber;
- A mass flow program that absorbs and controls the flow from the air and ethanol pressure cylinders;
- An electronic board that controls the conditioning and monitoring of the sensor at the working temperature, transduces the chemical signal in an electrical signal, and sends all the data to the cloud.
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colen, L.; Swinnen, J. Economic Growth, Globalisation and Beer Consumption. J. Agric. Econ. 2015, 67, 186–207. [Google Scholar] [CrossRef]
- Garavaglia, C.; Swinnen, J. Economic Perspectives on Craft Beer; Palgrave Macmillan: London, UK, 2018. [Google Scholar]
- Baek, C.-W.; Chang, H.-J.; Lee, J.-H. Method Validation and Assessment of Hazardous Substances and Quality control Characteristics in Traditional Fruit Wines. Foods 2022, 11, 3047. [Google Scholar] [CrossRef] [PubMed]
- Preedy, V.R. Beer in Health and Disease Prevention; Academic Press: London, UK, 2009. [Google Scholar]
- Shibamoto, T. Diacetyl: Occurrence, Analysis, and Toxicity. J. Agric. Food Chem. 2014, 62, 4048–4053. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.; Winter, C.K. Diacetyl in Foods: A Review of Safety and Sensory Characteristics. Compr. Rev. Food Sci. Food Saf. 2015, 14, 634–643. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Yao, S.; Lu, L.; Li, J.; Tang, Y.; Wu, Y. Diacetyl as new-type of artificial enzyme to mimic oxidase mediated by light and its application in the detection of glutathione at neutral pH. Microchem. J. 2022, 179, 107529. [Google Scholar] [CrossRef]
- Krogerus, K.; Gibson, B.R. 125th Anniversary Review: Diacetyl and its control during brewery fermentation. J. Inst. Brew. 2013, 119, 86–97. [Google Scholar] [CrossRef]
- Ferreira, I.M.; Guido, L.F. Impact of Wort Amino Acids on Beer Flavour: A Review. Fermentation 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, M.; Mine, T.; Ohuchi, E.; Ohmori, S. A Detoxication Route for Acetaldehyde: Metabolism of Diacetyl, Acetoin, and 2,3-Butanediol in Liver Homogenate and Perfused Liver of Rats. J. Biochem. 1996, 119, 246–251. [Google Scholar] [CrossRef]
- Habschied, K.; Krstanović, V.; Šarić, G.; Ćosić, I.; Mastanjević, K. Pseudo-Lager—Brewing with Lutra® Kveik Yeast. Fermentation 2022, 8, 410. [Google Scholar] [CrossRef]
- Brányik, T.; Vicente, A.A.; Dostálek, P.; Teixeira, J.A. A Review of Flavour Formation in Continuous Beer Fermentations. J. Inst. Brew. 2012, 114, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Martineau, B.; Acree, T.; Henick-Kling, T. A simple and accurate GC/MS method for the quantitative analysis of diacetyl in beer and wine. Biotechnol. Tech. 1994, 8, 7–12. [Google Scholar] [CrossRef]
- Palomino-Vasco, M.; Rodríguez-Cáceres, M.I.; Mora-Díez, N. Discrimination based on commercial/craft origin and on lager/ale fermentation of undiluted Spanish beer samples: Front-face excitation-emission matrices and chemometrics. J. Food Compos. Anal. 2023, 115, 104946. [Google Scholar] [CrossRef]
- Schubert, C.; Lafontaine, S.; Dennenlöhr, J.; Thörner, S.; Rettberg, N. The influence of storage conditions on the chemistry and flavor of hoppy ales. Food Chem. 2022, 395, 133616. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.G.; Rodrigues, J.A.; Barros, A.A.; Lapa, R.A.S.; Lima, J.; Cruz, J.M.M.; Ferreira, A.A. Automatic Flow System with Voltammetric Detection for Diacetyl Monitoring during Brewing Process. J. Agric. Food Chem. 2002, 50, 3647–3653. [Google Scholar] [CrossRef]
- Bravo, A.; Scherer, E.; Madrid, J.; Herrera, J.; Virtanen, H.; Rangel-Aldao, R. Identification of α-dicarbonylic compounds in aged beers: Their role in beer aging process. In Proceedings of the European Brewery Convention Congress, Budapest, Hungary, 12–17 May 2001; pp. 602–611. [Google Scholar]
- Lee, Y.-Y.; Shibamoto, T.; Ha, S.-D.; Ha, J.; Lee, J.; Jang, H.W. Determination of glyoxal, methylglyoxal, and diacetyl in redginseng products using dispersive liquid–liquid microextraction coupled with GC–MS. J. Sep. Sci. 2019, 42, 1230–1239. [Google Scholar] [CrossRef]
- Pearce, T.C.; Gardner, J.W.; Friel, S.; Bartlett, P.N.; Blair, N. Electronic nose for monitoring the flavour of beers. Analyst 1993, 118, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.P.; Lozano, J.; Aleixandre, M. Brewing Technology: Electronic Noses Applications in Beer Technology; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Seesaard, T.; Wongchoosuk, C. Recent Progress in Electronic Noses for Fermented Foods and Beverages Applications. Fermentation 2022, 8, 302. [Google Scholar] [CrossRef]
- Ponzoni, A.; Zappa, D.; Comini, E.; Sberveglieri, V.; Faglia, G.; Sberveglieri, G. Metal Oxide Nanowire Gas Sensors: Application of Conductometric and Surface Ionization Architectures. Chem. Eng. Trans. 2012, 30, 31–36. [Google Scholar]
- Abbatangelo, M.; Núñez-Carmona, E.; Duina, G.; Sberveglieri, V. Multidisciplinary Approach to Characterizing the Fingerprint of Italian EVOO. Molecules 2019, 24, 1457. [Google Scholar] [CrossRef] [Green Version]
- Greco, G.; Carmona, E.N.; Sberveglieri, G.; Genzardi, D.; Sberveglieri, V. A New Kind of Chemical Nanosensors for Discrimination of Espresso Coffee. Chemosensors 2022, 10, 186. [Google Scholar] [CrossRef]
- Mariotti, R.; Núñez-Carmona, E.; Genzardi, D.; Pandolfi, S.; Sberveglieri, V.; Mousavi, S. Volatile Olfactory Profiles of Umbrian Extra Virgin Olive Oils and Their Discrimination through MOX Chemical Sensors. Sensors 2022, 22, 7164. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lujan, I.; Fonollosa, J.; Vergara, A.; Homer, M.; Huerta, R. On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemom. Intell. Lab. Syst. 2014, 130, 123–134. [Google Scholar] [CrossRef]
- Di Natale, C.; Marco, S.; Davide, F.; D’Amico, A. Sensor-array calibration time reduction by dynamic modelling. Sens. Actuators B Chem. 1995, 24–25, 578–583. [Google Scholar] [CrossRef]
- Roy, M.; Yadav, B.K. Electronic nose for detection of food adulteration: A review. J. Food Sci. Technol. 2022, 59, 846–858. [Google Scholar] [CrossRef]
- APAT. Metodi di Misura Delle Emissioni Olfattive; APAT: Roma, Italy, 2003. [Google Scholar]
- Masson, N.; Piedrahita, R.; Hannigan, M. Approach for quantification of metal oxide type semiconductor gas sensors used for ambient air quality monitoring. Sens. Actuators B Chem. 2015, 208, 339–345. [Google Scholar] [CrossRef]
- Genzardi, D.; Greco, G.; Núñez-Carmona, E.; Sberveglieri, V. Real Time Monitoring of Wine Vinegar Supply Chain through MOX Sensors. Sensors 2022, 22, 6247. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
Type of Sensor | Doping | Working Temperature (°C) |
---|---|---|
MOX sensor MOX sensor MOX sensor | SnO2 | 500 °C 500 °C 500 °C |
SnO2 + Pd | ||
SnO2 + Au |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liboà, A.; Genzardi, D.; Núñez-Carmona, E.; Carabetta, S.; Di Sanzo, R.; Russo, M.; Sberveglieri, V. Different Diacetyl Perception Detected through MOX Sensors in Real-Time Analysis of Beer Samples. Chemosensors 2023, 11, 147. https://doi.org/10.3390/chemosensors11020147
Liboà A, Genzardi D, Núñez-Carmona E, Carabetta S, Di Sanzo R, Russo M, Sberveglieri V. Different Diacetyl Perception Detected through MOX Sensors in Real-Time Analysis of Beer Samples. Chemosensors. 2023; 11(2):147. https://doi.org/10.3390/chemosensors11020147
Chicago/Turabian StyleLiboà, Aris, Dario Genzardi, Estefanía Núñez-Carmona, Sonia Carabetta, Rosa Di Sanzo, Mariateresa Russo, and Veronica Sberveglieri. 2023. "Different Diacetyl Perception Detected through MOX Sensors in Real-Time Analysis of Beer Samples" Chemosensors 11, no. 2: 147. https://doi.org/10.3390/chemosensors11020147
APA StyleLiboà, A., Genzardi, D., Núñez-Carmona, E., Carabetta, S., Di Sanzo, R., Russo, M., & Sberveglieri, V. (2023). Different Diacetyl Perception Detected through MOX Sensors in Real-Time Analysis of Beer Samples. Chemosensors, 11(2), 147. https://doi.org/10.3390/chemosensors11020147